各类断路器的灭弧原理

各类断路器的灭弧原理
各类断路器的灭弧原理

引用各类断路器的灭弧原理

电机设备2010-10-27 15:24:38 阅读30 评论0 字号:大中小订阅

本文引用自缘分的天空《各类断路器的灭弧原理》

引用

缘分的天空的各类断路器的灭弧原理

真空断路器灭弧原理?

在真空断路器分断瞬间,由于两触头间的电容存在,使触头间绝缘击穿,产生真空电弧。由于触头形状和结构的原因,使得真空电弧柱迅速向弧柱体外的真空区域扩散。当被分断的电流接近零时,触头间电弧的温度和压力急剧下降,使电弧不能继续维持而熄灭。电弧熄灭后的几μs内,两触头间的真空间隙耐压水平迅速恢复。同时,触头间也达到了一定距离,能承受很高的恢复电压。所以,一般电流在过零后,

不会发生电弧重燃而被分断。这就是其灭弧的原理。

SF6开关的灭弧原理

10kV SF6断路器灭派性能优良,不仅在于SF6气体本身,而且采用旋弧式灭弧室。目前,国内外在10kV电压级的SF6断路器研制上,广泛采用了具有良好灭弧性能的旋弧式灭抓室,它利用短路电流来建立磁场,使电弧在电磁力的作用下高速旋转,以达到自动灭弧的作用。其灭弧原理从图1可见:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转,在SF6气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。

油断路器的灭弧原理

当油断路器开断电路时,只要电路中的电流超过0.1A,电压超过几十伏,在断路器的动触头和静触头之间就会出现电弧,而且电流可以通过电弧继续流通,只有当触头之间分开足够的距离时,电弧熄灭后电路才断开。1OkV少油断路器开断20KA时的电弧功率,可达一万千瓦以上,断路器触头之间产生的电

弧弧柱温度可达六七千度,甚至超过1万度。

油断路器的电弧熄灭过程是,当断路器的动触头和静触头互相分离的时候产生电弧,电弧高温使其附近的绝缘油蒸发气化和发生热分解,形成灭弧能力很强的气体(主要是氢气)和压力较高的气泡,使电

弧很快熄灭。

灭弧的种类:灭弧有磁吹,纵缝灭弧,横吹的等等!

磁吹当然是利用磁力来灭弧。因为电弧本身就是一个比较大的电流,用线圈通上电流,当然线圈必须是在电弧的两边,把电弧加在中间!当有电弧的时候,线圈用自己本身的磁力,把电弧拉长,让他自动

熄灭!

可以引申以下,原先的断路器是用油来灭弧(当然不是单纯的用油),也就是电弧形成时,会把油电离,电离出来的氢气会把电弧吹灭!现在的SF6断路器的灭弧能力是氢气的6-8倍,所以现在的断路器

都是用FS6灭弧。

纵缝是把电弧引到缝里面,从而灭弧。

栅片是把电弧分成一段一段的,然后灭弧!

高压跌落熔断器的灭弧原理

大家都知道在高压大电流的场合,开关为了灭弧常常用较复杂的方法和结构,而高压跌落式熔断器却只需要一个很简单的胶管就可以顺利且很好的实现灭弧,主要原因是:第一、高压跌落熔断器电流不是很大。产生的电弧不是很大。第二,是用空气来熄灭电弧的。有点和空开的灭弧原理一样。只是结构不同

而已。

灭弧

目录

基本释义

应用与装置

灭弧的主要措施

编辑本段基本释义

灭弧:消除电火花

电弧: 电火花

编辑本段应用与装置

应用: 灭弧脂,良好的灭弧性和导电性,防止积炭和产生电火花。

灭弧装置: 围绕着机械式开关的弧触头,用以限制电弧并帮助电弧熄灭的装置。

产生电弧的根本原因在于开关电器触头本身及触头周围的介质中含有大量可被游离的电子,当分断的触头间存在足够大的外施电压,而且电路电流也达到最小生弧电流时,就会强烈游离而形成电弧。

编辑本段灭弧的主要措施

(1)增大近极电压降。主要方法是把电弧分隔为许多串联短弧。若利用金属片将长弧切成若干短弧,则电弧上的电压降将近似增大若干倍,电弧就不能维持燃烧而迅速

熄灭。

(2)增大弧柱电压的顺轴梯度。主要方法是加强对电弧的冷却。具体方法有:迅速拉长电弧;让电弧在固体介质所形成的狭沟中燃烧;利用外力吹动电弧;将粗大的电弧分成若干平行的细小电弧。上述具体方法除能达到增大电弧冷却面积,加强热交换,加速电弧的冷却,实现增大弧柱电压的顺轴梯度的目的外,还因电弧冷却了能使触头温度下降,从而又可达到增大近极电压降的目的。

(3)增大电弧长度。主要方法是增大触头的开距;利用外力吹动(拉长)电弧。

(4)改善灭弧介质,增大弧隙间的电绝缘强度

工厂供电开关电器的灭弧电弧是电气设备运行中经常发生的物理现象,其特点是光亮很强和温度很高。它不仅对触头有很大的破坏作用,电弧的产生对供电系统的安全运行有很大影响。首先,电弧延长了电路开断短路电流的时间。在开关分断短路电流时,开关触头上的电弧就延长了短路电流通过电路的时间,使短路电流危害的时间延长,这可能对电路设备造成更大的损坏。同时,电弧的高温可能烧坏开关的触头,烧毁电气设备和导线电缆,甚至可能引起火灾和爆炸事故。此外,强烈的电弧可能损伤人的视力,严重的可导致人失明。因此,开关设备在结构设计上就要保证其操作时电弧能迅速地熄灭。我们知道电弧的产生会对供电系统的安全运行产生非常不利的影响,因此有必要了解下电弧产生的原因:在实际中,开关触头在分断电流时之所以会有电弧,原因在于触头本身及触头周围的介质中含有大量的可被游离的电子。当分断的触头之间存在足够大的外施电压的条件下,这些电子就有可能被强烈电离而产生电弧。那么要使电弧熄灭,就必须使触头间电弧中的去游离率大于游离率,即其中离子消失的速率大大于离子产生的速率。所以在电气设备的运行中,常常会采用下列几种方法灭弧:速拉灭弧法、冷却灭弧法、吹弧灭弧法、长弧切短灭弧法、狭沟或狭缝灭弧法、真空灭弧法和六氟化硫灭弧法。1.速拉灭弧法速拉灭弧法:速拉灭弧法这是开关电器中普遍采用的最基本的一中灭弧法。迅速拉长电弧,可使弧隙的电场强度骤降,离子的复合迅速增强,从而加速断乎的熄灭。这种方法是利用开关中装设的强有力的断路弹簧,快速分断触头,迅速拉长电弧,最终达到灭弧的目的。2.冷却灭弧法:冷却灭弧法:冷却灭弧法通过降低电弧的温度,使电弧中的高温游离减弱,正负离子的复合增强,使电弧加速熄灭。这种方法在开关电器中也应用普遍,也是一种基本的灭弧方法。以上两种灭弧法都是利用空气的流动降温灭弧的,低压小功率电器开关基本上都是空气自然冷却灭弧。如一般接触器、转换开关等。3.吹弧灭弧法:吹弧灭弧法:吹弧灭弧法利用外力(如气流、油流或电磁力)来吹动电弧,使电弧加速冷却,同时拉长电弧,降低电弧中的电场强度,使离子的复合和扩散增强,从而加速电弧的熄灭。这种灭弧方法的灭弧能力不是很强,灭弧速度也不快,一般是用于中低电压的电路开关中。4.长弧切短灭弧法:长弧切短灭弧法:长弧切短灭弧法由于电弧的电压降主要降落在阴极和阳极上,其中阴极电压降又比阳极电压降大得多,而电弧的中间部分(弧柱)的电压降是很小的。因此如果利用金属片将长弧切割成若干倍。当外施电压小于电弧上的电压降时,则电弧不能维持而迅速熄灭。利用铁磁将触头间电弧快速吸入钢灭弧栅。同时钢片对电弧还有一定的冷却降温作用。5.粗弧分细灭弧法:粗弧分细灭弧法:粗弧分细灭弧法将粗大的电弧分成若干平行的细小电弧,使电弧与周围介质的接触面增大,改善电弧的散热条件,降低电弧的温度,从而加速电弧中离子的复合和扩散都得到加强,使电弧加速熄灭。6.

狭沟灭弧法:狭沟灭弧法:狭沟灭弧法利用电动力吹弧使电弧进入绝缘栅片内,使电弧在固体介质所形成的狭沟中燃烧,改善了电弧的冷却条件,同时由于电弧与介质表面接触使带电质点复合大大增强,从而加速电弧工厂供电的熄灭。比如有的熔断器熔管内充填石英砂,在熔断器中充填石英砂,其目的是为了增强熔断器的灭弧能力。石英砂具有较高的导热性和绝缘性能,并且与电弧有很大的接触面积,便于吸收电弧能量,因此能使电弧迅速冷却。使熔丝在石英砂中熔断。7.真空灭弧法:真空灭弧法:真空灭弧法因为真空具有较高的绝缘强度。如果将开关触头装在真空容器内,则在触头分断时其间产生的电弧一般较小,且在电流第一次过零时就能熄灭电弧。比如在真空断路器分断瞬间,由于两触头间的电容存在,使触头间绝缘击穿,产生真空电弧。由于触头形状和结构的原因,使得真空电弧柱迅速向弧柱体外的真空区域扩散。当被分断的电流接近零时,触头间电弧的温度和压力急剧下降,使电弧不能继续维持而熄灭。电弧熄灭后的几s 内,两触头间的真空间隙耐压水平迅速恢复。同时,触头间也达到了一定距离,能承受很高的恢复电压。所以,一般电流在过零后,不会发生电弧重燃而被分断。这就是其灭弧的原理。8.六氟化硫灭弧法:六氟化硫灭弧法:六氟化硫灭弧法由于六氟化硫(SF6)具有优良的绝缘性能和灭弧性能,其绝缘强度约为空气的三倍,其绝缘强度恢复的速度约比空气快一百倍,因此采用六氟化硫来灭弧可以大大提高开关的断流容量和缩短灭弧时间。原理是:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转,在SF6 气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6 气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。以上介绍的灭弧方法各有优缺点,在不同的场合常常根据具体情况选用不同的开关电器来灭弧,或者同时利用几种不同的灭弧方法来达到迅速灭弧的目的。

在低压输配电网络中,塑壳断路器是重要的基础元件之一,对于那些经常会发生用电设备过载、短路的场合,能安全、可靠地切断故障电流,防止事故扩大危及到整个输配电系统。国外ABB、西门子、施耐德等公司已经推出新一代产品,国内正泰集团、德力西电器、百利电气等企业也在低压电器领域形成第四代塑料外壳式断路器,新一代电器的主要技术特征为:高性能的触头灭弧系统,采用模块化结构,电子式脱扣器,性能优越,安装方式简便多样,与现场总线进行通讯等。

高性能触头灭弧系统

ABB公司、施耐德、GE等欧美大部分公司新一代产品采用双断点旋转式触头系统,加强了短弧度近阴极效应,具有较高的电弧电压,以提高分断能力,并省去软连接。以日本三菱、富士公司为代表的产品仍采用单断点触头系统。

国内部分企业申请了相关双断点旋转式触头的专利,如浙江正泰电器股份有限公司申请的发明专利01132088.5(申请日:2001.10.30、公开日:2003.05.07)公开了一种多极低压双断点塑壳断路器,它的特点是每极的两个灭弧室由相对独立的密封单元组装构成,各极的动触头通过触头支持设置在同一转轴上,触头支持通过一连杆与设置在其中一个小壳体上的操作机构相连;大壳体上设有极间隔墙,所述隔墙上设有支承所述转轴的轴承。该发明采用相对简单的结构,达到各单极单元之间可靠的机械连接和传动;同时,并使安装更为灵活和方便,可简化装配工艺,降低制造成本。

采用电子式脱扣器

电子脱扣器是微电子、计算机和通信技术的结合,具有传统热磁脱扣器不可比拟的优势。如:脱扣特性稳定,不受环境温度及气候的影响;脱扣电流和时间的精度较高;整定电流可调,并可设置不同的特性曲线以适应各种负载保护的要求;电子脱扣器可以派生通信功能,实现网络化控制,还可派生区域联锁、电量监控及电能分析等辅助功能。各公司的新一代塑壳断路器均可安装电子脱扣器,并逐渐向160A及以下的小容量额定电流壳架发展。

如ABB公司推出的SACE Isomax S 低压塑壳断路器采用微处理器电子式脱扣器,分断方式和形状特殊的开断元件使断路器能在极短时间内断开高达200kA 的短路电流。

常熟开关制造有限公司推出的CM1E系列电子可调式塑料外壳式断路器采用电子可调脱扣器和单片机控制,通过对信息的采集、分析和处理,指挥和控制断路器的运行状态。

高性能:分断能力达50KA~100KA

目前国内外新一代塑壳断路器产品综合技术和性能指标都有了很大的提高,可满足整个配电系统的要求,同时也考虑到系统的安全性、可靠性和经济性,下面就列举部分国内外相关企业各种壳架等级的塑壳断路器产品技术指标。

低压电器中触头灭弧系统的设计

低压电器中触头灭弧系统的设计

奚泓

(上海电器科学研究所(集团)有限公司,上海200063)

0 引言

触头灭弧系统作为低压电器的基本构件,其设计的好坏,直接影响到产品的性能。本文针对触头灭弧系统设计中的一些问题作了阐述。

1 触头设计

1.1 接触形式

在实际触头设计中,如断路器的触头大多采用线接触,静触头常设计成平面,而动触头设计成弧面,在分断短路电流时有利于电弧进入灭弧室;接触器由于要达到高的机械电气寿命要求,除了采用线接触的形式,也有采用多点接触的形式,如触头表面设计成网格形式,其触头支持的结构要求在触头接触过程中能尽量磨掉表面的氧化层。在动静触头配对时往往使静触头的硬度稍大于动触头的硬度。

1.2 触点形式

根据动静触头在分断状态下的断点数,可分为单断点和双断点。在新一代低压电器设计中,趋向于采用双断点的结构形式,并通过结构创新,克服了传统意义上单断点和双断点的一些缺点,使性能得到了提高。

1.3 触头结构

在低压电器中,电动力对电器的性能影响很大。为了达到好的限流效果,在分断短路电流时往往利用电动斥力来帮助触头斥开,因此,在新一代低压电器设计中通常将静触头设计成U 型,使动静触头问电流的方向相反。在有Icw指标要求的开关电器中,触头一般不设计成U 型结构,而采用使动静触头间电流的方向相同的结构设计。

1.4 触头材料

触头的接触电阻与触头材料有直接的关系,触头材料在温度达到一定数值后,其机械强度δ就会显著降低。为保证触头的可靠工作,触头在长期发热时的表面稳定温升不应超过有关标准规定的极限允许温升,具体数值可在相关的标准中查阅。低压电器中常用触头材料如表1所示。

2 触头灭弧系统的设计

图1为一种断路器触头灭弧系统的结构布局。图中,16、17分别为断路器的动静触头,10为灭弧室。

该结构设计的创新点在于引弧片的设计和灭弧栅片的安装设计。下引弧片12伸进位于灭弧室10后面的空间,而上引弧片11通过灭弧室10 的绝缘板14的相应结构与该空间隔开。上、下引弧片的结构设计能提高灭弧能力,防止灭弧室后面空间内的电弧短路。一般断路器的灭弧室由于受体积的限制,由灭弧栅片和绝缘隔板组成,灭弧室通常安装在断路器的基座内,灭弧栅片位于动、静触点的附近,灭弧栅片设计成平行排列。由于灭弧栅片的支脚越细长,电弧从触点开始向灭弧室运动的电磁力就越大,若此时栅片的问隔不均匀,细长的支脚则有可能相互抵靠在一起,会产生熔结在一起的危险。图中,灭弧室的侧壁设计有绝缘间隔件,安装时将灭弧栅片插入绝缘间隔件,以保证栅片间的间隔和安装的可靠。

触头设计成桥形结构,当额定电流>32 A时动触头导电排可采用纯铜材料;额定电流<32 A时可考虑用黄铜,其铜排的电流密度一般比静触头略小。静触头导电排采用图l所示的结构,有利于分断短路电流,在大电流时可采用纯铜材料,在小电流时可考虑用铁覆铜材料,这样可设计成上引弧片1 1与静触头导电排一体的结构,使结构更简洁,减少加工工艺,减少产品的可控点。触点材料可采用AgSnO ,经过试验验证,能达到高分断能力的要求,在额定短路运行分断Ics=50 kA后,触头没有严重烧损,能满足试后性能要求。

3 结语

随着计算机仿真技术的发展,目前可利用交互式图形技术在计算机屏幕上建立三维可视样机,不但缩短了开发周期,而且降低了开发成本。通过交互手段,改变样机的结构和参数,可使样机满足额定的技术要求,实现优化设计。

由于电弧数学模型尚未成熟,因而用虚拟样机技术去优化低压电器,特别是断路器灭弧系统尚不完善。目前,国外对开关电器灭弧室的设计采用振荡回路作为短路试验电源,以可拆式灭弧室为研究样机,也有直接对试验样机采用现代测试技术,从宏观和微观两方面来评价研究对象灭弧性能的好坏。如日本三菱公司为优化低压断路器灭弧系统设计,采用振荡回路和可拆式灭弧室,通过快速摄像系统来观察电弧在不同条件下进入灭弧栅片的情况,研究结果可获得电极(触头)至栅片的最佳距离,为优化灭弧系统设计提供科学依据。

我国低压断路器发展涉及的关键技术简析

时间:2010-10-16 来源:中国低压电器网作者:中国国家电缆网点击:35次

1、大电流电弧分断技术

随着电网容量不断增加,对低压断路器分断能力要求不断提高,对低压断路器分断性能提出了更高的要求。

为了提高系统运行可靠性,新一代万能式断路器一般均达到Icu=Ics=Icw,在提高Icu、Ics同时,重点提高Icw。新一代塑壳断路器要求Icu=Ics,重点提高Ics。为了提高分断性能,主要采取以下措施。

(1) 采用双断点触头灭弧系统

双断点触头灭弧系统过去在控制电器中应用较为普遍,其主要目的是缩小产品体积。低压断路器分断能力高,触头灭弧系统较为复杂。如采用双断点系统,产品结构更为复杂,有一系列关键技术需要解决。其中最主要的两个技术难点是设计可靠的卡住机构,又不侵犯专利,以及两个触头闭合与断开时同步性问题,且制造工艺要求高。为此对双断点触头灭弧系统是不是低压断路器发展方向存在明显分歧意见。随着现代设计技术不断发展与应用,上述技术难点已经得到有效解决。作为高性能MCCB产品双断点触头系统肯定是发展方向,是单独点结构无法比拟的。他使塑壳断路器具有更好的限流性能,更高的分断能力,较好实现了Icu= Ics。并为实现限流选择性保护,以及擦黑年品小型化、高寿命、高可靠、环保等创造了更好条件。但是,作为经济型MCCB产品,考虑制造成本不宜采用双断点系统。因此,对新一代高性能MCCB如何合理构成系列产品是值得探讨的问题。传统的系列型式高分断型、较高分断型、标准型、经济型结构型式基本相同,在新一代MCCB中可能是不适宜的。

作为高性能ACB产品,双断点触头灭弧系统也四发展方向之一。它为ACB分断性能进一步提高,提供了更大的空间。为在极短时间内实现全电流选择性保护创造了更好条件。

但是,作为普通型(标准型)ACB产品也不宜采用双断点系统。

(2)运用低压电器现代设计与测试技术对触头灭弧系统进行优化设计,并采用气吹等辅

助手段使电弧快速、可靠进入灭弧室。同时,有效控制游离气体扩散途径,避免相间、相对地飞弧,使飞弧距离控制在最小范围。

2、过电流保护新技术

低压断路器主要承担低压配电系统过电流保护以及其他各类故障保护,目前性能基本满足了系统故障保护要求。但是,就配电系统国电流保护看,目前保护方式是不完善的。主要存在以下问题:

(1) 目前选择性保护一般局限于低压断路器断延时电流以下范围。当故障电流达到上级

瞬动电流时,容易造成上、下级断路器同时跳闸,甚至越级跳闸。

(2) 由于终端过电流保护用小断路器目前均为限流顺动型,所以终端配电系统基本没有

选择性保护。

(3) 目前系统短路时选择性保护通过短延时实现,短延时时间一般为0.2~0.4s。对三级

供电系统,主开关短延时时间可达0.6~1s,秒甚至更大。所以,目前低压配电系统实现选择性保护时间较长,对低压电器、成套装置及系统动、热稳定要求高。

(4) 配电系统运行可靠性难以保证

新一带低压断路器采用过电流保护新技术达到的目标要求主要包括两方面内容:

实现低压配电系统全范围、全电流选择性保护。

在极短时间内实现选择性保护,整个选择性保护时间从原来1~1.2s缩短至0.2~0.5s。

为实现上述目标,新一代低压断路器应达到以下要求:

新一代ACB实现全电流范围选择性保护。

新一代MCCB应具有限流选择性保护功能。

开发具有短延时保护功能MCB。

新一代ACB、MCCB均应采用区域选择性保护技术。

过电流保护新技术采用后达到的主要效果如下:

从根本上避免低压配电系统越级跳闸和故障断路器正常分断后,上级断路器同时分闸。

使配电系统短路故障限制在最小范围,大大提高配电系统供电可靠性。

大大缩短实现选择性保护时间,降低电器设备动、热稳定要求,有利于节材、节能和产品小型化。

本项技术研究与推广是低压电力系统保护与可靠运行的一次重大飞跃,具有很好经济效益和社会效益,值得引起电器行业和电力行业关注。

所谓限流断路器,是指其分断时间短到足以使电流尚未达到预期峰值前即被分断的断路器。主要用于交流50Hz,额定电流16A至630A,额定绝缘电压至500V,额定工作电压400V及以下的配电网络中,用来分配电能及作为线路及电气设备的过载,短路和欠电压保护。

目录

?限流断路器的种类

?限流断路器的原理

?限流断路器设计的原则

?限流断路器的用途

限流断路器的种类

? 1 由限流熔断器和通用型断路器组合而成的限流断路器;

2 由自复式熔断器和通用型断路器组合而成的限流断路器;

3 由金属限流线(一种电阻温度系数值很大的铁基合金线)和通用型断路器组合而成

的限流断路器;

4 电动斥力式限流断路器,这种断路器利用短路电流通过触头回路时所产生的巨大电

动斥力,在预期短路电流达到峰值前就断开电路。

目前,使用最多的是电动斥力式限流断路器。

限流断路器的原理

?传统低压断路器限流分断原理是当故障发生时,触头快速打开产生电弧,相当于线路中串入一个迅速增长电弧电阻,限制短路电流。这个迅速增长电弧电阻,通常称为“动态电弧电阻”。与一般断路器灭弧室不同,低压限流断路器灭弧室采用多个灭弧栅片。开断过程中,首先动触头和静触头分开产生电弧,电磁场和热场,流场作用下运动至灭弧栅片。当电弧进入栅片后,被分成多个短弧近极压降,使电弧电压迅速上升,达到限流目。有较高电弧电压,限流断路器灭弧室栅片数比一般断路器要多,排列更紧密。电弧电压上升越快,限流效果就越好,最终,电弧电压超过电源电压值,使电源电压无法维持电弧,完成熄弧限流分断。要使电弧电压迅速升高,传统有两种方法:(1)磁吹线圈。这种情况下,电弧将会被迅速拉长,它增加了电弧长度,也增加电弧热传导面积。(2)使用引弧道来迅速升高电弧电压。当触头打开时,引弧道上电磁力将拉长电弧,当电弧被驱动到灭弧室,就会进一步分割、冷却,这种方法前提要求:①电弧必须能被强迫脱离触头触头间间隙大于约1mm时,它才会发生);②电弧必须非常快脱离触头区,这样就减少了触头材料损耗,同时,触头间隙恢复;③电弧必须以非常快速度引弧道运动(约100m/s),然后进入去离子栅片以提高最终电弧电压值。

限流断路器设计的原则

?a触头迅速打开

b 迅速提高电弧电压

c使最终电弧电压值高

d快速介质强度恢复。

限流断路器的用途

?限流断路器是目前低压断路器中应用很广泛的,当断路器的负载出现短路时,由于断路器具有极快的分断速度,在短路电流未来得及达到预期峰值前即被切断,使实际短路电流产生的能量比预期能量减少,使得电网、用电电器受到的机械应力及热耗大大减小。

限流型断路器比一般断路器多一个限流系数概念,它就是指实际分断电流峰值与预期短路电流峰值之比。一般限流型断路器具有快速断开和限制短路电流上升的特点,特别适用于可能发生特大短路电流的网络中。但正因为限流断路器在短路电流大于或等于其瞬时脱扣器的整定值时,将会在数毫秒内脱扣,故一般不宜用于有下级断路器情况下的选择性保护。实际上在断路器生产厂商的产品样本与设计使用手册上对限流型断路器的使用类别均标明为:“A”。

真空断路器灭弧原理和方法分析-民熔

真空断路器灭弧原理和方法-民熔 真空断路器,系三相交流50Hz额定电压为12KV的电力系统的户内开关设备,民熔真空断路器作为电网设备、工矿企业动力设备的保护和控制单元。适用于要求在额定工作电流下的频繁操作,或多交开断短路电流的场所。 灭弧是断路器的重要应用之一,电弧不仅会损坏设备线路,还会影响人身安全。一般来说,常用的灭弧方法有四种,包括机械灭弧、磁吹弧等。本文介绍了常用的灭弧方法和几种常用断路器的原理。首先讨论了常用的灭弧方法,包括以下四种:

1机械灭弧:限位装置使电弧迅速拉长。这种方法常用于开关器件。 2灭磁弧:在与触头串联的磁吹线圈产生的磁场作用下,在电磁力的作用下拉长电弧,吹入由固体介质组成的灭弧罩内,与固体介质接触,使电弧冷却熄灭。 3窄缝(纵缝)灭弧方法:在电弧形成的磁场的电场作用下,电弧被拉长,进入灭弧罩窄(纵)槽内。将纵向电弧分为若干段并与之接触的固体弧段迅速熄灭。这种结构主要用于交流接触器。

4栅极灭弧法:当触头分离时,所产生的电弧在电力的作用下被推入一组金属光栅中,并分成若干段。每一块相互绝缘的金属网格相当于一个电极,因此正负极之间会有许多电压降。对于交流电弧,当电弧过零时,阴极附近会出现150V~250V的介电强度,使电弧无法维持和熄灭。由于栅极灭弧效果比直流灭弧效果强得多,在交流电器中常采用栅极灭弧。 这些方法主要针对一些低压断路器。为了了解使用这些方法的原因,有必要阐明断路器的灭弧原理。以下是一些常用断路器的讨论。真空断路器中断电弧原理。真空断路器在分闸瞬间,由于触头间存在电容,两触头间的绝缘被击穿,产生真空电弧。由于触头的形状和结构,真空弧柱迅速向弧柱外的真空区扩散。当开断电流接近零时,触头间电弧的温度和压力急剧下降,使电弧无法维持和熄灭。灭弧后几μs内,触头间真空间隙的耐压水平迅速恢复。

常用灭弧器的工作原理

①少油断路器 少油断路器以变压器油作为灭弧介质及动、静触头之间的绝缘。而用空气、陶瓷或有机绝缘材料作为相与相之间或相与地之间的绝缘。因此,少油断路器油量少、体积小、耗用钢材,价格便宜。目前在我国10~220KV电力系统中得到广泛应用。 其灭弧原理是少油断路器在油中开断电流时,触头间将产生电弧。高温电弧使油急速蒸发和分解。于是电弧便在油蒸汽和油分解的气体气泡中燃烧。油分解的气体中氢气约占70% ~ 80%,而且氢气的热导率非常高,并有很强的扩散作用。氢气和其他冷热气体对弧道产生强烈的冷却和去游离作用,特别是当电流经过零值瞬间,这种作用更加强烈,有利于熄灭电弧。断路器通常采用绝缘材料制成灭弧室,电弧在灭弧室中燃烧,利用灭弧室内升高的压力(可达几十兆帕)使油一方面流动,一方面与电弧接触,则灭弧效果更好。 ②六氟化硫断路器 六氟化硫断路器采用SF6气体作为灭弧介质和绝缘介质,SF6气体具有良好的绝缘性能和灭弧能力,因此在断路器中的应用得到迅速发展。SF6断路器的类型按灭弧方式分,有单压式和双压式;按触头工作方式可分为定开距式和变开距式;按总体结构分,有落地罐式和瓷瓶支柱式。 灭弧原理: 单压式SF6断路器只有一种压力较低的压力系统,既只有0.3~0.6MPa 压力(表压)的SF6气体作为断路器的内绝缘。在断路器开断的过程中,

由动触头带动压力活塞或压气罩,利用压缩气流吹熄电弧。分闸完毕,压气作用停止,分离的动静触头处在低压的SF6气体中 双压式SF6断路器内部有高压区和低压区,低压区0.3~0.5Mpa的SF6气体作为断路器的主绝缘。在分闸过程中,排气阀开启,利用高压区约1.5MPa的气体吹熄电弧。分闸完毕,动、静触头处于低压气体中或高压气体中。高压区喷向低压区的气体,再经气体循环系统和压缩机抽回高压区。 目前我国生产的SF6断路器采用单压式;并且触头多采用变开距结构 ③真空断路器 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。(责任编辑:admin)

真空灭弧室的基本结构和工作原理

真空灭弧室的基本结构和工作原理 真空灭弧室,又名真空开关管,是中高压电力开关的核心部件,其主要作用是,通过管内真空优良的绝缘性使中高压电路切断电源后能迅速熄弧并抑制电流,避免事故和意外的发生,主要应用于电力的输配电控制系统,还应用于冶金、矿山、石油、化工、铁路、广播、通讯、工业高频加热等配电系统。具有节能、节材、防火、防爆、体积小、寿命长、维护费用低、运行可靠和无污染等特点。真空灭弧室从用途上又分为断路器用灭弧室和负荷开关用灭弧室,断路器灭弧室主要用于电力部门中的变电站和电网设施,负荷开关用灭弧室主要用于电网的终端用户。 我公司生产的多种型号的真空灭弧室,按其用途、参数、开断容量可分为断路器用真空灭弧室、负荷开关用真空灭弧室、接触器用真空灭弧室、重合器用真空灭弧室和分段器用真空灭弧室等。 其结构形式均由气密绝缘外壳、导电回路、屏蔽系统、波纹管等部分组成。 1、 气密绝缘系统 由玻璃或陶瓷制成的气密绝缘外壳、动端盖板、定端盖板,不锈钢波纹管组成了气密绝缘系统。为了保证玻璃、陶瓷与金属之间有良好的气密性,除了封接时要有严格的操作工艺外,还要求材料本身的透气性尽量小和内部放气量限制到极小值。不锈钢波纹管的作用不仅能将真空灭弧室内部的真空状态与外部的大气状态隔离开来,而且能使动触头连同动导电杆在规定的范围内运动,以完成真空开关的闭合与分断操作。 2 、导电系统 定导电杆、定跑弧面、定触头、动触头、动跑弧面、动导电杆构成了灭弧室的导电系统。其中定导电杆、定跑弧面、定触头合称定电极,动触头、动跑弧面、动导电杆合称动电极,由真空1.排气管保护罩 2.排气管密封刀口 3.环氧树脂填料 4.定端盖版 5.定导电杆 6.屏蔽筒 7.玻壳(或陶瓷壳) 8.定触头座 9.定触头 10.动触头 11.动触头座 12.动导电杆 13.波纹管 14.均压罩 15.动端盖版 16.导向套

直流系统级差配合

直流系统级差配合 前言 随着我国电力工业的不断进步,电力系统向超高压、大容量方向发展,为这些大容量电力设备提供控制、保护、信号、操作电源,直流系统的安全、可靠、经济运行就必须提到一个新的高度。 正常运行时,直流系统为断路器提供合闸电源,为继电保护及自动装置、通讯等提供直流电源;故障时,特别是交流电源中断情况下,直流系统为继电保护及自动装置、断路器合跳闸、事故照明提供安全可靠的直流电源,是电力系统继电保护、自动装置和断路器正确动作的基本保证。在直流回路中,熔断器、断路器是直流系统各出线过流和短路故障主要的保护元件,可作为馈线回路供电网络断开和隔离之用,其选型和动作值整定是否适当以及上下级之间是否具有保护的选择性配合,直接关系到能否把系统的故障限制在最小范围内,这对防止系统破坏、事故扩大和主设备严重损坏至关重要。因此,加强熔断器、断路器选择及配置的准确性,对提高电力系统运行的安全可靠性具有重要意义。 1 级差配合存在的主要问题 由于变电站直流系统供电内容多,回路分布广,在一个直流网络中往往有许多支路需要设置断路器或熔断器进行保护,并往往分成三级或四级串联,这就存在着正确选择保护方案和保护上下级之间的配合问题。 1.1 交直流断路器混用 由于交、直流的燃弧及熄弧过程不同,额定值相同的交直流断路器开断直流电源的能力并不完全一样,用交流断路器代替直流断路器或交、直流断路器混用是保护越级误动的主要原因之一。 断路器瞬时动作采用磁脱扣原理,判据为通过的电流峰值,断路器标定的额定值为有效值,而交流电的峰值高于有效值,在相同定值下,在直流回路中交流断路器实际额定值高于

直流断路器。另外,因交流断路器与直流断路器灭弧原理不同,交流断路器用于直流回路不能有效、可靠地熄灭直流电弧,容易造成上级越级动作。 1.2 熔断器质量及参数问题 各生产厂家提供的熔断器技术数据是在产品型式试验时得到的,且校验熔断器的分断能力是在交流电源周期分量有效值下做的,熔体动作选择配合特性曲线也是交流安秒特性曲线。这与变电站直流系统发生短路故障时的实际情况有一定差距。 各熔断器厂家及设计手册提供的级差配合是按同一型号、同熔体材料确定上、下级差,从而保证满足选择性的,当回路中有不同类型的熔断器时,熔断器之间的级差配合更应引起高度重视。同时,由于目前低压电器生产厂家较多,不能完全保证产品质量,所以即使同一厂家、同一型号的熔体,其参数也有一定的分散性。 1.3 上、下级间的额定值级差选择不当 熔断器采用热效应原理,而断路器是磁效应与热效应相结合,安秒特性曲线不同,配合级差也不同。对于断路器之间、断路器与熔断器之间的级差配合不应照搬熔断器间的配合规定。 2 熔断器、直流断路器级差配置现场试验 为了适应新颁DL/T5044-2003《电力工程直流设计技术规程》(以下简称设计规程)有关规定,验证变电站直流系统中断路器和熔断器几种典型的级差配置方案是否满足选择性保护的要求,探索直流断路器之间的级差配合、直流断路器与熔断器的配合及其上下级之间的选择配置,选择了石家庄供电公司所辖变电站直流系统中部分直流断路器、熔断器的典型保护级差配合方案进行了现场试验,并对具备延时功能的三段式直流断路器也进行了试验验证,确认了实现选择性保护的配合条件。 2.1 短路电流的选取 按照直流断路器及熔断器安装现场可能出现的最大短路电流,将试验元件串联安装进行

各类断路器的灭弧原理

引用各类断路器的灭弧原理 电机设备2010-10-27 15:24:38 阅读30 评论0 字号:大中小订阅 本文引用自缘分的天空《各类断路器的灭弧原理》 引用 缘分的天空的各类断路器的灭弧原理 真空断路器灭弧原理? 在真空断路器分断瞬间,由于两触头间的电容存在,使触头间绝缘击穿,产生真空电弧。由于触头形状和结构的原因,使得真空电弧柱迅速向弧柱体外的真空区域扩散。当被分断的电流接近零时,触头间电弧的温度和压力急剧下降,使电弧不能继续维持而熄灭。电弧熄灭后的几μs内,两触头间的真空间隙耐压水平迅速恢复。同时,触头间也达到了一定距离,能承受很高的恢复电压。所以,一般电流在过零后, 不会发生电弧重燃而被分断。这就是其灭弧的原理。 SF6开关的灭弧原理 10kV SF6断路器灭派性能优良,不仅在于SF6气体本身,而且采用旋弧式灭弧室。目前,国内外在10kV电压级的SF6断路器研制上,广泛采用了具有良好灭弧性能的旋弧式灭抓室,它利用短路电流来建立磁场,使电弧在电磁力的作用下高速旋转,以达到自动灭弧的作用。其灭弧原理从图1可见:当短路开始,电信号反馈到脱扣器,使开关分闸。在分闸的瞬间,动触头和静触头之间就产生了电弧。动触头继续向下运动,电弧很快转移到引弧电极上。此时,绕在圆筒电极外而串联在静触头与圆筒电极之间的磁吹线圈通过短路电流,因而产生了磁场,于是电磁力驱使电弧高速旋转,在SF6气体中,电弧的高速旋转使得其离子体不断地与新鲜的SF6气体接触,以充分发挥六氟化硫的负电性,从而迅速地熄灭电弧。 油断路器的灭弧原理 当油断路器开断电路时,只要电路中的电流超过0.1A,电压超过几十伏,在断路器的动触头和静触头之间就会出现电弧,而且电流可以通过电弧继续流通,只有当触头之间分开足够的距离时,电弧熄灭后电路才断开。1OkV少油断路器开断20KA时的电弧功率,可达一万千瓦以上,断路器触头之间产生的电 弧弧柱温度可达六七千度,甚至超过1万度。 油断路器的电弧熄灭过程是,当断路器的动触头和静触头互相分离的时候产生电弧,电弧高温使其附近的绝缘油蒸发气化和发生热分解,形成灭弧能力很强的气体(主要是氢气)和压力较高的气泡,使电 弧很快熄灭。 灭弧的种类:灭弧有磁吹,纵缝灭弧,横吹的等等! 磁吹当然是利用磁力来灭弧。因为电弧本身就是一个比较大的电流,用线圈通上电流,当然线圈必须是在电弧的两边,把电弧加在中间!当有电弧的时候,线圈用自己本身的磁力,把电弧拉长,让他自动 熄灭! 可以引申以下,原先的断路器是用油来灭弧(当然不是单纯的用油),也就是电弧形成时,会把油电离,电离出来的氢气会把电弧吹灭!现在的SF6断路器的灭弧能力是氢气的6-8倍,所以现在的断路器 都是用FS6灭弧。 纵缝是把电弧引到缝里面,从而灭弧。

直流断路器的操作原理及分类

直流断路器的基本理解 指的是用于直流零碎运转方法转换或毛病切除的断路器。用来对直流配电零碎的设备和电气停止过载、短路维护之用,可普遍用于电力、邮电、交通、工矿企业等行业。 直流断路器的操作原理 流断路器主回路包括一个支持动触头的下部衔接排,一个上部衔接排和外表镀银的触头,合闸安装由一个带合闸线圈的大块罐状磁铁构成。该磁铁包容了一个动磁芯、触头压力弹簧和一个磁芯复位弹簧;一切这些部件均被装置在操作杆上。拨叉单位装置在操作杆的顶端。 过流脱扣安装包括一个由层压的薄片组成的衔铁,一个连到由弹簧掌握的操作杆上的动磁芯,因为该杆的感化可以设定脱扣整定值。五对辅佐接点均为由动触头掌握的换向触头。它们位于合闸安装下部的塑料盒内。灭弧室包含角板,隔板和去离子板,以上这些都装置在两块灭弧板之间。当断路器因为过流或正常的分闸敕令而分闸的话,推动机构将会带动动触头分闸。该推动机构异样感化于5个换向辅佐接点。 直流断路器的两大分类 1. 两段式直流断路器。两段式直流断路器在短路电流是下级开关额外电流的8~10倍规模、4~5级级差合营下,准确举措,合营优越。 2. 三段式直流断路器。三段式直流断路器,下级为三段式,下级为两段式或三段式直流断路器时,级差为2级,在短路电流为下级断路器额外电流的25~40倍规模均准确举措。 直流断路器与交流断路器的主要区别 两者的区别在于去灭弧才能上。由于交换每一个周期都有过零点,在过零点轻易熄弧,而直流开关没有过零点,熄弧才能很差,所以要添加额定的灭弧安装。总的来说就是直流难灭弧,而交换有过零,灭弧轻易。 如需进一步了解相关断路器产品的选型,报价,采购,参数,图片,批发等信息,请关注https://www.360docs.net/doc/1e18834732.html,/

少油断路器灭弧室的灭弧过程

少油断路器灭弧室的灭弧过程 为了提高其开断能力,油断路器在触头周围装设了用绝缘材料制成的灭弧室。油断路器的灭弧室利用油分解产生的气体形成高速气流对电弧进行强烈气吹而使之熄灭。其工作特点是开断电流愈大,则单位时间内产生的气体愈多,灭弧室中的压力愈高,吹弧力量愈强,因而燃弧时间也愈短;当开断电流减小时,吹弧力量相应减弱,于是燃弧时间增大。 灭弧室装在高强度的绝缘简中,由灭弧片组成,各灭弧片之间隔开一定的距离形成油囊。灭弧室上部为静触头,分闸时动触头向下运动,当触头分开时,在触头间产生电弧,电弧被圆柱形气泡包围着,气泡壁由灭弧室油囊中的油形成。由于电弧到气泡壁的距离很短,故油强烈地冷却电弧,使电弧的能量消耗于油的分解和气化上,产生大量气体。随着动触头向下运动,高压气体通过灭弧片中间的圆孔向上对电弧进行纵吹,待动、静触头之间的距离足够长时,电弧即能熄灭。纵吹灭弧室结构简单,气体排出的方向与触头运动方向相反,有利于电弧的冷却,但燃弧时间较长,灭弧后新鲜油不易补充,不利于重合闸。少油断路器的灭弧室结构形式较多,除了纵吹灭弧室外,还有横吹、纵横吹等形式的灭弧室。 当断路器分断有电流的电路时,动、静触头分离产生电弧。随着动触

杆向下运动,电弧被拉人灭弧室依次与油囊中的油接触,使油蒸发、分解形成高压油气泡,在压力差的作用下,高压油气通过灭弧片中心的圆孔连续对电弧向上纵吹,使电弧冷却并熄灭。 属于自能式灭弧的油断路器,其灭弧能力与电弧电流大小有关。电弧电流越大,电弧能量越大,产生的油气压力越高,吹弧越强烈,灭弧能力越强。电弧电流小,则灭弧能力弱,电流过零时弧隙介质介电强度小容易复撼,开断电容电流时还会出现过电压。 为提高油断路器开断小电流电弧的能力,在现代的少油断路器中,设置压油活塞装置。静触头座内装压油活塞后,触头分离时,弹簧力推动活塞向下运动,将活塞下面的油压人弧隙中,可以消除“真空”现象,迅速提高弧隙的绝缘强度,有利于小电流电弧的熄灭。 断路器也采用逆流原理,导电杆采用下拉式。即分闸导电杆向下运动,电弧产生的高温高压油向上喷,将电弧中的带电质点迅速向上排出弧道,有利于弧隙绝缘强度的迅速恢复。导电杆向下运动,将电弧向下拉,与弧根接触的是下部冷油,可以降低电弧和触头的温度,使热游离减弱。同时向下运动,总有一部分冷油向上挤进灭弧室,形成附加机械油吹,对熄灭小电流电弧极为有利。

真空断路器灭弧原理

真空断路器灭弧原理 真空断路器是利用真空(真空度为10-4mm汞柱以下)具有良好的绝缘性能和耐弧性能等特点,将断路器触头部分安装在真空的外壳内而制成的断路器。真空断路器具有体积小、重量轻、噪音小、易安装、维护方便等优点。尤其适用于频繁操作的电路中。 真空灭弧室中电弧的点燃是由于真空断路器刚分瞬间,触头表面蒸发金属蒸汽,并被游离而形成电弧造成的。真空灭弧室中电弧弧柱压差很大,质量密度差也很大,因而弧柱的金属蒸汽(带电质点)将迅速向触头外扩散,加剧了去游离作用,加上电弧弧柱被拉长、拉细,从而得到更好的冷却,电弧迅速熄灭,介质绝缘强度很快得到恢复,从而阻止电弧在交流电流自然过零后重燃。 真空灭弧室是真空断路器的灭弧和绝缘部件。主要有动触头、静触头、动端跑弧面、动端法兰、静端法兰、瓷柱、不锈钢支撑法兰、屏蔽罩、动静导电杆、玻壳和波纹管等,经过清洗由玻璃封装、真空焊、亚弧焊、排气等工艺程序处理后封装而成。各主要零部件均密封在玻壳中,玻壳不仅通过动静法兰起到密封作用,还能起到绝缘作用。波纹管系一动态密封的弹性元件,通过真空灭弧室在操动机构的作用下可完成分合闸动作,而又不会破坏其真空度。

真空灭弧室制造成一个整体,不能拆装,损坏后应整体更换。 真空电弧的熄灭是基于利用高真空介质(一般为压强低于10-4mm汞柱的稀薄气体)的绝缘强度及在这种气体中的电弧生成物(带电粒子和金属蒸汽)具有极高的扩散速度,在电弧电流过零后,触头间隙的介质强度可以迅速恢复起来的原理而实现的。燃弧过程中的金属蒸汽和带电粒子在强烈的扩散中为屏蔽罩所冷凝,带三条阿基米德螺旋槽的跑弧面使电弧电流在其流经路线上的触头间产生一个横向磁场,这时电弧电流在主触头上沿切线方向快速移动,从而降低了主触头表面的温度,减少了主触头的烧损,稳定了断路器的开断性能,提高了断路器的寿命。

直流断路器2005

直流断路器级差配合的研讨 主讲人:房兆源教授 亚东亚电气集团 重庆科源电气有限公司

一、直流电源系统中为什么要用专用的直流断路器 因交流断路器与直流断路器灭弧原理不同,交流断路器用于直流回路中不能有效、可靠地熄灭直流电弧,造成上下级越级动作。 河北电力公司某110KV 变电站直流屏馈线开关原采用交流C45N型断路器,曾两次越级动作造成事故。 二、级间配合的重要性 在电力系统中,直流电源作为继电保护、自动装置控制操作回路、灯光音响信号及事故照明等电源之用,是继电保护、自动装置和断路器正确动作的基本保证。直流系统中直流断路器是主要的保护电器,其选型和动作值整定是否适当以及上下级之间是否有保护性的选择性配合,直接关系到能否把系统故障限制到最小范围内,对防止系统破坏、事故扩大和设备损坏至关重要。 由于变电站直流系统的供电内容多,回路分布广,在一个直流网络中往往有许多支路设置直流断路器来进行保护,并往往分成三级或四级串联,这就存在保护元件如何正确选型号及上下级间选择性保护的问题。 所谓选择性保护是指配电系统中两个或几个断路器之间的电流—时间特性的配合,当在给定范围内出现过电流故障时,指定在这个范围动作的断路器动作,而其它的断路器不动作,从而将受故障的影响负载支路数目保持在最小程度。 三、直流断路器的分类 1.常用直断路器的分类: (1)两段型保护:过载长延时+短路瞬时保护 GM32-25~40 (北京人民电器厂) 5SX-25~40 (西门子公司) 5252S-DC (ABB) C32H-DC (梅兰日兰) NDM1-63 (良信) (2)三段型保护:过载长延时+短路短延时+短路瞬时保护 GMB32-25 (北京人民) GMB100-50、80 (北京人民) 2.按脱扣电流分: C型:脱扣电流为额定电流的5~10倍 D型:脱扣电流为额定电流的10~14倍

各种电弧灭弧原理

各种电弧灭弧原理、条件及措施的比较 1. 开关电弧灭弧的基本原理:首先使触头间的介质成为良好电导率的电弧,进而使电弧冷却,迅速降低其电导率,最终使其转变为良好的绝缘体。 单位体积内的能量平衡: 电源提供的能量=电弧的能量增量— v ?gradp (由对流引起的散热功率)—s (T) (由辐射引起的散热功率)— div Χ?gradT (由广义热传导引起的散热功率) 应根据不同条件、不同场合,提高后三项的散热功率。 2.直流电弧 灭弧条件:稳态电路方程与电弧伏安特性无交点 灭弧措施:(1)拉长电弧→Ua ↗;(2)冷却电弧→Ua ↗(加装灭弧室,选用好的介质);(3)制造电流过零点 3.交流电弧 交流电弧的熄灭措施:实质上是防止电弧重燃:利用电流过零点的有利时机,使U d >Utr 措施:提高U d 及其上升率,同时降低Utr 及其上升率 具体措施:(略) 4.SF 6电弧 灭弧原理:使大量SF 6分子与电弧接触而分解吸热,冷却电弧。 散热方式:以弧柱的热传导和对流换热为主,散热条件良好。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr 。 gradT div T s gradp v dt dh E ?--?-=χρσ)(2

5.真空电弧 散热方式:以辐射和经电极与屏蔽罩的热传导为主,散热条件较差。只要保持为扩散型电弧,电流过零后,在微秒级内带电粒子即可消散而恢复间隙的绝缘强度。 实际上防止重燃的方法:利用电流过零点的有利时机,使U d >Utr, 纵向磁场的特点: (1)延缓离子贫乏现象、阳极斑点的产生,使集聚电流值提高;(2)降低了电弧电压:一方面:不利于增大电弧电压的灭弧措施; 另一方面,降低了电弧能量,电极的温度可降低,不易形成阳 极斑点。 (3)不能使阳极斑点在阳极表面快速移动,局部熔融严重。 不同形式横向磁场的特点: (1)纵向电流自身产生的角向磁场(自箍缩磁场):有助于形成集聚型电弧。 (2)径向磁场:使电弧在电极表面快速移动,避免局部温度过高; 且可在工频后半周使集聚型电弧转变为扩散型电弧。 (3)抵消或部分抵消自箍缩磁场的角向磁场:使电弧向电极边缘移动而拉长电弧。一方面,电弧电压增高有利于灭弧;另一方面,电弧能量增大使电极温度升高。 (4)X向磁场:在电极的一边(y<0区域)增强自箍缩磁场,在电极的另一边(y>0区域)减弱自箍缩磁场。可利用来产生漂移

3ah真空断路器原理图

3ah真空断路器原理图 具有合,分负荷电流,关合,开断短路电流的功能. 浅谈10KV真空断路器的应用 一:真空的绝缘特性 真空具有很强的绝缘特性,在真空断路器中,气体非常稀薄,气体分子的自由行程相对较大,发生相互碰撞的几率很小,因此,碰撞游离不是真空间隙击穿的主要原因,而在高强电场作用下由电极析出的金属质点才是引起绝缘破坏的主要因素。 真空间隙中的绝缘强度不仅与间隙的大小,电场的均匀程度有关,而且受电极材料的性质及表面状况的影响较大。真空间隙在较小的距离间隙(2—3毫米)情况下,有比高压力空气与SF6气体高的绝缘特性,这就是真空断路器的触头开距一般不大的原因。 电极材料对击穿电压的影响主要表现在材料的机械强度(抗拉强度)和金属材料的熔点上。抗拉强度和熔点越高,电极在真空下的绝缘强度越高。 实验表明,真空度越高,气体间隙的击穿电压越高,但在10-4托以上,就基本保持不变了,所以,要保持真空灭弧室的绝缘强度,其真空度应不低于10-4托。 二:真空中电弧的形成与熄灭 真空电弧和我们以前学习的气体电弧放电现象有很大的差别,气体的游离现象不是产生电弧的主要因素,真空电弧放电是在触头电极蒸发出来的金属蒸汽中形成的。同时,开断电流的大小不同,电弧表现的特点也不同。我们一般把它分为小电流真空电弧和大电流真空电弧。 1.小电流真空电弧 触头在真空中开断时,产生电流和能量十分集聚的阴极斑点,从阴极斑点上大量地蒸发金属蒸汽,其中的金属原子和带电质点的密度都很高,电弧就在其中燃烧。同时,弧柱内的金属蒸汽和带电质点不断地向外扩散,电极也不断的蒸发新的质点来补充。在电流过零时,电弧的能量减小,电极的温度下降,蒸发作用减少,弧柱内的质点密度降低,最后,在过零时阴极斑消失,电弧熄灭。有时,蒸发作用不能维持弧柱的扩散速度,电弧突然熄灭,发生截流现象。 2.大电流真空电弧 在触头断开大的电流时,电弧的能量增大,阳极也严重发热,形成很强的集聚型的弧柱。同时,电动力的作用也明显了,因此,对于大电流真空电弧,触头间的磁场分布就对电弧的稳定性和熄弧性能有决定性的影响。如果电流太大,超过了极限开断电流,就会造成开断失败。此时,触头发热严重,电流过零以后仍然蒸发,介质恢复困难,不能断开电流。 三:断路器的结构和工作原理 真空断路器的生产厂家比较多,型号也较繁杂。按使用条件分为户内(ZNx—**)和户外(ZWx —**)两种类型。主要由框架部分,灭弧室部分(真空泡),和操动机构部分组成。 下面以浙江华仪电器科技股份有限公司生产的ZW27—12型户外高压真空断路器为例,说明其结构与工作原理。 1. 断路器本体结构一 断路器本体部分由导电回路,绝缘系统,密封件和壳体组成。整体结构为三相共箱式。其中导电回路由进出线导电杆,进出线绝缘支座,导电夹,软连接与真空灭弧室连接而成。 2. 操作机构二 此机构为电动储能,电动分合闸,同时具有手动功能。整个结构由合闸弹簧,储能系统,过流脱扣器,分合闸线圈,手动分合闸系统,辅助开关,储能指示等部件组成。 3.工作原理 真空断路器利用高真空中电流流过零点时,等离子体迅速扩散而熄灭电弧,完成切断电流的目的。

直流断路器基础知识

直流断路器是什么? 直流断路器和有载调压都是指的变压器分接开关调压方式,区别在于无励磁调压开关不具备带负载转换档位的能力,因为这种分接开关在转换档位过程中,有短时断开过程,断开负荷电流会造成触头间拉弧烧坏分接开关或短路,故调档时必须使变压器停电。因此一般用于对电压要求不是很严格而不需要经常调档的变压器。而有载分接开关则可带负荷切换档位,因为有载分接开关在调档过程中,不存在短时断开过程,经过一个过渡电阻过渡,从一个档转换至另一个档位,从而也就不存在负荷电流断开的拉弧过程。一般用于对电压要求严格需经常调档的变压器。 直流断路器的分类 直流断路器主要包括中性母线断路器(NBS)、中性母线接地断路器(NBGS)、金属回路转换断路器(MRTB)、大地回路转换断路器(ERTB)。 直流断路器技术参数 额定电压(Ue) 1600V 最大工作电压1800V 额定极限分断能力75KA(T=15ms) 固有工作时间6ms 电寿命400 200 辅助触头数量5NC+5ND 外形尺寸500、400、100、50 操作电压DC220、110、50V; AC220V 额定电流(In) 2500A/4000A 额定绝缘电压4000V 分断过电压(1.5~2.0)Ue 电流整定范围(1.25~2.7)KA;(2~5)KA (2~8)KA;(4~10)KA/(2~5)KA;(4~10)KA (2~8)KA;(4~15)KA 机械寿命20000

辅助触头容量AC220V 10A; DC110V 1A 安装尺寸4-Φ11,320*160(mm) 重量86kg 98kg 直流断路器工作条件 1、安装地点海拔高度不超过2000m; 2、周围空气温度不高于+40℃不低于-5℃;且24小时平均值不超过+35℃(特殊订货除外) 3、安装地点的空气相对湿度.最高温度+40℃时不超过50[%],在较低的温度下可以允许有较高的相对湿度,例如2O℃时达90[%]。对由干温度变化偶尔产生的凝露应采取特殊的措施。 4、在空气中无爆炸危险的介质且无足以腐蚀金属和破坏绝缘的气体与导电尘埃的地方。 5、无雨雪侵袭的地方。 6、污染等级为3级。 7、安装类别:断路器主电路的安装类别为Ⅲ,不接至主电路的辅助电路和控制电路安装类别为Ⅱ 直流断路器功能 直流断路器具有超一流的限流性能,能准确保护继电保护、自动装置免受过载、短路等故障危害。直流断路器具备的限流、灭弧能力优势,经过大量综合的科学试验,可实现3000Ah 以下直流系统中主(分)屏、保护屏、继电屏级间的全选择性保护。 直流断路器采用特殊的灭弧、限流系统,可迅速分断直流配电系统的故障电流,使级差配合得到很大的提高。直流断路器特别针对电力工程直流系统中测保屏与分电屏之间出现的越级跳闸等事故,该系列有着优异的性能,能避免出现上述故障。直流断路器产品的级差配合特性为国内外同类产品之最佳。 直流断路器适用场所 电力系统 在发电厂、变电站等容量大、电压高的电力系统中,直流系统为继电电保护、操作控制、信号音响以及事故照明等设备提供可靠的电源、小型直流断路器作为直流系统中最重要的元器

高压断路器自能灭弧技术的发展

高压断路器自能灭弧技术的发展 作者:张文兵来源:西高所研发中心发布时间:2006-12-14 浏览次数:3963 目前很多生产中压开关设备的企业,其中不少是有实力的民营或股份制企业开始越来越关注126kV级以上产品的发展,很多厂家都有在高电压领域一展身手的想法,但大家对高压领域无论是产品的技术发展还是市场行情了解得不是太多,本文拟在结合西高所今年来开发的几个产品,特别是从灭弧技术和断路器的研制入手,向大家简要介绍了目前我国高压领域发展的概况。 1.市场分析 根据行业协会2004年年鉴,下表呈示了2003年72.5kV及以上高压断路器的产品产量。 2003年72.5kV及以上高压断路器的产品产量单位: 台 电压等级750 363 252 126 72.5 SF6断路器73 22 769 4010 481 GIS 511 1494 少油断路器 1 58 78 考虑到一些合资或外资企业未参加行协的统计,椐不完全估计截止2003年目前国内市场的 126kV以上产品的总需求量为10000台套左右(含GIS),其年产值约60-70亿元左右,约占整个高压开关总市场容量的1/4~1/3。其中126kV领域的产品产值约30亿元,供应偏紧。目前国内能进行126kV级以上产品生产的企业不足20家,有规模的且能生产252kV级以上产品的企业更是凤毛麟角。可以说,高压产品在近几年里还有一定的市场空间和利润空间。但生产高压产品所必须进行的在厂房、设备、技术、品牌战略等方面的高投入,依然是使不少企业彷徨不定或难以介入的高门槛。 2.自能灭弧的技术发展 对于六氟化硫断路器灭弧原理的发展而言,20世纪90年代无疑是一个重要的时期。在这期间,126kV及以上级的自能式灭弧原理得到了蓬勃的发展和广泛的应用,它与传统的压气式断路器相比,操作功大大减少,因而可配用维护方便的轻型弹簧操动机构,机械应力小,大大提高了机械可靠性及机械寿命,减轻了重量。从而使自能式六氟化硫高压断路器在轻量化、小型化、机械可靠性等特性上有了显著的优势,体现出高压断路器的进步。故采用自能式灭弧原理的断路器,被称为继双压式、单压式后的第三代断路器,是六氟化硫断路器发展史上的一次革命。它的出现迅速被用电部门所接受,具有良好的发展前景。 西安高压电器研究所对自能灭弧技术的研究始于八十年代中期,当时主要在中压产品上进行了旋弧+热膨胀灭弧室的研究,并成功开发了LN2-10和LN2-35系列的SF6断路器。96年以后,开始进

详解隔离开关、负荷开关、真空断路器作用与区别!

详解隔离开关、负荷开关、真空断路器作用与区别! 什么是负荷开关? 是具有简单的灭弧装置,可以带负荷分,合电路的控制电器。能通断一定的负荷电流和过负荷电流,但不能断开短路电流,必须与高压熔断器串联使用,借助熔断器来切除短路电流。 负荷开关的作用: 1)开断和关合作用。 由于它有一定的灭弧能力,因此可用来开断和关合负荷电流和小干一定倍数(通常为3-4倍)的过载电流;也可以用来开断和关合比隔离开关允许容量更大的空载变压器,更长的空载线路,有时也用来开断和关合大容量的电容器组。 2)替代作用。 负荷开关与限流熔断器串联组合可以代替断路器使用。即由负荷开关承担开断和关合小于一定倍数的过载电流,而由限流熔断器承担开断较大的过载电流和短路电流。 3)负荷开关与限流熔断器串联组合成一体的负荷开关,在国家标准中规定称为“负荷开关-熔断器组合电器”。 熔断器可以装在负荷开关的电源侧,也可以装在负荷开关的受电侧。当不需要经常掉换熔断器时,宜采用前一种布置,以便利用负荷开关兼作隔离开关的功能,用它来隔离加在限流熔断器上的电压。 什么是隔离开关? 是一种没灭弧装置的控制电器,其主要功能是隔离电源,以保证其它电气设备的安全检修,因此不允许带负荷操作。但在一定条件下,允许接通或断开小功率电路。是高压开关当中使用的最多也是最频繁的一个电器装置 隔离开关的作用:

1、分闸后,建立可靠的绝缘间隙,将需要检修的设备或线路与电源用一个明显断开点隔开,以保证检修人员和设备的安全。 2、根据运行需要,换接线路。 3、可用来分、合线路中的小电流,如套管、母线、连接头、短电缆的充电电流,开关均压电容的电容电流,双母线换接时的环流以及电压互感器的励磁电流等。 4、根据不同结构类型的具体情况,可用来分、合一定容量变压器的空载励磁电流。 高压隔离开关按其安装方式的不同,可分为户外高压隔离开关与户内高压隔离开关。 户外高压隔离开关指能承受风、雨、雪、污秽、凝露、冰及浓霜等作用,适于安装在露台使用的高压隔离开关。 按其绝缘支柱结构的不同可分为单柱式隔离开关、双柱式隔离开关、三柱式隔离开关。其中单柱式隔离开关在架空母线下面直接将垂直空间用作断口的电气绝缘,因此,具有的明显优点,就是节约占地面积,减少引接导线,同时分合闸状态特别清晰。在超高压输电情况下,变电所采用单柱式隔离开关后,节约占地面积的效果更为显著。 隔离开关在低压设备中主要适用于民宅、建筑等低压终端配电系统。 主要功能:带负荷分断和接通线路。 什么是真空断路器? 因其灭弧介质和灭弧后触头间隙的绝缘介质都是高真空而得名;其具有体积小、重量轻、适用于频繁操作、灭弧不用检修的优点,在配电网中应用较为普及。 真空断路器是3~10kV,50Hz三相交流系统中的户内配电装置,可供工矿企业、发电厂、变电站中作为电器设备的保护和控制之用,特别适用于要求无油化、少检修及频繁操作的使用场所,断路器可配置在中置柜、双层柜、固定柜中作为控制和保护高压电气设备用。 1)工作原理是:当动、静触头在操作机构的作用下分闸时,触头间产生电弧,触头表面在高温下挥发出蒸汽,由于触头设计为特殊形状,在电流通过时产生一磁场,电

开关电器典型灭弧装置的工作原理

开关电器典型灭弧装置的工作原理 教学基本内容: 开关电器典型灭弧装置的工作原理 提高灭弧装置开断能力的辅助方法 概述 当电源电压超过数十伏、开断电流在数十安以上时,为减少电弧对触头的烧损和限制电弧扩展的空间,通常需要采取加强灭弧能力的措施,为此而采用的装置称为灭弧装置。 这些灭弧装置的灭弧原理主要有下列十几种: 1.简单开断; 2.磁吹线圈; 3.纵缝灭弧装置; 4.绝缘栅片灭弧装置; 5.金属栅片灭弧装置; 6.固体产气灭弧装置, 7.石英砂灭弧装置; 8.变压器油灭弧装置; 9.压缩空气灭弧装置; 10.SF6灭弧装置; 11.真空灭弧装置。 此外,为了增加灭弧装置的开断能力,通常可以采用下列辅助方法: 1.在弧隙两瑞并联电阻; 2. 附加同步开断装置; 3.附加晶闸管装置。

上述灭弧装置的灭弧原理是: (1) 在大气中依靠触头分开时的机械拉长,使L增大; (2) 利用流过导电回路或特制线圈的电流在燃弧区产生磁场,使电弧迅速移动和拉长; (3)依靠磁场的作用,将电弧驱入用耐弧材料制成的狭缝中,以加强电弧的冷却和消电离; (4) 用金属板将电弧分隔成许多串联的短弧; (5) 在封闭的灭弧室中,利用电弧自身能量分解固体材料,产生气体,以提高灭弧室中的压力,或者利用产生的气体进行吹弧; (6) 利用电弧自身能量,使变压器油分解成含有大量氢气的气体并建立起很高的压力,再利用此压力推动冷油和气体去吹弧; (7) 利用压缩空气吹弧; (8) 利用SF6气体吹弧; (9) 在高真空中开断触头,利用弧隙中由电极金属蒸汽形成的弧柱在电流过零时迅速扩散的原理进行灭弧; (10) 利用石英砂等固体颗粒介质,限制电弧直径的扩展和加强冷却。 开关电器典型灭弧装置的工作原理 一、拉长电弧 (1)大气中,利用机械拉长电弧方式的原理与图例。 电弧放长后,电弧电压就增大,其静态伏——安特性向上移

直流断路器的灭弧原理和灭弧过程

直流断路器的灭弧原理和灭弧过程 一、PRB系列直流断路器的灭弧原理 PRB系列直流断路器的燃弧及熄弧过程与交流断路器是不同的,交流断路器分断时产生的交流电弧每秒钟有2f(f为电网频率)次经过零点。通过近极效应,使电弧熄灭。交流继电器只要解决电弧重燃问题,即解决由导电状态恢复到介质绝缘状态的介质强度恢复过程,这里不再详述。PRB系列直流断路器分断时产生的直流电弧恒定不变,电流愈大,时间常数俞大,电弧就愈难熄灭。 PRB系列直流断路器的触头接通和长期承载电流的性能与一般交流断路器相似,无特殊要求。但直流断路器与交流断路器分断电流的差异较大,PRB系列直流断路器的触头分断时要熄灭直流电弧,现将直流电弧的特性和熄灭直流电弧的措施简介如下: 断路器的触头分断时,在动静触头间立即产生电弧,这不仅有碍于电路的及时分断,还会使触头烧损,此时的主要问题是触头的电烧损,这对交直流回路的情况是一样的。为了解直流断路器的切断电弧性能,首先要分析电弧的产生过程和灭弧能力。当分断时,触头刚开始分离时,其间隙很小,电场强度极大,易产生高热和强场,金属内部的自由电子从阴极表面逸出,奔向阳极。同时这自由电子在电场种撞击中性气体分子,使之激励和游离,产生正离子和电子,电子在强电场作用下继续向阳极移动时,还要撞击其他中性分子,因此,在触头间隙中产生大量的正离子和电子的带点粒子。使气体导电形成炽热的电子流,即电弧。 PRB系列直流断路器的电弧产生后,有游离与去游离因素,游离作用是由于在弧隙中产生大量的热能,主要是使气体热游离,特别是当触头表面的金属蒸汽进入弧隙后,气体热游离作用更为显著。电压越高,电流越大,即电弧功率越大,弧区温度越高,电弧的游离因素就越强,去游离是因为已游离的正离子和电子在空间相遇时要复合,重新形成中性的气体分子,而高密集的高温离子电子,也要向其周围密度小和温度低的介质方面扩散,其结果弧隙内离子和自由电子的浓度降低,电弧电阻增大,电弧电流减少,从而消弱热游离。 要熄灭电弧,就要抑制游离因素和加强去游离因素,如将电弧拉入窄隙,增加动触头和栅片之间的距离等,缩小电弧直径,使其内部的离子浓度增大,就额可以加强扩散和冷却作用,将电弧拉长,或者电弧内部设置障碍,是局部离子和电子复合,使去游离作用大于游离作用,就能将电弧熄灭。 二、PRB系列直流断路器的灭弧过程 PRB系列直流断路器子啊完成极限分断能力试验时,有以下四个过程: 1.短路电流沿着预期短路电流的指数曲线,从0沿较高梯度升高至瞬时整定脱扣电流值,时间小于0.5-4ms。 2.脱扣器动作以后,触头经过开关机构固有动作时间断开,此间电流继续上升,时间大约持续1-4ms. 3.在冷发射、热发射作用下产生电弧,电弧拉长,并在弧住中热游离、磁通比较集中,他经铁心导磁夹板进入灭弧空间,并和灭弧片形成一层层闭合磁路,使电弧在强磁场作用下迅速由触头经引向灭弧窄缝。 4.PRB系列直流断路器在动、静触头之间有永久磁铁或电磁线圈,并产生磁场,磁通比较集中,他经铁心导磁夹板进入灭弧空间,并和灭弧片形成一层层闭合磁路,使电弧在强磁场作用下迅速由触头经引弧角引向灭弧窄缝。 5.磁场灭弧室灭弧罩,由耐弧塑料制成,它的作用: 一是引导电弧纵向吹出;

(新版)真空断路器的原理和作用

真空断路器的原理和作用 真空断路器处于合闸位置时,其对地绝缘由支持绝缘子承受,一旦真空断路器所连接的线路发生永久接地故障,断路器动作跳闸后,接地故障点又未被清除,则有电母线的对地绝缘亦要由该断路器断口的真空间隙承受;各种故障开断时,断口一对触子间的真空绝缘间隙要耐受各种恢复电压的作用而不发生击穿。因此,真空间隙的绝缘特性成为提高灭弧室断口电压,使单断口真空断路器向高电压等级发展的主要研究课题。 真空度的表示方式 绝对压力低于一个大气压的气体稀薄的空间,称为真空空间,真空度越高即空间内气体压强越低。真空度的单位有三种表示方式:托(即1个mm水银柱高),毫巴(103bar)或帕(帕斯卡:Pa)。(1托=131。6Pa,1毫巴=100Pa)我们通常所说真空灭弧室内部的真空度要达10-4托是指灭弧室内的气体压强仅为"万分之一mm水银柱高",亦即是1。31x10-2Pa。 "派森定理"亦有译为"巴申定律",是指间隙电压耐受强度与气体压力之间的关系。图1表示派森定理的关系曲线呈"V"字形,即充气压力的增加或降低,都能提高极间间隙绝缘强度。其击穿机理至今还不清楚,因为真空灭弧室内部真空度高于10-4托,这样稀薄空气的空间,气体分子的自由行程为103mm,在真空灭弧室这么大小的容积内,发生碰撞的机率几乎是零。因此不会发生碰撞游离而使真空间隙击穿。派森定理的"V"形曲线是实验得出的,条件是在均匀电场的情况下,其间隙击穿电压Uj可表示为: Uj=KLa L------间隙距离; a------间隙系数(间隙<5mm时a=1,>5mm时,a=0。5) 由派森定理的"V"形关系曲线中看出,当真空度达103托时出现拐点,拐点附近曲线变得平坦,击穿电压几乎无变化。 当真空度和间隙距离相同时,其击穿电压则随触头电极材料发生变化,电极材料机械强度高,熔点高时,真空间隙的击穿电压亦随之提高。

开关电器的灭弧

开关电器的灭弧 电弧是电气设备运行中经常发生的物理现象,其特点是光亮很强和温度很高。它不仅对触头有很大的破坏作用,电弧的产生对供电系统的安全运行有很大影响。首先,电弧延长了电路开断短路电流的时间。在开关分断短路电流时,开关触头上的电弧就延长了短路电流通过电路的时间,使短路电流危害的时间延长,这可能对电路设备造成更大的损坏。同时,电弧的高温可能烧坏开关的触头,烧毁电气设备和导线电缆,甚至可能引起火灾和爆炸事故。此外,强烈的电弧可能损伤人的视力,严重的可导致人失明。因此,开关设备在结构设计上就要保证其操作时电弧能迅速地熄灭。 当电弧稳定燃烧时是处在热动平衡状态,此时不可能有电子和离子的积累。这说明电弧中气体游离现象的同时还存在一个相反的过程,我们称之为消游离。消游离就是正、负带电粒子中和而变成中性粒子的过程。消游离的方式分两类:复合和扩散。 1.复合 带异性电荷的粒子相遇后相互作用中和而变成中性粒子称为复合。复合按其地点可分为: (1)表面复合:带正、负电荷的粒子附在金属或绝缘材料表面上,相互吸引而中和电荷,变成中性粒子。 (2)空间复合:带正、负电荷的粒子在放电间隙中相互吸引而中和电荷,变成中性粒子。自由电子与正离子相遇,相互吸引而中和电荷而变成中性粒子,称为直接复合。由于自由电子的运动速度比正离子大得多,所以直接复合的机率很小。往往自由电子粘合在中性粒子上,再与正离子相遇而复合,中和电荷形成两个中性粒子。这种过程称间接复合。因为正、负离子的运动速度相当,间接复合的机率大,约为直接复合的上千倍。自由电子粘合在中性粒子上形成负离子的强弱与气体的种类和纯净度有关。氟原子及其化合物SF 分子与自由电子的粘合 6 的复合能力很强,是比较理想的消游离和作用很强,所以称为负电性气体。SF 6 绝缘介质。现已应用在高压断路器中。 显而易见,带电粒子运动速度是直接影响复合作用大小的重要因素。降低温度、减小电场强度可使粒子运动速度减小,易于复合。此外,带电粒子浓度增大时,复合机会增多,复合作用也可以加强。在电弧电流不变的条件下,设法缩小电弧直径,则粒子浓度可增大。 复合过程总是伴随着能量的释放。释放出来的能量成为加热电极、绝缘物及气体的热源,同时也向四周散发。 2.扩散 带电粒子从电弧区转移到周围介质中去的现象称为扩散。扩散的方向一般为从高温、高浓度区向低温、低浓度区。扩散使电弧中的带电粒子减小。扩散出来的带电粒子因冷却很容易相互结合,中和电荷而形成中性粒子。扩散速度与电弧内外浓度差、温度差成正比。电弧直径愈小,弧区中带电粒子浓度愈大;电弧与周围介质温差愈大,扩散速度愈大。因此,加速电弧的冷却是提高扩散作用的有效方法。 综上所述,电弧中存在着游离和消游离两方面的作用。当游离作用占优势时电弧就会产生和扩大,当消游离作用占优势时,电弧就趋于熄灭。游离与消游离作用与许多物理因素有关,如电场强度、温度、浓度、气体压力等。那么,我们可以

相关文档
最新文档