数据挖掘的功能及应用作业

数据挖掘的功能及应用作业
数据挖掘的功能及应用作业

数据挖掘的其他基本功能介绍

一、关联规则挖掘

关联规则挖掘是挖掘数据库中和指标(项)之间有趣的关联规则或相关关系。关联规则挖掘具有很多应用领域,如一些研究者发现,超市交易记录中的关联规则挖掘对超市的经营决策是十分重要的。

1、 基本概念

设},,,{21m i i i I =是项组合的记录,D 为项组合的一个集合。如超市的每一张购物小票为一个项的组合(一个维数很大的记录),而超市一段时间内的购物记录就形成集合D 。我们现在关心这样一个问题,组合中项的出现之间是否存在一定的规则,如A 游泳衣,B 太阳镜,B A ?,但是A B ?得不到足够支持。

在规则挖掘中涉及到两个重要的指标:

① 支持度 支持度n B A n B A )()(?=

?,显然,只有支持度较大的规则才是较有价值的规则。

② 置信度 置信度)()

()(A n B A n B A ?=?,显然只有置信度比较高的规则才是比较可靠

的规则。

因此,只有支持度与置信度均较大的规则才是比较有价值的规则。

③ 一般地,关联规则可以提供给我们许多有价值的信息,在关联规则挖掘时,往往需要事先指定最小支持度与最小置信度。关联规则挖掘实际上真正体现了数据中的知识发现。

如果一个规则满足最小支持度,则称这个规则是一个频繁规则;

如果一个规则同时满足最小支持度与最小置信度,则通常称这个规则是一个强规则。

关联规则挖掘的通常方法是:首先挖掘出所有的频繁规则,再从得到的频繁规则中挖掘强规则。在少量数据中进行规则挖掘我们可以采用采用简单的编程方法,而在大量数据中挖掘关联规则需要使用专门的数据挖掘软件。关联规则挖掘可以使我们得到一些原来我们所不知道的知识。

应用的例子:

* 日本超市对交易数据库进行关联规则挖掘,发现规则:尿片→啤酒,重新安排啤酒柜台位置,销量上升75%。

* 英国超市的例子:大额消费者与某种乳酪。

那么,证券市场上、期货市场上、或者上市公司中存在存在哪些关联规则,这些关联规则究竟说明了什么?

关联规则挖掘通常比较适用与记录中的指标取离散值的情况,如果原始数据

库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。

二、特征化与比较

1、特征化是一种描述性数据挖掘,特征化通过数据挖掘的方法提供给定数据汇集的简洁汇总,如银行优质客户的特征,从而发现潜在的优质客户;转向其他银行的优质客户的特征,从而设法留住可能会转向其他银行的优质客户,特征化在银行客户关系管理等领域具有很大作用。

描述性数据挖掘——特征化的基本原理

①属性删除

某一类的特征化就是找出某一类的共性,因此如果某个属性具有大量不同的值,而且每个值所占的比率都不能达到事先给定的临界值,同时在这个属性上没有概化操作符(指标上卷),则数据挖掘对其进行属性删除。

②属性概化

如果在属性上存在概化操作符,并且原属性取值没有达到事先给定的临界值,则数据挖掘就将这个属性概化到较高层次,即使原属性取值已经达到临界值,数据挖掘也可以继续进行属性概化。

通过属性删除和属性概化,可以得到特征化的数据挖掘。

2、比较

特征化是给定某一类样本的特征,而比较则是区分不同的类,比较又通常称为挖掘类比较。如信用卡诈骗者和非诈骗者,这两类信用卡持有者的比较。

类比较通常是一个指定的类与一个其它的类、或者几个其它的类进行比较,类比较的基本方法是:首先在目标类上发觉特征,然后在对比类上进行同步概化,这样就可以挖掘类比较。

特征化与类比较具有很广泛的应用领域。如:被外资并构公司与没有被外资并构公司进行类比较;不同审计意见的公司的类比较;信用卡诈骗与非诈骗类的比较;银行优质客户中忠诚客户与转向其他银行的原优质客户的比较;等等。

三、聚类分析

聚类分析就是根据样本之间的相似程度,将样本分成几个不同的类。如我国各城市社会经济发展程度的聚类分析,利用聚类分析研究我国女子成衣的尺寸标准。原来测量了成年女子14个部位的指标数据:上体长、手臂长、胸围、颈围、总肩宽、前胸宽、后背宽、前腰节高、后腰节高、总体长、身高、下体长、腰围、臀围。经过聚类分析发现可以聚集为几类,每类主要在反映身高与反映胖瘦上有所区别,这样就可以制定几种标准尺寸,可以照顾到我国绝大多数成年女子的购衣要求。

聚类分析在金融领域中有广泛应用,如根据股票价格的波动情况,可以将股票分成不同的类,总共可以分成几类,各类包含哪些股票,每一类的特征是什么,这对投资者、尤其对投资基金来说,可能就是很重要的信息。聚类分析也是分类,但是要划分的类是未知的,这是聚类分析与一般判别分析的区别。

聚类分析的基本原理,样本间距离的度量。距离采用绝对值距离、欧氏距离、切比雪夫距离等,其中:||max ),(1t t p

t y x y x d -=≤≤,利用距离可以度量不同

样本之间的相似程度,在测量距离时,往往首先需要进行标准化变换,以消除量纲带来的影响。当指标为非数值指标时,相似程度的测量。最短距离法是测量相似程度的一种方法,利用最短距离法进行聚类分析的基本过程。采用测量相似程度的不同方法,所得到的聚类分析结果可能有所不同。在聚类分析中,希望得到的类数可以事先确定。聚类分析即可以对样本进行聚类,也可以对指标进行聚类,因此可以采用这样的思路来考虑建立借款人违约概率预测模型。

四、相关的算法

关联规则:关联规则是形式如下的一种蕴含或规则,XT Y ,其中X 和Y 分别是两个物品集合,这两个物品集中没有共同的物品。用于关联规则发现的对象主要是事务型数据库(transactional databases ),其中针对的应用则是售货数据,也称货篮数据。一个事务一般由如下几个部分组成:事务处理时间,一组顾客购买的物品(items ),有时也有顾客标识号(如信用卡号)。

由于条形码技术的发展,零售部门可以利用前端收款机收集存储大量的售货数据。因此,如果对这些历史事务数据进行分析,则可对顾客的购买行为提供极有价值的信息。例如,可以帮助如何摆放货架上的商品(如把顾客经常同时买的商品放在一起),帮助如何规划市场(怎样相互搭配进货)。由此可见,从事务数据中发现关联规则,对于改进零售业等商业活动的决策非常重要。

我们对电信行业的客户电话记录事实表作为测试数据,利用关联规则进行分析,得到较为有意义的规则。

决策树是一种非常有效的机器学习分类算法。决策树方法的起源是概念学习系统CLS ,然后发展到ID3方法而为高潮,最后又演化为能处理连续属性的C5.0。有名的决策树方法还有CART 和Assistant 。

决策树学习着眼于从一组无次序、无规则的事例中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较并根据不同的属性值判断从该结点向下的分支,在决策树的叶结点得到结论。所以从根到叶结点的一条路径就对应着一条合取规则,整棵决策树就对应着一组析取表达式规则。基于决策树的学习算法的一个最大的优点就是它在学习过程中不需要使用者了解很多背景知识(这也同时是它最大的缺点),只要训练例子能够用属性-结论式的方式表达出来,就能使用该算法来学习。

考虑到递归算法对大数据量而言,系统的开销较大,我们设计了非递归且能处理连续属性的决策树算法。同时,为了能使用户能清楚直观的理解产生的决策规则树,我们设计了m-叉树的画法,这两个算法在广东地税稽查案例应用中,收到良好效果。

粗糙集:波兰的Z.Pawlak 针对G.Frege 的边界线区域思想提出了Rough 集。他把那些无法确认的个体都归属于边界线区域,而这种边界线区域被定义为上近似集和下近似集之差集。由于它有确定的数学公式描述,所以含糊元素数目是可以计算的,即在真假二值之间的含糊度是可以计算的。

我们对粗糙集中的一种重要表示方法-差别矩阵进行了拓广,提出了广义差别矩阵的表示和可变属性度量的概念。可变属性度量用于属性选取的启发式评价函数时较好地克服了粗糙集中的属性重要度方法的一个限制:由于只考虑异类对象之间的差别致使偏向于选取不同值个数多的属性。实验结果表明,在采用粗糙集技术的分类规则发现方法中使用可变属性度量方法与属性重要度方法相比,能得到更高的预测准确度和更简洁的规则。

统计分析:本课题中,我们主要研究多个的统计模型的综合。通过对不同的统计模型的比较和组合,可以得到更为理想的结果,同时,我们的系统中包括了常用的统计模型,应用范围方面受到的限制要少一些。我们包括的统计模型有:线性回归模型、非线性回归模型、确定型时间序列模型、随机型时间序列模型、自回归-移动平均模型(ARMA)、相关分析。

神经网络:是指一类新的计算模型,它是模仿人脑神经网络的结构和某些工作机制而建立的一种计算模型。这种计算模型的特点是,利用大量的简单计算单元(即神经元)连成网络,来实现大规模并行计算。神经网络的工作机理是通过学习,改变神经元之间的连接强度。常用的神经计算模型有多层感知机、反传网络、自适应映射网络等。在神经网络中,由权重和网络的拓扑结构决定了它所能识别的模式类型。一个学习算法是用于发现给定任务的权值的程序。最流行的神经网络学习算法是BP算法(Back-propagation algorithm)。

支持向量机(SVM):是一种建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的推广性能和较高的分类准确率。SVM主要思想是针对两类分类问题,在高维空间中寻找一个超平面作为两类的分割,以保证最小的分类错误率。而且SVM一个重要的优点是可以处理线性不可分的情况。用SVM实现分类,首先要从原始空间中抽取特征,将原始空间中的样本映射为高维特征空间中的一个向量,以解决原始空间中线性不可分的问题。

模糊聚类:通常使用基于传递闭包的方法, 该方法是否失真最小在理论上缺乏

保障,为解决这一问题, 我们提出了基于摄动的模糊聚类方法,简称FCMBP模糊聚类。FCMBP模糊聚类比传递闭包法失真小, 而且在基于模糊相似阵的模糊聚类方法中, FCMBP方法是失真最小的。FCMBP方法不仅失真最小, 而且有时与传递闭包法的聚类结果还有本质差异。FCMBP方法比传递闭包法计算复杂, 但聚类层次丰富。

基于范例的推理(Case-Based Reasoning 简称CBR):为了解决一个新问

题(目标范例Target Case),CBR进行回忆, 从记忆或范例库(Case Base)中找到一个与新问题相同或相似的源范例(Source Case), 然后把该范例的有关信息和知识进行修改就复用到新问题的求解之中,得到问题的解答。因此,这种由源范例来指导目标范例求解的方法,具有简化知识获取,通过直接复用提高求解效率,求解质量较高,适用于非计算推导的优点。

考虑到存储和检索(空间和时间)的开销,CBR对海量数据是不适合的。因此,

我们研究了利用Lattice、Moment理论对原始数据进行压缩、降维,改变消极学习中推迟处理的策略,积极地对数据进行综合总结,形成不同层次的不同粒度的模型。在测试的阶段,用这些模型代替原始的数据/实例,提高分类和预测的性能。

贝叶斯预测:贝叶斯网络是用来表示变量集合连接概率的图形模式,它提供了一种自然的表示因果信息的方法,用来发现数据间的潜在关系。在这个网络中,用节点表示变量,有向边表示变量间的依赖关系。在数据挖掘中具有以下优点:可以处理不完整和带有噪声的数据集。它用概率测度的权重来描述数据间的相关性,从而解决了数据间的不一致性,甚至是相互独立的问题;用图形的方法描述数据间的相互关系,语义清晰、可理解性强,这有助于利用数据间的因果关系进行预测分析。

可视化技术:信息可视化和数据挖掘是两个可互为补充利用的相关研究领

域。当信息可视化作为数据挖掘的技术之一时,同其它技术相比,它有一个独特之处:能极大地发挥用户的主动参预性。由于对数据进行了可视化,用户愿意进行探索(Explore),在探索过程中有可能发现意外的知识。

五、数据挖掘的进一步案例:

决策树与客户细分、客户关系管理

近年来,数据挖掘成为一些企业进行客户关系管理的有力工具。比如,企业可以通过数据挖掘方式进行客户细分,从而进行更加行之有效的客户关系管理;又比如,发现潜在的优质客户、发现可能转向竞争对手的优质客户等。

数据挖掘中有多种方法可用于客户细分与客户关系管理,决策树方法是其中之一,下面对此进行介绍。

案例1:如何发现潜在的优质客户?

基本思路:对已确定客户性质的银行客户数据,利用数据挖掘中的决策树方法可以进行优质客户细分(代表优质客户的每片叶子实际上就是优质客户的一种细分),即发现分别具有什么特征的客户会成为银行的优质客户,将这些特征与新客户相对照,可以从新客户中发觉出潜在的优质客户。

案例2:可能转向竞争对手的客户有哪些特征,从而需要有针对性地开展工作。案例3:对贷款违约者的细分

其它方面的应用例子:

不按照医嘱服药(没有服完疗程)的患者细分

* 一类患者认为如果过多服药会产生抗药性,这会使得他们真正需要服用药物时不再那么有用,因此病情稍有好转就停止服药;

* 一类患者根本不相信药物是安全无害的,因此他们只服用使他们的症状减轻的剂量,当他们感觉好些了就马上停止服药。

* 。。。。。。

数据挖掘的评分(评级)系统及其应用:

使用数据挖掘方法建立预测模型后,就可以用它来预测新的数据。通常情况下,一个好的模型会被使用许多次,也可以用于对不同的数据集评分。从而满足

应用的需要。

案例:基于新资本协议框架的银行内部评级系统构建

数据库:某银行客户借贷的原始记录数据库,包含数于千计的客户信息记录:是否违约(必要时需参照新资本协议的参考定义调整分类)、申请贷款时的企业的财务指标值和其他变量指标值。

构建方案1:步骤如下:

数据整理;

指标的聚类分析,通过SAS软件实现;

各指标预测借款企业违约的信息含量测定——信号、噪音差分析方法,通过数据挖掘软件实现;

预测指标的选取和原始指标到信号指标的转换;

基于信号数和信号预测能力的银行内部评级体系构建,按照新资本协议要求的等级数构建;

确定各信用等级借款人的违约概率估计值(可以频率作为概率的估计值);

参照巴塞尔协议对V aR模型检验的“三重区域”法检验对各信用等级借款人违约概率估计的准确性。

确定银行内部信用评级体系,确定各信用等级借款人的违约率估计值。

需要划分训练样本组与检验样本组。

构建方案2:步骤如下:

数据整理;

指标的聚类分析,通过SAS软件实现;

各指标预测借款企业违约的信息含量测定——信号、噪音差分析方法,通过数据挖掘软件实现;

预测指标的选取和原始指标到信号指标的转换;

利用决策数方法进行借款人信用等级细分;

适当合并细分的信用等级,建立银行内部信用评级体系;

确定各信用等级借款人的违约概率估计值(可以频率作为概率的估计值);

参照巴塞尔协议对V aR模型检验的“三重区域”法检验对各信用等级借款人违约概率估计的准确性。

确定银行内部信用评级体系,确定各信用等级借款人的违约率估计值。

需要划分训练样本组与检验样本组。

构建方案3:步骤如下:

数据整理;

指标的聚类分析,通过SAS软件实现;

各指标预测借款企业违约的信息含量测定——信号、噪音差分析方法,通过数据挖掘软件实现;

预测指标的选取和原始指标到信号指标的转换;

利用Logistic回归或Probit过程建立借款人违约概率预测模型;

基于模型给出的违约概率大小建立银行内部信用评级体系;

确定各信用等级借款人的违约概率估计值(可以频率作为概率的估计值);

参照巴塞尔协议对V aR模型检验的“三重区域”法检验对各信用等级借款人违

约概率估计的准确性。

确定银行内部信用评级体系,确定各信用等级借款人的违约率估计值。

10、需要划分训练样本组与检验样本组。

数据挖掘作业

《数据挖掘》作业 第一章引言 一、填空题 (1)数据库中的知识挖掘(KDD)包括以下七个步骤:、、、、、和 (2)数据挖掘的性能问题主要包括:、和 (3)当前的数据挖掘研究中,最主要的三个研究方向是:、和 (4)在万维网(WWW)上应用的数据挖掘技术常被称为: (5)孤立点是指: 二、单选题 (1)数据挖掘应用和一些常见的数据统计分析系统的最主要区别在于: A、所涉及的算法的复杂性; B、所涉及的数据量; C、计算结果的表现形式; D、是否使用了人工智能技术 (2)孤立点挖掘适用于下列哪种场合? A、目标市场分析 B、购物篮分析 C、模式识别 D、信用卡欺诈检测(3)下列几种数据挖掘功能中,()被广泛的应用于股票价格走势分析 A. 关联分析 B.分类和预测 C.聚类分析 D. 演变分析 (4)下面的数据挖掘的任务中,()将决定所使用的数据挖掘功能 A、选择任务相关的数据 B、选择要挖掘的知识类型 C、模式的兴趣度度量 D、模式的可视化表示 (5)下列几种数据挖掘功能中,()被广泛的用于购物篮分析 A、关联分析 B、分类和预测 C、聚类分析 D、演变分析 (6)根据顾客的收入和职业情况,预测他们在计算机设备上的花费,所使用的相应数据挖掘功能是() A.关联分析 B.分类和预测 C. 演变分析 D. 概念描述(7)帮助市场分析人员从客户的基本信息库中发现不同的客户群,通常所使用的数据挖掘功能是() A.关联分析 B.分类和预测 C.聚类分析 D. 孤立点分析 E. 演变分析(8)假设现在的数据挖掘任务是解析数据库中关于客户的一般特征的描述,通常所使用的数据挖掘功能是() A.关联分析 B.分类和预测 C. 孤立点分析 D. 演变分析 E. 概念描述 三、简答题 (1)什么是数据挖掘? (2)一个典型的数据挖掘系统应该包括哪些组成部分? (3)请简述不同历史时代数据库技术的演化。 (4)请列举数据挖掘应用常见的数据源。(或者说,我们都在什么样的数据上进行数据挖掘)(5)什么是模式兴趣度的客观度量和主观度量? (6)在哪些情况下,我们认为所挖掘出来的模式是有趣的? (7)根据挖掘的知识类型,我们可以将数据挖掘系统分为哪些类别?

《数据挖掘》试题与标准答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘期末大作业任务

数据挖掘期末大作业 1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。 对于数据挖掘的发展趋势,可以从以下几个方面进行阐述: (1)数据挖掘语言的标准化描述:标准的数据 挖掘语言将有助于数据挖掘的系统化开发。改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。 (2)寻求数据挖掘过程中的可视化方法:可视 化要求已经成为数据挖掘系统中必不可少的技术。可以在发现知识的过程中进行很好的人机交互。数据的可视化起到了推动人们主动进行知识发现的作用。 (3)与特定数据存储类型的适应问题:根据不 同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。 (4)网络与分布式环境下的KDD问题:随着 Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。 (5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等 领域。由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。 (6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处 理系统的主流。 2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输 入,不知道其对应的输出。请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。 首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。 然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

浅谈数据挖掘技术及其应用

浅谈数据挖掘技术及其应用 數据挖掘就是从海量数据中提取潜在有趣模式的过程。数据挖掘技术现已广泛应用于零售业、金融业、电信、网络安全分析、农业、医疗卫生等领域,研究十分广泛。 标签:海量数据;数据挖掘;应用研究 一、数据挖掘概念 数据挖掘比较公认的定义是由U.M.Fayyad等人提出的:数据挖掘就是从海量数据中提取潜在有趣模式的过程[1]。还有一些术语,具有和数据挖掘类似但稍有不同的含义,如数据库中知识挖掘、知识提取、数据/模式分析、数据考古等。数据挖掘技术最初是面向应用层面的,不光可以实现检索和统计专门数据库的操作,还能够在大量的数据集中实现小型、中型乃至大型系统的分析、归纳、推理等工作。 二、数据挖掘的基本任务 数据挖掘的目的就是发现有用的知识(即概念、规则和模式)。数据挖掘的基本任务主要有以下几个方面: (1)分类与预测。 分类属于有监督的学习,在构建分类模型之前,在数据源中选取训练集数据并作分类标记,然后运用分类模型对训练集数据进行分类,实在是按照样本属性相近的划入一类,最后将完成训练的分类模型应用到在未知类别的数据集中,获得相应的分类。预测是依据历史数据和现有的数据建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制。 (2)聚类分析。 聚类分析是在识别数据的内在规则后,将数据分成相似数据对象组,从而获得数据的分布规律,划分的原则是不同组间距离尽可能大,组内距离尽可能小。聚类分析进一步是打算从一组杂乱的数据中发掘隐藏其中的分类规则。聚类分析与分类模式模型不同,分类模式是使用有标记样本构成的训练集的一种有监督学习方法,则聚类模型是使用在无标记的数据上的一种无监督学习方法。近年来,聚类分析在图像处理、商业分析、模式识别等有广泛应用。 (3)关联规则。 关联分析是通过对数据集中数据之间隐藏的相互关系的分析,揭露了具有相同类别的数据之间未知的关系。关联分析就是将给定一组项集和一个记录集合,

数据挖掘作业

1、给出K D D的定义和处理过程。 KDD的定义是:从大量数据中提取出可信的、新颖的、有用的且可以被人理解的模式的高级处理过程。因此,KDD是一个高级的处理过程,它从数据集中识别出以模式形式表示的知识。这里的“模式”可以看成知识的雏形,经过验证、完善后形成知识:“高级的处理过程”是指一个多步骤的处理过程,多步骤之间相互影响反复调整,形成一种螺旋式上升的过程。 KDD的全过程有五个步骤:1、数据选择:确定发现任务的操作对象,即目标数据,它是根据用户的需要从原始数据库中抽取的一组数据;2、数据预处理:一般可能包括消除噪声、推到技术却只数据、消除重复记录、完成数据类型转换等;3、数据转换:其主要目的是消减数据维数或降维,即从初始特征中找出真正有用的特征以减少数据开采时要考虑的特征或变量个数;4、数据挖掘:这一阶段包括确定挖掘任务/目的、选择挖掘方法、实施数据挖掘;5、模式解释/评价:数据挖掘阶段发现出来的模式,经过用户或机器的评价,可能存在冗余或无关的模式,需要剔除;也有可能模式不满足用户的要求,需要退回到整个发现阶段之前,重新进行KDD过程。 2、阐述数据挖掘产生的背景和意义。 ?数据挖掘产生的背景:随着信息科技的进步以及电子化时代的到来,人们以更快捷、更容易、更廉价的方式获取和存储数据,使得数据及信息量以指数方式增长。据粗略估计,一个中等规模企业每天要产生100MB以上的商业数据。而电信、银行、大型零售业每天产生的数据量以TB来计算。人们搜集的数据越来越多,剧增的数据背后隐藏着许多重要的信息,人们希望对其进行更高层次的分析,以便更好的利用这些数据。先前的数据库系统可以高效的实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系与规则,无法根据现有的数据来预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段。导致了“数据爆炸但知识贫乏”的现象。于是人们开始提出“要学会选择、提取、抛弃信息”,并且开始考虑:如何才能不被信息淹没?如何从中及时发现有用的知识、提高信息利用率?如何从浩瀚如烟海的资料中选择性的搜集他们认为有用的信息?这给我们带来了另一些头头疼的问题:第一是信息过量,难以消化;第二是信息真假难以辨别;第三是信息安全难以保证;第四是信息形式不一致,难以统一处理?

《数据挖掘》试题与答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2. 时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘研究现状及发展趋势

数据挖掘研究现状及发展趋势摘要:从数据挖掘的定义出发,介绍了数据挖掘的神经网络法、决策树法、遗传算法、粗糙集法、模糊集法和关联规则法等概念及其各自的优缺点;详细总结了国内外数据挖掘的研究现状及研究热点,指出了数据挖掘的发展趋势。 关键词:数据挖掘;挖掘算法;神经网络;决策树;粗糙集;模糊集;研究现状;发展趋势 Abstract:From the definition of data mining,the paper introduced concepts and advantages and disadvantages of neural network algorithm,decision tree algorithm,genetic algorithm,rough set method,fuzzy set method and association rule method of data mining,summarized domestic and international research situation and focus of data mining in details,and pointed out the development trend of data mining. Key words:data mining,algorithm of data mining,neural network,decision tree,rough set,fuzzy set,research situation,development tendency 1引言 随着信息技术的迅猛发展,许多行业如商业、企业、科研机构和政府部门等都积累了海量的、不同形式存储的数据资料[1]。这些海量数据中往往隐含着各种各样有用的信息,仅仅依靠数据库的查询检索机制和统计学方法很难获得这些信息,迫切需要能自动地、智能地将待处理的数据转化为有价值的信息,从而达到为决策服务的目的。在这种情况下,一个新的技术———数据挖掘(Data Mining,DM)技术应运而生[2]。 数据挖掘是一个多学科领域,它融合了数据库技术、人工智能、机器学习、统计学、知识工程、信息检索等最新技术的研究成果,其应用非常广泛。只要是有分析价值的数据库,都可以利用数据挖掘工具来挖掘有用的信息。数据挖掘典型的应用领域包括市场、工业生产、金融、医学、科学研究、工程诊断等。本文主要介绍数据挖掘的主要算法及其各自的优缺点,并对国内外的研究现状及研究热点进行了详细的总结,最后指出其发展趋势及问题所在。 江西理工大学

数据挖掘及其应用

《数据挖掘论文》 数据挖掘分类方法及其应用 课程名称:数据挖掘概念与技术姓名 学号: 指导教师:

数据挖掘分类方法及其应用 作者:来煜 摘要:社会的发展进入了网络信息时代,各种形式的数据海量产生,在这些数据的背后隐藏这许多重要的信息,如何从这些数据中找出某种规律,发现有用信息,越来越受到关注。为了适应信息处理新需求和社会发展各方面的迫切需要而发展起来一种新的信息分析技术,这种局势称为数据挖掘。分类技术是数据挖掘中应用领域极其广泛的重要技术之一。各种分类算法有其自身的优劣,适合于不同的领域。目前随着新技术和新领域的不断出现,对分类方法提出了新的要求。 。 关键字:数据挖掘;分类方法;数据分析 引言 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥

有知识的有局限性,所以对于获得知识的可信度就应该打个折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 分类技术是数据挖掘中应用领域极其广泛的重要技术之一。至今已提出了多种分类算法,主要有决策树、关联规则、神经网络、支持向量机和贝叶斯、k-临近法、遗传算法、粗糙集以及模糊逻辑技术等。大部分技术都是使用学习算法确定分类模型,拟合输入数据中样本类别和属性集之间的联系,预测未知样本的类别。训练算法的主要目标是建立具有好的泛化能力的模型,该模型能够准确地预测未知样本的类别。 1.数据挖掘概述 数据挖掘又称数据库中的知识发现,是目前人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据

数据挖掘技术及其应用

数据挖掘毕业论文 ---------数据挖掘技术及其应用 摘要:随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。本文介绍了数据库技术的现状、效据挖掘的方法以及它在Bayesian网建网技术中的应用:通过散据挖掘解决Bayesian网络建模过程中所遇到的具体问题,即如何从太规模效据库中寻找各变量之间的关系以及如何确定条件概率问题。 关键字:数据挖掘、知识获取、数据库、函数依赖、条件概率 一、引言: 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个 折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象[1]。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多

数据挖掘作业

一:用R语言编程实现P56页19题 以19(2)为例编写R语言程序,其他小题程序类似1.余弦相似度 > x=c(0,1,0,1) > y=c(1,0,1,0) > xy=sum(x*y) > x1=sqrt(sum(x^2)) > y1=sqrt(sum(y^2)) > c=xy/(x1*y1) > c [1] 0 2.相关性 > x=c(0,1,0,1) > y=c(1,0,1,0) > xbar=mean(x) > ybar=mean(y) > len=length(x) > sx=sqrt((1/(len-1))*sum((x-xbar)^2)) > sy=sqrt((1/(len-1))*sum((y-ybar)^2)) > sxy=(1/(len-1))*sum((x-xbar)*(y-ybar)) > corrxy=sxy/(sx*sy) > corrxy

3.欧几里得距离 > x=c(0,1,0,1) > y=c(1,0,1,0) > dxy=sqrt(sum((x-y)^2)) > dxy [1] 2 4.Jaccard系数 > x=c(0,1,0,1) > y=c(1,0,1,0) > f00=f01=f10=f11=0 > len=length(x) > j=1 > while(j

浅谈数据挖掘技术及其应用

1 数据挖掘的起源 2数据挖掘的定义 3数据挖掘的过程 3.1目标定义阶段 3.2数据准备阶段 3.3数据挖掘阶段 3.4结果解释和评估阶段 面对信息社会中数据和数据库的爆炸式增长,人们分析数据和从中提取有用信息的能力,远远不能满足实际需要。但目前所能做到的只是对数据库中已有的数据进行存储、查询、统计等功能,但它却无法发现这些数据中存在的关系和规则,更不能根据现有的数据预测未来的发展趋势。这种现象产生的主要原因就是缺乏挖掘数据背后隐藏的知识的有力手段,从而导致“数据爆炸但知识贫乏”的现象。数据挖掘就是为迎合这种要求而产生并迅速发展起来的,可用于开发信息资源的一种新的数据处理技术。数据挖掘(DataMining),又称数据库中的知识发现(KnowledgeDiscoveryinDatabase,简称KDD),比较公认的定义是由U.M.Fayyad等人提出的:数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据集中,提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程,提取的知识表示为概念(Concepts)、规则(Rules)、规律(Regularities)、模式(Patterns)等形式。数据挖掘是一种决策支持过程,分析各组织原有的数据,做出归纳的推理,从中挖掘出潜在的模式,为管理人员决策提供支持。KDD的整个过程包括在指定的数据库中用数据挖掘算法提取模型,以及围绕数据挖掘所进行的预处理和结果表达等一系列的步骤,是一个需要经过反复的多次处理的过程。整个知识发现过程是由若干挖掘步骤组成的,而数据 挖掘仅是其中的一个主要步骤。整个知识发现的主要步骤有以下几点。要求定义出明确的数据挖掘目标。目标定义是否适度将影响到数据挖掘的成败,因此往往需要具有数据挖掘经验的技术人员和具有应用领域知识的专家以及最终用户紧密协作,一方面明确实际工作中对数据挖掘的要求,另一方面通过对各种学习算法的对比进而确定可用的算法。数据准备在整个数据挖掘过程中占的比例最大,通常达到60%左右。这个阶段又可以进一步划分成三个子步骤:数据选择(DataSelection),数据预处理(DataProcessing)和数据变换(DataTransformation)。数据选择主要指从已存在的数据库或数据仓库中提取相关数据,形成目标数据(TargetData)。数据预处理对提取的数据进行处理,使之符合数据挖掘的要求。数据变换的主要目的是精减数据维数,即从初始特征中找出真正有用的特征以减少数据挖掘时要考虑的特征或变量个数。这一阶段进行实际的挖掘工作。首先是算法规划,即决定采用何种类型的数据挖掘方法。然后,针对该挖掘方法选择一种算法。完成了上述的准备工作后,就可以运行数据挖掘算法模块了。这个阶段是数据挖掘分析者和相关领域专家最关心的阶段,也可以称之为真正意义上的数据挖掘。 浅谈数据挖掘技术及其应用 舒正渝1、2 (1.西北师范大学数信学院计算机系,甘肃兰州730070;2.兰州理工中等专业学校,甘肃兰州730050)摘要:科技的进步,特别是信息产业的发展,把我们带入了一个崭新的信息时代。数据库管理系统的应用领域涉及到了各行各业,但目前所能做到的只是对数据库中已有的数据进行存储、查询、统计等功能,通过这些数据获得的信息量仅占整个数据库信息量的一小部分,如何才能从中提取有价值的知识,进一步提高信息量利用率,因此需要新的技术来自动、智能和快速地分析海量的原始数据,以使数据得以充分利用,由此引发了一个新的研究方向:数据挖掘与知识发现的理论与技术研究。数据挖掘技术在分析大量数据中具有明显优势,基于数据挖掘的分析技术在金融、保险、电信等有大量数据的行业已有着广泛的应用。关键词:数据挖掘;知识发现 Abstract:Key words:The progress of science and technology,especially the development of the information industry,brings us into a brand-new information age.The application of the data base management system has involved all trades and professions,but only the store,inquire and statistic function can be applied,account a little part of the whole database.How to improve the utilization ratio of the information has initiated a new research direction,the data mining and knowledge found theory and technique.The data mining has the advantage in analyzing a large number of data.The data mining analytical technology has been largely used finance,insurance,telecommunication industry,etc..Data mining;Knowledge discovery 收稿日期:2010-01-15修回日期:2010-02-11 作者简介:舒正渝(1974-),女,重庆籍,硕士研究生,研究方向为数据库、多媒体。 中国西部科技2010年02月(中旬)第09卷第05期第202期 总38

数据挖掘作业

第5章关联分析 5.1 列举关联规则在不同领域中应用的实例。 5.2 给出如下几种类型的关联规则的例子,并说明它们是否是有价值的。 (a)高支持度和高置信度的规则; (b)高支持度和低置信度的规则; (c)低支持度和低置信度的规则; (d)低支持度和高置信度的规则。 5.3 数据集如表5-14所示: (a) 把每一个事务作为一个购物篮,计算项集{e}, {b, d}和{b, d, e}的支持度。 (b) 利用(a)中结果计算关联规则{b, d}→{e} 和 {e}→{b, d}的置信度。置信度是一个对称的度量吗? (c) 把每一个用户购买的所有商品作为一个购物篮,计算项集{e}, {b, d}和{b, d, e}的支持度。 (d) 利用(b)中结果计算关联规则{b, d}→{e} 和 {e}→{b, d}的置信度。置信度是一个对称的度量吗? 5.4 关联规则是否满足传递性和对称性的性质?举例说明。 5.5 Apriori 算法使用先验性质剪枝,试讨论如下类似的性质 (a) 证明频繁项集的所有非空子集也是频繁的 (b) 证明项集s 的任何非空子集s ’的支持度不小于s 的支持度 (c) 给定频繁项集l 和它的子集s ,证明规则“s’→(l – s’)”的置信度不高于s →(l – s)的置信度,其中s’是s 的子集 (d) Apriori 算法的一个变形是采用划分方法将数据集D 中的事务分为n 个不相交的子数据集。证明D 中的任何一个频繁项集至少在D 的某一个子数据集中是频繁的。 5.6 考虑如下的频繁3-项集:{1, 2, 3},{1, 2, 4},{1, 2, 5}, {1, 3, 4},{1, 3, 5},{2, 3, 4},{2, 3, 5},{3, 4, 5}。 (a)根据Apriori 算法的候选项集生成方法,写出利用频繁3-项集生成的所有候选4-项集。 (b)写出经过剪枝后的所有候选4-项集 5.7 一个数据库有5个事务,如表5-15所示。设min_sup=60%,min_conf = 80%。

数据挖掘及其应用

数据挖掘及其应用 Revised by Jack on December 14,2020

《数据挖掘论文》 数据挖掘分类方法及其应用 课程名称:数据挖掘概念与技术 姓名 学号: 指导教师: 数据挖掘分类方法及其应用 作者:来煜 摘要:社会的发展进入了网络信息时代,各种形式的数据海量产生,在这些数据的背后隐藏这许多重要的信息,如何从这些数据中找出某种规律,发现有用信息,越来越受到关注。为了适应信息处理新需求和社会发展各方面的迫切需要而发展起来一种新的信息分析技术,这种局势称为数据挖掘。分类技术是数据挖掘中应用领域极其广泛的重要技术之一。各种分类算法有其自身的优劣,适合于不同的领域。目前随着新技术和新领域的不断出现,对分类方法提出了新的要求。 。 关键字:数据挖掘;分类方法;数据分析 引言 数据是知识的源泉。但是,拥有大量的数据与拥有许多有用的知识完全是两回事。过去几年中,从数据库中发现知识这一领域发展的很快。广阔的市场和研究利益促使这一领域的飞速发展。计算机技术和数据收集技术的进步使人们可以从更加广泛的范围和几年前不可想象的速度收集和存储信息。收集数据是为了得到信息,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据流,但现在还没有一种成熟的技术帮助我们分析、理解并使数据以可理解的信息表示出来。在过去,我

们常用的知识获取方法是由知识工程师把专家经验知识经过分析、筛选、比较、综合、再提取出知识和规则。然而,由于知识工程师所拥有知识的有局限性,所以对于获得知识的可信度就应该打个折扣。目前,传统的知识获取技术面对巨型数据仓库无能为力,数据挖掘技术就应运而生。 数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行科学研究、商业决策或者企业管理,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘通过在大量数据的基础上对各种学习算法的训练,得到数据对象间的关系模式,这些模式反映了数据的内在特性,是对数据包含信息的更高层次的抽象。目前,在需要处理大数据量的科研领域中,数据挖掘受到越来越多的关注,同时,在实际问题中,大量成功运用数据挖掘的实例说明了数据挖掘对科学研究具有很大的促进作用。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 分类技术是数据挖掘中应用领域极其广泛的重要技术之一。至今已提出了多种分类算法,主要有决策树、关联规则、神经网络、支持向量机和贝叶斯、k-临近法、遗传算法、粗糙集以及模糊逻辑技术等。大部分技术都是使用学习算法确定分类模型,拟合输入数据中样本类别和属性集之间的联系,预测未知样本的类别。训练算法的主要目标是建立具有好的泛化能力的模型,该模型能够准确地预测未知样本的类别。 1.数据挖掘概述 数据挖掘又称库中的知识发现,是目前人工智能和领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平

数据挖掘大作业

1.音乐分类的数据集 在这个题目中,使用了SVM分类器和贝叶斯分类器,并通过sklearn库中的GridSearchCV方法对SVM分类模型的参数进行调优,使最终的正确率提高了5个百分点左右。但仍没有文档中的论文达到的分类正确率高,因为论文中的分类器的设计使专一对音乐音调分类的,其中设计到神经网络和深度学习的一些方法。而我使用的分类器使对大部分分类问题都有效的方法。下面是对数据集的一个简单的介绍: 数据标签 第3-14列:YES or NO 第15列:共16个取值('D', 'G#', 'D#', 'Bb', 'Db', 'F#', 'Eb', 'F', 'C#', 'Ab', 'B', 'C', 'A#', 'A', 'G', 'E') 第16列:共5个取值(1,2,3,4,5) 第17列:共102个类别('C#M', 'F_m', 'D_m', 'D_d7', 'G#m', 'D_m6', 'C_m6', 'C_d7', 'F_M', 'D_M', 'BbM7', 'F#d', 'C#d', 'E_d', 'F_d7', 'F#d7', 'G_m', 'C#d7', 'AbM', 'EbM', 'D#d', 'Bbm6', 'G_M7', 'F#m6', 'Dbd', 'B_m6', 'G#M', 'D_m7', 'B_M', 'F#M7', 'Bbm', 'A#d', 'D#d7', 'Abd', 'G_M', 'F#M4', 'E_M', 'A_M4', 'E_m7', 'D#M', 'C_M7', 'A_m6', 'Dbm', 'A#d7', 'F#M', 'C#m7', 'F_m7', 'C_M', 'C#M4', 'F_M6', 'A_M', 'G_m6', 'D_M4', 'F_M7', 'B_M7', 'E_M4', 'E_m6', 'A_m4', 'G#d', 'C_m7', 'C_M6', 'Abm', 'F_m6', 'G_m7', 'F_d', 'Bbd', 'G_M4', 'B_d', 'A_M7', 'E_m', 'C#M7', 'DbM', 'EbM7', 'C#d6', 'F#m', 'G_M6', 'G_d', 'Dbd7', 'B_m7', 'DbM7', 'D_M6', 'D#d6', 'G#d7', 'A_m7', 'B_d7', 'B_M4', 'A_d', 'A_m', 'C_d6', 'D#m', 'C_M4', 'A_M6', 'BbM', 'C#m', 'D_M7', 'E_M7', 'F_M4', 'F#m7', 'Dbm7', 'B_m', 'C_m', 'Ebd') 这是一个多分类问题 1.1数据读取与训练集和测试集分离

大数据时代下数据挖掘技术的应用

应用 Technology Application D I G I T C W 技术 194DIGITCW 2019.01 1 大数据时代的发展历程及现状表现 通过对大数据的发展历程进行分析,大数据在出现到现在,短短的几年的时间内,大数据的信息容量个数据交流在呈直线上升。目前大数据时代的流量总和能够满足全球人员每天消耗500G 以上。就目前我国大数据发展的过程来说,已经逐渐的应用到我国各行各业中,能够从中获取信息资源。企业可以利用大数据对产品进行综合性分析,还能根据用户的反馈对产品进行更新改造,大数据时代下,采用信息化管理,能够有效的提升企业的管理效率,进而提升企业的生产效益,所以要加强数据挖掘技术在大数据时代下的应用。 2 数据挖掘技术分析 2.1 数据挖掘 数据挖掘技术是在20世纪90年代初提出来的新兴技术,这种技术主要面对的是商业应用中的人工智能化研究方面。大数据时代下数据挖掘技术的应用具有较高的使用价值,在实际应用中,能够及时的掌握产品的具体使用情况,能够在众多的数据信息中进行优化数据信息,进而为企业的发展提供参考方向。在数据挖掘技术发展过程中,由原来的简单、清晰的数据中进行寻找信息到能够从复杂、模糊的数据中去寻找有利用价值的信息,实现了质的突破,说明技术要求较高,需要更好的利用互联网技术。[1]2.2 聚类分析 在进行数据挖掘时,可以采用聚类分析技术来对数据进行处理。聚类分析的主要作用是能够将难以理解的事物进行形象化分组,然后在根据不同性质将其划分为不同组的分析过程。聚类分析的本质能够对庞大的数据进行划分处理,在从中发现可利用的信息资源。但是在实际的使用中,聚类分析是区别于传统的分类方式,它的优势是能够在模糊对象下进行对信息数据进行分组。在目前的聚类分析方式主要有两种分类方式,一种是硬聚类,这种分类方式更加的贴合数据信息。另一种是模糊聚类,这种分类方式能够通过划分模糊数据在对其进行分类。总的来说,这两种的分类方式不一样,但是所能达到的目的是一样的,都能将数据进行划分。 2.3 特征性数据分析法 特征性数据分析方法也是数据挖掘技术的主要方式之一,特征性数据分析方法能够对整体的数据信息,进行特征性的分析,对其进行发掘有利用价值的信息。由于这种技术的方便快捷性,可以应对大多数的数据资源的分析,所以是相关研究者的主要研究方向。在应用中,相关的设计者提出了多种的特征数据分析方法,比如可以利用人工神经网络进行收集数据,在数据终端进行建立神经网络,搜集可利用的信息;采用遗传基因算法对数据进行分析,对庞大的数据进行选择、重组;利用可视化技术对数据进行搜集,挖掘,可以有效的提升数据挖掘技术的实用性。[2] 3 大数据时代中数据挖掘的应用及延展方向 3.1 市场营销领域 根据对大数据时代中数据挖掘技术应用的数据分析,市场营 销领域是应用数据挖掘技术最广的领域。在市场营销中,可以通过数据挖掘技术对市场数据进行相关的提取和总结,能够在大数据下进行分析用户的信息资源,可以根据大数据反馈回的数据信息,进行改变市场营销模式。比如,通过数据挖掘技术能够分析用户点击商品的次数,然后在后台系统中,可以继续为用户推送与此商品相关的衍生品,能够让用户有更多的选择性,提高用户的实际使用感。3.2 制造业领域 随着现代生活水平的不断提高,人们对于生活产品的质量要求也在日益增长着,在制造业领域中应用数据挖掘技术能够更好的提升生活产品的质量。大数据时代中数据挖掘技术应用在制造业中的应用,可以对生活产品生产时进行跟踪性的监管、及时得到产品问题的数据、了解产品的生产效率等。可以为以后产品的生产提供相应的数据分析,针对性的解决产品遇到的问题、提升生产效率,进而提升制造业的经济效益。数据挖掘技术在制造业领域应用,能够促进制造业的发展,是非常有必要的。[1]3.3 电信业领域 现代是信息化的时代,电信行业在蓬勃的发展中,但是电信用户基数大,所需要处理的问题也是最多的,所以需要更好的服务来解决用户的问题,才能给用户带来更好的体验感。电信技术的服务是需要非常庞大的数据进行支持才能更好的处理遇到的问题,但是这种技术服务会被数据流冲击,导致服务质量下降。数据挖掘技术在电信业领域的应用能够有效的改变这种局面,采用数据挖掘技术可以对复杂的电信数据进行分析与研究,能够在其中发现规律,针对用户反馈回的信息,进行改进,提高电信业的服务质量。3.4 教育领域 数据挖掘技术在教育领域中的应用能够有效的提升教育行业的发展,在实际的应用中,能够对全体学生的心理特点进行分析,然后得出相应的教学方案,让教师能够及时的掌握学生的学习情况,从而更好地进行教学活动。采用数据挖掘技术可以对全体学生的考试成绩进行分析,及时发现学生学习的薄弱之处,方便教师对其进行加强化教学。还可以利用数据挖掘技术对教学进行分析,能够更好的利用教学资源,最大化发挥教学资源的作用,从而提升教育领域的教学质量。 4 结束语 综上所述,随着信息化时代的不断发展,我国正在向着大数据时代迈进,要加强大数据时代下数据挖掘技术的应用,才能更好的满足各行业的实际需求。尤其是在市场营销领域、制造业领域、电信业领域、教育领域等,能够利用数据挖掘技术来进行对众多的数据分析与研究,得出可利用的数据,进而促进该行业的发展。参考文献 [1] 刘铭,吕丹,安永灿.大数据时代下数据挖掘技术的应用[J].科技导报,2018,36(09):73-83. 大数据时代下数据挖掘技术的应用 梁?瀚 (青岛科技大学?中车青岛四方车辆研究所有限公司,青岛 266000) 摘要:随着现代社会信息化技术的不断发展,我国社会正在向信息化时代迈进。在信息化时代中,大数据时代是主要的发展环节。本文主要讲述了大数据时代下数据挖掘技术的应用方式,介绍数据挖掘技术的重要性。 关键词:大数据时代;数据挖掘技术;主要应用及延伸方向doi :10.3969/J.ISSN.1672-7274.2019.01.152中图分类号:TP311.13 文献标示码:A 文章编码:1672-7274(2019)01-0194-01

北邮数据挖掘作业

北京邮电大学 2015-2016学年第1学期实验报告 课程名称:数据仓库与数据挖掘 实验名称:文本的分类 实验完成人: 姓名:学号: 日期: 2015 年 12 月

实验一:文本的分类 1.实验目的 1. 了解一些数据挖掘的常用算法,掌握部分算法; 2. 掌握数据预处理的方法,对训练集数据进行预处理; 3. 利用学习的文本分类器,对未知文本进行分类判别; 4. 掌握评价分类器性能的评估方法。 2.实验分工 数据准备、预处理、LDA主题模型特征提取实现、SVM算法都由范树全独立完成。 3.实验环境 ●操作系统:win7 64bit 、Ubuntu-14.04-trusty ●开发环境:java IDE eclipse 、Python IDLE 4.主要设计思想 4.1实验工具介绍 1.Scrapy 0.25 所谓网络爬虫,就是一个抓取特定网站网页的HTML数据的程序。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了。一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。 Scrapy是一个基于Twisted,纯Python实现的爬虫框架,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。Scrapy 使用Twisted这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。 2.JGibbLDA-v.1.0 jGibbLDA是java版本的LDA实现,它使用Gibbs采样来进行快速参数估计和推断。LDA 是一种由基于概率模型的聚类算法。该算法能够对训练数据中的关键项集之于类簇的概率参数拟合模型,进而利用该参数模型实施聚类和分类等操作。 3.ICTCLAS50 中科院计算技术研究所在多年研究基础上,耗时一年研制出了基于多层隐码模型的汉语词法分析系统ICTCLAS,该系统有中文分词,词性标注,未登录次识别等功能。 4.libSVM-3.20 libSVM是台湾大学林智仁教授等开发设计的一个简单、易用和快速有效的SVM模式识

相关文档
最新文档