装备故障诊断方法

装备故障诊断方法
装备故障诊断方法

价值工程

0引言

随着武器装备复杂性不断增加,对武器装备维护和故

障诊断提出了更高的要求。近年来,

一些逐渐兴起的智能故障诊断方法,比传统方法能够更加快速,有效的诊断装备故障。

目前,人工智能技术的发展,特别是基于知识的专家系统技术在故障诊断中的应用,使得设备故障诊断技术进入了一个新的智能公发展阶段。传统的故障诊断专家系统虽然在某些领域取得了成功,但这种系统在实际应用中存在着一定的局限性,而人工神经网络技术为解决传统的专家系统中的知识获取,知识学习等问题提供了一条崭新的途径[1][2][3]。

1神经网络模型原理

人工神经网络简称神经网络(Neural Network ),具备并行性、

自学习、自组织性、容错性和联想记忆功能等信息处理特点而广泛用于故障诊断领域,它通过对故障实例及诊断经验的训练和学习,用分布在神经网络中的连接权值来表达所学习的故障诊断知识,具有对故障联想记忆、模糊匹配和相似归纳等能力。人工神经网络在故障诊断中的应用研究主要有三个方面:一是从预测角度应用神经网络作为动态预测模型进行故障预测;二是从模式识别角度应用神经网络作为分类器进行故障诊断;三是从知识处理角

度建立基于神经网络的专家系统[4][5]

1.1神经网络基本模型基于神经细胞的这种理论知识,在1943年McCulloch 和Pitts 提出的第一个人工神经元模型以来,人们相继提出了多种人工神经元模型,其中被人们广泛接受并普遍应用的是图1所示的模型[6]。

图1中的x 0,x 1,…,x n-1为实连续变量,是神经元的输入,θ称为阈值(也称为门限),w 0,w 1,…,w n-1是本神经元与上级神经元的连接权值。

神经元对输入信号的处理包括两个过程:第一个过程

是对输入信号求加权和,然后减去阈值变量θ,

得到神经元的净输入net ,即

net=n-1

i =0Σw i x i -θ

从上式可以看出,连接权大于0的输入对求和起着增强的作用,因而这种连接又称为兴奋连接,相反连接权小于0的连接称为抑制连接。

下一步是对净输入net 进行函数运算,得出神经元的输出y ,即y=f (net )

f 通常被称为变换函数(或特征函数),简单的变换函

数有线性函数、

阈值函数、Sigmiod 函数和双曲正切函数。根据本文的研究特点,变换函数f 取为Sigmoid 函数,即f (x )=11+e

(-x )

1.2神经网络知识表示传统的知识表示都可以看作是知识的一种显示表示,而在ANN 中知识的表示可看作是一种隐式表示。在ANN 中知识并不像传统方法那样表示为一系列规则等形式,而是将某一问题的若干知识在同一网络中表示,表示为网络的权值分布。如下所示阈值型BP 网络表示了四条“异或”逻辑产生式规则[7]:

IF x 1=0AND x 2=0THEN y=0IF x 1=0AND x 2=1THEN y=1IF x 1=1AND x 2=0THEN y=1IF x 1=1AND x 2=1THEN y=0基于这种网络知识表示结构,其BP 网络结构如图2所示。

网络通常由输入层、隐层和输出层组成。网络第一层为输入层,由信号源节点组成,传递信号到隐层;第二层为隐层,隐层节点的变换函数是中心点对称且衰减的非负线性函数;第三层为输出层,一般是简单的线性函数,对输入模式做出响应。理论上已证实,在网络隐

——————————————————————

—作者简介:李洪刚(1981-),男,河北石家庄人,硕士,控制工程专

业;郭日红(1982-),男,山西大同人,硕士,测试专业。

装备故障诊断方法研究

Analysis of Fault Diagnosis for Equipment Based on Neural Network System

李洪刚①②LI Hong-gang ;郭日红②GUO Ri-hong

(①军械工程学院,石家庄050003;②中国人民解放军66440部队,石家庄050081)

(①Ordnance Engineering College ,Shijiazhuang 050003,China ;②No.66440Unit of PLA ,Shijiazhuang 050081,China )

摘要:分析了神经网络故障诊断的特点,构建了神经网络的装备故障诊断模型,克服了传统故障诊断的缺点,并用某型装备故障

的数据进行了验证,结果表明了神经网络诊断故障是一种有效的诊断方法。

Abstract:Characteristics of the neural network and expert system are analyzed.Fault diagnosis for equipment base on neural network is constructed.A weak of the traditional method of fault diagnose is overcome.And availability of the method based on neutral network system is verified by experimental results of one equipment fault.

关键词:神经网络;故障诊断;装备Key words:neural network ;fault diagnose ;equipment 中图分类号:E911文献标识码:A 文章编号:1006-4311(2012)32-0316-02

·316·

电气设备故障诊断汇总

电气故障诊断 一、电气设备的状态及检测技术 1、电气设备的状态 (1)正常状态:设备具备其应有的功能,没有缺陷或缺陷不明显,缺陷严重程度仍处于容限范围内。 (2)异常状态:缺陷有了进一步的发展,设备状态发生变化,性能恶化,但仍能维持工作。(3)故障状态:缺陷发展到使设备性能和功能都有所丧失的程度。 (4)事故状态:功能完全丧失,无法进行工作状态。 2、电气设备的状态检测 (1)判断设备所处的状态; (2)根据其状态决定对待的方式。 二、电气设备的现代检测技术 1、现代故障诊断技术的构成: (1)故障诊断机理的研究:(理化原因等) (2)故障诊断信息学的研究:(数据采集与分析) (3)诊断逻辑和数学原理方面的研究:(诊断与决策) 2、现代故障诊断四项技术: (1)检测技术(采集信号、参数) (2)信号处理技术(提取状态信息) (3)识别技术(分析、判断) (4)预测技术(决策和预测) 3、故障诊断与状态监测的关系 (1)工况监测:对反映设备或系统工作状态的信息进行全面监测和分析,实时掌握设备基本工作状态。 (2)状态监测:又称简易诊断,通过监测结果与设定阈值之间的对比,仅对设备运行状态作出正常、异常或故障的判断,而对故障的性质、严重程度等不予或无法进行更深入的诊断。

4、故障诊断的成功因素 (1)故障信息源 (2)诊断方法 5、故障诊断技术的发展趋势(与当代前沿科技相融合) (1)人工智能技术:人工神经网络、专家系统等; (2)前沿数学:小波分析、模糊数学、分析几何等; (3)信息融合技术:证据理论等。 6、故障诊断的关注点 (1)故障阶段:尚未发展造成事故的阶段; (2)其目的是:防患于未然; (3)作用阶段:继电保护动作之前。 三、电气设备的传统检测技术 如果把有故障的电气设备比作病人,电工就好比医生。由中医诊断学的经典四诊(望、闻、问、切),结合电气设备故障的特殊性和诊断电气故障的成功经验,电气设备的检测技术归纳为“六诊”要诀,另外引申出电气设备诊断特殊性的“九法”、“三先后”要诀。 “六诊”、“九法”、“三先后”是行之有效的电气设备诊断的思想方法和工作方法。 事物往往是千变万化的和千差万别的,电气设备出现的故障是五花八门,“六诊”、“九法”、“三先后”电气故障诊断要诀,只是一种思想方法和工作方法,切记不能死搬硬套。检修人员要善于透过现象看本质,善于抓住事物的主要矛盾。 (一)“六诊”检测法 “六诊”------口问、眼看、耳听、鼻闻、手模、表测六种诊断方法,简单地讲就是通过“问、看、听、闻、摸、测”来发现电气设备的异常情况,从而找出故障原因和故障所在的部位。前“五诊”是凭借人的感官对电气设备故障进行有的放矢的诊断,称为感官诊断,又称直观检查法。同样,由于个人的技术经验差异,诊断结果也有所不同。可以采用“多人会诊法”求得正确结论。“表测”即应用电气仪表测量某些电气参数的大小,经过与正常数值对比,来确定故障原因和部位。 (1)口问 当一台设备的电气系统发生故障后,检修人员首先要了解详细的“病情”。即向设备操作人员了解设备使用情况、设备的病历和故障发生的全过程。 如果故障发生在有关操作期间或之后,还应询问当时的操作内容以及方法、步骤。总的来讲,了解情况要尽可能详细和真实,这些往往是快速找出故障原因和部位的关键。 例如:当维修人员巡查时,操作人员反应前处理一台打水离心泵不能启动,需要及时处理。这时维修人就要询问,水罐是否有水,上班和本班是否曾经运行,具体使用情况,是否运行一段时间后停止,还是未运行就不能开启。还要询问故障历史等等。了解具体情况后,到现场进行处理就会有条理,轻松解决问题。 (2)眼看 1)看现场 根据所问到的情况,仔细查看设备外部状况或运行工况。如设备的外形、颜色有无异常,熔丝有无熔断:电气回路有无烧伤、烧焦、开路、短路,机械部分有无损坏以及开关、刀闸、按钮插接线所处位置是否正确,改过的接线有无错误,更换的元件是否相符等:还要观察信

最新汽车发动机故障诊断与排除教案

发动机故障诊断与排除教案

常见车型故障码调取与清除 教案内容 一、日本丰田车系 1.调取故障码 普通方式调取故障码:打开点火开关,不起动发动机,用专用跨接线短接故障诊断座上的“TE1”与“E1”端子,仪表盘上的故障指示灯“CHECK ENGINE”即闪烁输出故障码。 2.清除故障码 故障排除后,将ECU中存储的故障码清除,方法有两种:一是关闭点火开关,从熔丝盒中拔下EFI熔丝(20A)10s以上;二是将蓄电池负极电缆拆开10s以上,但此种方法同时使时钟、音响等有用的存储信息丢失。 二、日本日产车系 随车型不同,故障码的调取与清除分三种不同方式: 1.如果在主电脑侧有一红一绿两个指示灯,另有一个“TEST”(检测)选择开关,调取故障码时,先打开点火开关,然后将“TEST”开关转至“ON”位置,两个指示灯即开始闪烁。根据红绿灯的闪烁次数读取故障码,红灯闪烁次数为故障码的十位数,绿灯闪烁的次数为故障码的个位。清除故障码时,将“TEST”开关转至“OFF”位置,再关闭点火开关即可清除故障码。主电脑位于仪表盘后或叶子板后。 2.如果在主电脑侧只有一个红色显示灯,另有一个可变电阻调节旋钮孔,调取故障码时,先打开点火开关,然后将可变电阻旋钮顺时针拧到底,等2 s后再将可变电阻旋钮逆时针拧到底,红色显示灯即开始闪烁输出故障码。每次操作只能输出一个故障码,有多个故障码时需重复上述操作。清除故障码时,将可变电阻旋钮顺时针拧到底,等15s 后再逆时针旋到底,再等 2 s后关闭点火开关即可清除故障码。 3.如果仪表盘上有故障指示灯“CHECK ENGINE”,则可通过短接诊断座上的相应端子调取故障码,日产车系故障诊断座位于发动机盖板支撑杆上方的熔丝盒内,有12端子和14端子两种,调取故障码时,先打开点火开关,然后取出12端子或14端子诊断座,并用跨接线短接诊断座上“6#”和“7#”端子(14端子诊断座)或“4#”和“5#”端子(12端子诊断座),等2s后拆开短接导线,仪表盘上的“CHECK ENGINE”灯即闪烁输出故障码(波形见下图)。每次操作只能输出一个故障码,有多个故障码时需重复上述操作。清除故障码时,将诊断座右上侧的两个端子短接15s以上,再关闭点火开关即可清除故障码。 日产车系故障码输出波形

装备故障诊断方法

价值工程 0引言 随着武器装备复杂性不断增加,对武器装备维护和故 障诊断提出了更高的要求。近年来, 一些逐渐兴起的智能故障诊断方法,比传统方法能够更加快速,有效的诊断装备故障。 目前,人工智能技术的发展,特别是基于知识的专家系统技术在故障诊断中的应用,使得设备故障诊断技术进入了一个新的智能公发展阶段。传统的故障诊断专家系统虽然在某些领域取得了成功,但这种系统在实际应用中存在着一定的局限性,而人工神经网络技术为解决传统的专家系统中的知识获取,知识学习等问题提供了一条崭新的途径[1][2][3]。 1神经网络模型原理 人工神经网络简称神经网络(Neural Network ),具备并行性、 自学习、自组织性、容错性和联想记忆功能等信息处理特点而广泛用于故障诊断领域,它通过对故障实例及诊断经验的训练和学习,用分布在神经网络中的连接权值来表达所学习的故障诊断知识,具有对故障联想记忆、模糊匹配和相似归纳等能力。人工神经网络在故障诊断中的应用研究主要有三个方面:一是从预测角度应用神经网络作为动态预测模型进行故障预测;二是从模式识别角度应用神经网络作为分类器进行故障诊断;三是从知识处理角 度建立基于神经网络的专家系统[4][5] 。 1.1神经网络基本模型基于神经细胞的这种理论知识,在1943年McCulloch 和Pitts 提出的第一个人工神经元模型以来,人们相继提出了多种人工神经元模型,其中被人们广泛接受并普遍应用的是图1所示的模型[6]。 图1中的x 0,x 1,…,x n-1为实连续变量,是神经元的输入,θ称为阈值(也称为门限),w 0,w 1,…,w n-1是本神经元与上级神经元的连接权值。 神经元对输入信号的处理包括两个过程:第一个过程 是对输入信号求加权和,然后减去阈值变量θ, 得到神经元的净输入net ,即 net=n-1 i =0Σw i x i -θ 从上式可以看出,连接权大于0的输入对求和起着增强的作用,因而这种连接又称为兴奋连接,相反连接权小于0的连接称为抑制连接。 下一步是对净输入net 进行函数运算,得出神经元的输出y ,即y=f (net ) f 通常被称为变换函数(或特征函数),简单的变换函 数有线性函数、 阈值函数、Sigmiod 函数和双曲正切函数。根据本文的研究特点,变换函数f 取为Sigmoid 函数,即f (x )=11+e (-x ) 1.2神经网络知识表示传统的知识表示都可以看作是知识的一种显示表示,而在ANN 中知识的表示可看作是一种隐式表示。在ANN 中知识并不像传统方法那样表示为一系列规则等形式,而是将某一问题的若干知识在同一网络中表示,表示为网络的权值分布。如下所示阈值型BP 网络表示了四条“异或”逻辑产生式规则[7]: IF x 1=0AND x 2=0THEN y=0IF x 1=0AND x 2=1THEN y=1IF x 1=1AND x 2=0THEN y=1IF x 1=1AND x 2=1THEN y=0基于这种网络知识表示结构,其BP 网络结构如图2所示。 网络通常由输入层、隐层和输出层组成。网络第一层为输入层,由信号源节点组成,传递信号到隐层;第二层为隐层,隐层节点的变换函数是中心点对称且衰减的非负线性函数;第三层为输出层,一般是简单的线性函数,对输入模式做出响应。理论上已证实,在网络隐 —————————————————————— —作者简介:李洪刚(1981-),男,河北石家庄人,硕士,控制工程专 业;郭日红(1982-),男,山西大同人,硕士,测试专业。 装备故障诊断方法研究 Analysis of Fault Diagnosis for Equipment Based on Neural Network System 李洪刚①②LI Hong-gang ;郭日红②GUO Ri-hong (①军械工程学院,石家庄050003;②中国人民解放军66440部队,石家庄050081) (①Ordnance Engineering College ,Shijiazhuang 050003,China ;②No.66440Unit of PLA ,Shijiazhuang 050081,China ) 摘要:分析了神经网络故障诊断的特点,构建了神经网络的装备故障诊断模型,克服了传统故障诊断的缺点,并用某型装备故障 的数据进行了验证,结果表明了神经网络诊断故障是一种有效的诊断方法。 Abstract:Characteristics of the neural network and expert system are analyzed.Fault diagnosis for equipment base on neural network is constructed.A weak of the traditional method of fault diagnose is overcome.And availability of the method based on neutral network system is verified by experimental results of one equipment fault. 关键词:神经网络;故障诊断;装备Key words:neural network ;fault diagnose ;equipment 中图分类号:E911文献标识码:A 文章编号:1006-4311(2012)32-0316-02 ·316·

故障诊断基本原则、故障排查方法.

故障诊断基本原则、故障排查方法、电路排查的方法及数据流读取分析 2015-02-01刘金深圳三羚汽车电脑诊断仪 目录导读: 一、故障诊断基本原则 二、故障排查方法 三、电路排查的方法 四、数据流读取分析 一、故障诊断基本原则 造成电喷发动机故障的原因可能是电子控制系统故障,可能是低压油路、进排气气路故障,也可能是燃喷高压零部件或者发动机各机械部件故障。为准确而迅速地找出故障所在, 在故障诊断过程中我们应该遵循一定的原则,基本原则可概括为以下几点: 1、先读代码 电喷发动机都有故障自诊断功能,当系统出现某种故障时,电控单元就会即刻监测到故障并通过故障灯向驾驶员报警,与此同时以代码的方式储存该故障的信息。通常我们有两种方式获取故障码: 1)按下检查开关,发动机故障指示灯会按顺序闪出闪码; 2)使用诊断仪读取故障码。 从而我们可根据读得的故障码排查故障。 2、由外而内 在发动机出现故障时,先对电子控制系统以外的可能故障部位予以检查。这样可避免本来是一个与电子控制系统无关的故障,却对系统的传感器、电脑、执行器及线路等进行复杂且又费时费力的检查。 当发动机发生故障时,首先观察系统的故障指示灯,如果指示灯没亮,则基本可以作为机械故障来进行处理。如果指示灯亮,必须先读取故障码,进而进行相应处理。 3、先简后繁 很多情况下,发动机的故障都是比较简单的故障,电气系统的故障也是如此。我们可以首先对电气系统进行初步的检查,比如检查电控系统线束的连接状况: 1)传感器或执行器的电连接器是否良好? 2)线束间的连接器是否松动或断开? 3)电线是否有磨破或线间短路现象? 4)电连接器的插头和插座有无腐蚀现象? 5)各传感器和执行器有无明显损伤? 如果以上简单检查找不出故障,则需要借助于仪器仪表或其他专用工具来进行检查时, 也应对较容易检查的先予以检查。能检查的项目先进行检查。

常用简易的设备故障诊断方法

常用简易的设备故障诊 断方法 Document number:PBGCG-0857-BTDO-0089-PTT1998

常用简易的设备故障诊断方法 常用的简易状态监测方法主要有听诊法、触测法和观察法等。 1、听诊法 设备正常运转时,伴随发生的声响总是具有一定的音律和节奏。只要熟悉和掌握这些正常的音律和节奏,通过人的听觉功能就能对比出设备是否出现了重、杂、怪、乱的异常噪声,判断设备内部出现的松动、撞击、不平衡等隐患。用手锤敲打零件,听其是否发生破裂杂声,可判断有无裂纹产生,用听诊法对滚动轴承工作状态进行监测的常用工具是木柄螺丝刀,也可以使用外径为φ20mm左右的硬塑料管。 (1)滚动轴承正常工作状态的声响特点 滚动轴承处于正常工作状态时,运转平稳、轻快、无停滞现象,发出的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,或者较低的“轰轰”声。噪声的强度不大。异常声响所反映的轴承故障锥入度大一点的新润滑脂。 (2)轴承在连续的“哗哗”声中发出均匀的周期性的“嗬罗”声。这种声音是由于滚动体和内外圈滚道出现伤痕、沟槽、锈蚀斑而引起的。声响的周期与轴承的转速成正比。应对轴承进行更换。 (3)轴承发出不连续的“梗梗”声。这种声音是由于保持架或者内外圈破裂而引起的。必须立即停机更换轴承。 (4)轴承发出不规律、不均匀“嚓嚓”声。这种声音是由于轴承内落入铁屑、砂粒等杂质而引起的。声响强度较小,与转速没有联系。应对轴承进行清洗,重新加脂或换油。

(5)轴承发出连续而不规则的“沙沙”声。这种声音一般与轴承的内圈与轴配合过松或者外圈与轴承孔配合过松有关系,声响强度较大。应对轴承的配合关系进行检查,发现问题及时修理。 (6)轴承发出连续刺耳啸叫声。这种声音是由于轴承润滑不良,缺油造成了干摩擦,或者滚动体局部接触过紧,如内外圈滚道偏斜,轴承内外圈配合过紧等情况而引起的。应及时对轴承进行检查找出问题,对症处理。 电子听诊器是一种振动加速度传感器。它将设备振动状况转换成电信号并进行放大,工人用耳机监听运行设备的振动声响,以实现对声音的定性测量。通过测量同一测点、不同时期、相同转速、相同工况下的信号,并进行对比,来判断设备是否存在故障。当耳机出现清脆尖细的噪声时,说明振动频率较高,一般是尺寸相对较小的、强度相对较高的零件发生局部缺陷或微小裂纹。当耳机传出混浊低沉的噪声时,说明振动频率较低,一般是尺寸相对较大的、强度相对较低的零件发生较大的裂纹或缺陷。当耳机传出的噪声比平时增强时,说明故障正在发展,声音越大,故障越严重。当耳机传出的噪声是杂乱无规律地间歇出现时,说明有零件或部件发生了松动。 2、触测法 用人手的触觉可以监测设备的温度、振动及间隙的变化情况。人手上的神经纤维对温度比较敏感,可以比较准确地分辨出80℃以内的温度。当机件温度在0℃左右时,手感冰凉,若触摸时间较长会产生刺骨痛感。10℃左右时,手感较凉,但一般能忍受。20℃左右时,手感稍凉,随着接触时间延长,手感渐温。30℃左右时,手感微温,有舒适感。40℃左右时,手感较热,有微烫感觉。50℃左右时,手感较烫,若用掌心按的时间较长,会有汗感。60℃左右

设备故障诊断技术说明

设备故障诊断技术简介

上海华阳检测仪器有限公司 Shanghai Huayang MeasuringInstruments Co., Ltd 目录 设备故障诊断技术定义

-----------------------------------------------( 3)一.设备维修制度的进展-----------------------------------------------( 4)二.检测参数类型-------------------------------------------------------( 5) 三.振动检测中位移、速度和加速度参数的选择-----------------------------( 5) 四.测点选择原则------------------------------------------------------( 6) 五.测点编号原则------------------------------------------------------( 7) 六.评判标准----------------------------------------------------------( 7) 七.测量方向及代号----------------------------------------------------

(10) 八.搜集和掌握有关的知识和资料----------------------------------------(10) 九.故障分析与诊断----------------------------------------------------(11) 十.常见故障的识不----------------------------------------------------(14) 1.不平衡------------------------------------------------------------(14) 2.不对中------------------------------------------------------------(14) 3.机械松动----------------------------------------------------------(15) 4. 转子或轴裂纹

[诊断方法,故障,案例]基于案例推理的装甲装备故障诊断方法研究

基于案例推理的装甲装备故障诊断方法研究 0引言 基于案例推理技术摆脱了知识瓶颈的束缚,在很多领域得到了广泛应用,如航空远程故障诊断、民用飞机维修间隔期确定智能化农业和教学指导等。但目前的研究大部分集中在案例检索方面,如高明通过改进最近邻法来实现水轮发电机组的故障诊断;李锋尝试采用人工神经网络方法实现案例检索与案例实现的整体设计方案;程刚提出将无机环图支持向量机多类分类器应用到案例检索中,很少具体考虑应用领域的特点对案例组织与索引的影响。 基于此,笔者在考虑应用领域特点的前提下,探索新的案例库组织形式,并在此基础上确立相应的索引机制,以提高故障案例的覆盖面和案例推理的效能,更好地满足装甲装备诊断与维修需求。 1装甲装备维修保障领域的特点 装甲装备维修领域的知识很难通过规则的形式对其进行全方位的描述,但却比较具体地蕴含在实践过程产生的案例中,该领域具有以下特点。 1.1经验知识占主导地位 装备维修是实践性非常强的活动,其熟练的维修技能依赖于长时间的维修实践积累的经验,因为故障的表现形式十分复杂,依靠建立数学模型等结构化知识来解决维修实践过程中的问题很难有实际的指导意义,但维修方案的验证与存储却相对容易,不存在知识获取的瓶颈,因此经验知识在装备维修领域依然处于主导地位。 1.2理论多是定性化描述 维修领域的理论研究已经比较成熟,但是在比较重要的环节,例如阂值确定等方面却很难有足够实践指导意义的理论支持,即使有相关研究也多是定性化描述,缺少定量的设计。 1.3不同装甲装备型号之间的相似性 需求决定设计,人们对装甲装备火力性、防护性、机动性的需求决定了车型的设计,而技术制约需求,技术发展的连续性决定了人们对装甲装备设计要求的延续性,因此很少有车型是完全创新的,大部分新车型是对老车型的改进,不同型号间车型的结构、功能、运行环境存在很大的相似性,有些系统还包含标准化产品,因而其故障现象、故障原因就可能存在相似性,这就决定了维修方案之间存在极大的相似性,因此不同车型的相似部件的维修方案制定有很大的借鉴意义。 2案例检索 2.1案例的组织与索引策略

(企业诊断)设备故障诊断与维修最全版

(企业诊断)设备故障诊断 与维修

《设备故障诊断和维修》学习提纲 第壹章绪论 掌握设备故障诊断的意义、目的、任务及其发展概况,熟悉设备故障诊断的概念、意义和目的,熟悉状态监测和故障诊断的任务,了解设备故障诊断技术的发展概况。 1、设备诊断技术、修复技术和润滑技术已列为我国设备管理和维修工作的三项基 础技术。 2、设备故障诊断是指在设备运行中或在基本不拆卸的情况下,通过各种手段,掌握设备运行状态,判定产生故障的部位和原因,且预测、预报设备未来的状态,从而找出对策的壹门技术。 3、设备故障诊断既要保证设备的安全可靠运行,又要获取更大的经济效益和社会效益。 4、设备故障诊断的任务是监视设备的状态,判断其是否正常;预测和诊断设备的故障且消除故障;指导设备的管理和维修。 5、设备故障诊断技术的发展历程:感性阶段→量化阶段→诊断阶段(故障诊断技术真正作为壹门学科)→人工智能和网络化阶段(发展方向)。 第二章设备故障诊断的基本概念 了解设备故障诊断的壹些基本概念和基本方法,明确设备故障诊断的重要目标——状态维修。要求掌握设备和设备故障的基本概念,全面、深入了解设备故障的概念、原因、机理、类型、模式、特性、分析及管理;了解设备故障诊断的基本方法和分类;熟知设备维修方式的发展和状态维修,认识设备故障诊断技术和状态维修的“因果”关系。 1、从系统论的观点,设备是由有限个“元素”,通过元素之间的“联系”,按照壹定的规律聚合而构成的。 2、设备的故障,是指系统的构造处于不正常状态,且可导致设备相应的功能失调,致使设 备相应行为(输出)超过允许范围,这种不正常状态称为故障状态。

3、理解故障原因、故障机理、故障模式、故障分析等概念。设备故障具有层次性、传播性、 放射性、相关性、延时性、不确定性等基本特性。 4、对故障进行分类的目的是为了弄清不同的故障性质,从而采取相应的诊断方法 5、设备故障诊断的基本方法包括传统的故障诊断方法、故障的智能诊断方法和故障诊断的 数学方法。 6、设备故障诊断的分类根据诊断对象、诊断参数、诊断的目的和要求、诊断方法的完善程 度等不同能够有各种分类方法。 7、我国的维修体制也在发生着深刻而巨大的变化,已从早期的事后维修和实施多年的定期 预防维修开始进入现代的预知性的视情(状态)维修。 8、实施设备状态维修的指导思想。 第三章设备故障诊断的技术基础 掌握设备故障诊断特别是振动诊断的技术基础,要求熟悉设备故障诊断技术的内容,掌握设备故障信息获取和检测方法的框架知识,了解设备故障常用的三种评定标准及相对判断标准的制定方法,熟悉故障诊断中的信号处理。掌握傅里叶变换在故障诊断中的应用。 1、设备故障诊断的内容包括状态监测、分析诊断和故障预测三个方面。其具体实施过程 为信息采集、信号处理、状态识别、诊断决策。 2、设备故障信息的获取方法包括直接观测法、参数测定法、磨损残渣测定法及设备性能 指标的测定。 3、设备故障的检测方法包括振动和噪声的故障检测、材料裂纹及缺陷损伤的故障检测、 设备零部件材料的磨损及腐蚀故障检测及工艺参数变化引起的故障检测。 4、设备故障的评定标准常用的有三种判断标准,即绝对判断标准、相对判断标准以及类 比判断标准。可用平均法制定相对判断标准。

航空发动机的故障诊断方法研究

摘要 通过回顾航空维修理论及技术的发展历程,分析了以可靠性为中心的维修思想的优越性,阐述了几种航空维修方式各自的特点,指出了新维修思想所带来的革命性成果,即保证安全的前提下降低了维护成本和维修工作量。最后,对新维修思想在我国的应用途径与前景提出了自己的观点。 关键词: 可靠性; 航空维修; 视情; 事后。 1课题背景及其意义 航空维修是随着飞机的诞生而出现的,它是一门综合性的学科。随着科学技术的发展,航空维修经历了从经验维修、以预防为主的传统维修阶段到以可靠性为中心和逻辑决断法的现代维修阶段。目前航空维修已经是一门系统性的学科。 1传统和现代维修思想的对比 1.1传统的维修思想 按照传统的观念,航空维修就是对航空技术装备进行维护和修理的简称,即为保持和恢复航空技术装备实现规定功能而采取的一系列工程技术活动。其基本思想是安全第一,预防为主,也就是按使用时间进行预防性维修工作,通过定时检查、定期修理和翻修来控制飞机的可靠性。这种以定时维修为主的传统维修思想将飞机的安全性与各系统、部件、附件、零件的可靠性紧密相联,认为预防性维修工作做得越多,飞机就越可靠,翻修间隔期的长短是控制飞机可靠性的重要因素。西方通常将这种以定期全面翻修为主的预防维修思想也叫定时维修思想称之为翻修期控制思想。 1.2 现代维修思想的形成 随着航空工业的发展,飞机设计及可靠性、维修性都有了极大提高,特别是余度技术的采用使飞行安全基本有了保障。维修手段上检测设备日益完善,磁粉、着色、荧光、X光等无损探伤手段和电子计算机得到普遍运用。详细的寿命统计资料的积累、疲劳对飞机结构影响程度的掌握,充实了维修经验和理论知识,使可靠性理论和维修性理论得到发展。另外,维修的经济性、维修方针的适用性也越来越多地成为航空维修工作中必须考虑的问题。自此,新的维修思想应运而生,以可靠性为中心的现代维修思想在对传统的航空维修思想继承和发展的基础上对航空维修的历史。经验和理论知识进行概括和总结,除了仍坚持传统维修思想

故障检测的各个方面的检测方法和标准

3 诊断参数 3.1 诊断参数选择 在故障检测当中,我们通常需要在定性判断的基础之上加上定量判断的标准,从而更为直观准确地对工作单元进行故障诊断,因此,诊断参数的选择是故障检测预设阶段一个非常重要的部分。面对复杂多样的诊断对象,我们用几个较为通用的原则来选择诊断参数:(1)诊断参数的多能性 (2)诊断参数的灵敏性 (3)诊断参数应呈单值性 (4)诊断参数的稳定性 (5)诊断参数应具有一定的物理意义,应能量化,即可以用数字表示。 例如,在旋转机械、金属切削机床常用的诊断参数有:功率、噪音、振动频率及相位、温度以及被切削零件的几何精度和表面粗糙度等。 3.2 诊断参数获得 当诊断参数参数选择之后,由于从实际问题转化到参数变量之间有时存在着一定不便,有的参数甚至只是存在于理想情况下,无法获得,从而也就无法进行诊断,因此我们要对上个过程选择的参数进行进一步筛选,使其适用于诊断对象,我们列出以下四个原则来选出适用于现实情况中的诊断参数: (1)测试仪器要安装方便,测试手段简单可靠。 (2)测量方法能获得较高的信噪比。 (3)测量方法应尽量采用直接测量。 (4)保证适宜的测量误差值。 3.3 诊断周期选择 诊断周期的确定与设备的劣化速度有关。测量周期一般根据机器两次故障之间的平均运行时间确定。诊断周期的选择可分为两种选择方式: 一是根据机器本身情况对诊断周期进行选择,如高速旋转体,其出现故障后在很短的时间内就会造成更为严重的后果,因此要尽可能缩短其的诊断周期,或者进行实时监测,但是有些低速低载的齿轮,在其出现故障后可能无法立马对整个工作系统产生影响,我们在考虑成本的条件下,可以适当加长其诊断周期。 如在对采煤机进行检测时,主要是检测采煤机周边、控制箱、摇臂和变频器[1]。采煤机的周边、控制箱、摇臂和变频器各有其检测的周期,其中控制箱、摇臂和变频器的优先级较高,因为其出现故障后在很短的时间内就会导致整个工作系统的瘫痪,因此其诊断周期短,需要对其进行多次的检测,防止其出现故障。 二是在一次诊断周期内发现了异常,因此在下一个诊断时刻,可以适当缩短诊断周期,进行更为频繁地检测,从而确定诊断对象是否出现或者可能出现故障。 3.4 诊断标准确定 诊断标准可分为以下三类: (1)绝对判断标准 绝对判断标准是根据对某类机器长期使用、观察、维修与测试后的经验总结,并由企业、行业协会或国家归纳成表格或图表形式,作为一种标准供工程界应用。该标准是在确定了正确的诊断方法后才可制定的标准。使用时必须注意判断标准的制定及适用的范围等,才能选用。

(完整版)《设备故障诊断-沈庆根》知识点汇总

1.1.设备故障诊断的含义 设备故障诊断是指应用现代测试分析手段和诊断理论方法,对运行中的机械设备出现故障的机理、原因、部位和故障程度进行识别和诊断,并且根据诊断结论,确定设备的维修方案和防范措施。 1.2.设备故障诊断的过程 信号采集→信号处理→故障诊断→诊断决策→故障防治与控制 1.3.设备故障诊断的特性 多样性、层次性、多因素相关性、延时性、不确定性 1.4.三种维修制度 事后维修(故障维修)、定期维修(计划维修)、状态监测维修(预知性维修) 1.5设备故障的类型有哪些 ①结构损伤性故障(裂纹、磨损、腐蚀、变形、断裂、剥落和烧伤) ②运动状态劣化性故障(机械位置不良、刚性不足、摩擦、流体激振、非线性的谐波共振) 1.6设备故障诊断的功能 ①不停机不拆卸的状态下检测 ②可预测设备的可靠性程度 ③确定故障来源,提出整改措施 1.7.设备状态监测与故障诊断的技术和方法 振动信号监测诊断技术(普遍性、信息量丰富、易处理与分析) 声信号监测诊断技术(声音监听法、频谱分析法、声强法) 温度信号监测诊断技术 润滑油的分析诊断技术 其他无损检测诊断技术 1.8.设备故障状态的识别方法 信息比较诊断法、参数变化诊断法、模拟试验诊断法、函数诊断法、故障树分析诊断法、模糊诊断法、神经网络诊断法、专家系统 2.1信号的含义和分类 信号是表征客观事物状态或行为信息的载体 分类:确定性信号与非确定性信号;连续信号和离散信号;能量信号和功率信号;时限与频限信号 2.2.信号时域分解 直流分量和交流分量 脉冲分量 实部分量和虚部分量 正交函数分量 2.3.信号的时域统计 均值 均方值 方差

2.4.时域相关分析 相关系数: 2.5.频谱分析法 利用傅里叶变换的方法对振动的信号进行分解,并按频率顺序展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析 2.6.振动监测的基本参数振幅、频率、相位 2.7.旋转机械常用的振动信号处理图形 轴心轨迹:轴颈中心相对于轴承座在轴线垂直平面内的运动轨迹 转子振型:转子轴线上各点的振动位移所连成的一条空间曲线 轴颈涡动中心位置:在滑动轴承中,轴颈中心在激扰力作用下是绕着某一中心点运动的 波特图:描述转子振幅和相位随转速变化的关系曲线,纵坐标为振幅和相位,横坐标为转子的转速或转速频率 极坐标图:把转子的振幅与相位随转速的变化关系用极坐标的形式表示出来(直观,方便,清晰,抗干扰) 三维坐标图(级联图、瀑布图):随转速上升,机械振动的基础幅指上升 阶比谱分析:将频谱图上横坐标的每个频率值除以某个参考频率值(读数清晰、周期采样、精度高) 3.1旋转机械的故障类型有哪些 ①转自不平衡②转子不对中③滑动轴承故障④转子摩擦⑤浮动环密封故障 3.2转子不平衡的概念 转子受材料质量、加工、装配以及运行中多种因素的影响,其质量中心和旋转中心线中间存在一定量的偏心距,使得转子在工作时形成周期性的离心力干扰,在轴承上产生动载荷,从而引起机器振动的现象 不平衡产生的离心力大小 3.3转子不平衡振动的故障特征 ①不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图,转速频率成分具有突出的峰值 ②单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波 ③转子的轴心轨迹形状基本上为一个圆或者椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90° ④转子的进动方向为同步正进动 ⑤除了悬臂转子外,对于普通两端支撑的转子,不平衡在轴向上的振幅一般不明显 ⑥转子振幅对转速变化很敏感,转速下降,振幅将明显下降 3.4转子不平衡振动的原因 ①固有质量不平衡(设计错误、材料缺陷、加工与装配误差、动平衡方法不正确) ②转子运行中的不平衡(转子弯曲、转子平衡状态破坏) 3.5怎样区别转子弯曲不平衡和质量不平衡 ①振幅随转速的变化:质量不平衡与转速之间按照固定的关系式变化,弯曲的没有

汽车发动机常见故障诊断与排除方法

毕业(设计)论文 系(部)汽车工程系 专业汽车检测与维修技术 班级09级汽车检测与维修三班 指导教师 姓名学号

汽车发动机常见故障诊断与排除方法 【摘要】本文阐述了汽车发动机的常见故障诊断和排除方法,由于新技术在发动机上的运用,发动机的故障更加的复杂化。发动机的故障也是汽车故障中故障率最高、难点最高的组成部分。现对曲柄连杆机构、配气机构、燃油供给系、润滑系、起动系、冷却系以及点火系的常见故障进行分析和排除。主要对燃油供给系、润滑系、起动系作了详细的讲解。 【关键词】配气机构点火系润滑系冷却系故障排除检修

【目录】 第一章发动机的总体组成和作用 (1) (1) 1 第二章曲柄连杆机构的常见故障及排除 (2) 2.1曲柄轴承异响 (2) 2.2连杆轴承异响 (2) 第三章配气机构的常见故障诊断与排除 (3) 3.1凸轮轴异响 (3) 3.2气门脚异响 (3) 3.3气门弹簧异响 (4) 3.4气门座圈异响 (4) 第四章冷却系的作用、组成及常见故障与排除 (5) 4.1作用及组成 (5) 4.2常见故障与排除方法 (5) 4.2.1冷却液充足但发动机过热 (5) 4.2.2 冷却液不足引起发动机过热 (6) 第五章点火系的常见故障的诊断与排除 (7) 5.1故障分类 (7) 5.2点火时间过早 (7) 5.3点火时间过迟 (7) 5.4发动机的回火及放炮 (7) 5.5发动机爆震和过热 (8)

第六章润滑系作用、组成及常见故障与排除 (9) 6.1作用和组成 (9) 6.2润滑系常见故障及排除 (9) 6.2.1 机油压力过低 (9) 6.2.2 机油压力过高 (10) 6.2.3 机油消耗过多 (10) 第七章燃油供给系的常见故障排除及检修要点 (11) 7.1电控燃油供给系统的组成 (11) 7.2不来油或来油不畅 (11) 7.3发动机怠速不良故障 (12) 7.4混合气稀故障 (12) 7.5加速不良故障 (13) 7.6电控燃油系统检查要点 (14) 第八章起动系的组成及常见故障诊断分析 (15) 8.1起动机不运转 (15) 8.2起动机运转无力 (16) 第九章结论 (17) 参考文献 (18) 致 (19)

设备故障诊断原理技术及应用

设备故障诊断原理技术及应用 机械设备故障诊断技术随着近十多年来国际上电子计算机技术、现代测量技术和信号处理技术的迅速发展而发展起来,是一门了解和掌握机械设备在使用过程中的状态,确定其整体或局部是否正常,早期发现故障及原因,并预报故障发展趋势的技术。 1.机械设备故障诊断的发展过程 设备故障诊断是指在一定工作环境下,根据机械设备运行过程中产生的各种信息判别机械设备是正常运行还是发生了异常现象,并判定产生故障的原因和部位,以及预测、预报设备状态的技术,故障诊断的实质就是状态的识别。 诊断过程主要有3 个步骤: ①检测设备状态的特征信号; ②从所检测的特征信号中提取征兆; ③故障的模式识别。其大致经历以下3 个阶段: ①基于故障事件原故障诊断阶段,主要缺点是事后检查,不能防止故障造成的损失; ②基于故障预防的故障诊断阶段; ③基于故障预测的故障诊断阶段,它是以信号采集与处理为中心,多层次、多角度地利用各种信息对机械设备的状态进行评估,针对不同的设备采取不同的措施。 2.开展故障诊断技术研究的意义 应用故障诊断技术对机械设备进行监测和诊断,可以及时发现机器的故障和预防设备恶性事故的发生,从而避免人员的伤亡、环境的污染和巨大的经济损失。应用

故障诊断技术可以找出生产设备中的事故隐患,从而对机械设备和工艺进行改造以 消除事故隐患。状态监测及故障诊断技术最重要的意义在于改革设备维修制度,现在多数工厂的维修制度是定期检修,造成很大的浪费。由于诊断技术能诊断和预报设备的故障,因此在设备正常运转没有故障时可以不停车,在发现故障前兆时能及时停车。按诊断出故障的性质和部位,可以有目的地进行检修,这就是预知维修—现代化维修 技术。把定期维修改变为预知维修,不但节约了大量的维修费用,而且,由于减少了许多不必要的维修时间,而大大增加了机器设备正常运转时间,大幅度地提高生产率,产生巨大的经济效益。因此,机械状态监测与故障诊断技术对发展国民经济有相当重要的作用。 3.机械故障诊断的研究现状 机械故障诊断作为一门新兴的综合性边缘学科,经过30 多年的发展,己初步形成了比较完整的科学体系。就其技术手段而言,已逐步形成以振动诊断、油样分析、温度监测和无损探伤为主,其他技术或方面为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最具生机与活力。目前,对振动信号采集来说, 计算机技术足以胜任各种场合的需要。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅立叶变换、Wign2er 分布和小波变换等。就诊断方法而言,除了单一参数、 单一故障的技术诊断外,目前多变量、多故障的综合诊断已经兴起。 人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不

汽车故障诊断原则

汽车故障诊断的四项基本原则 (一)先简后繁、先易后难的原则 (二)、先思后行、先熟后生的原则 (三)、先上后下、先外后里的原则 (四)、先备后用、代码优先的原则 二: 汽车故障诊断的基本方法: 1、询问用户:故障产生的时间、现象、当时的情况,发生故障时的原因以及是否经过检修、拆卸等。 2、初步确定出故障范围及部位。 3、调出故障码,并查出故障的内容。 4、按故障码显示的故障范围,进行检修,尤其注意接头是否松动、脱落,导线联接是否正确。 5、检修完毕,应验证故障是否确已排除。 6、如调不出故障码,或者调出后查不出故障内容,则根据故障现象,大致判断出故障范围,采用逐个检查元件工作性能的方法加以排除。 二、常见故障的诊断 1、发动机不能启动或启动困难 (1)起动机不转动或转动缓慢

a)检查蓄电池电压。 b)检查蓄电池极柱、导线联接等是否松动。 c)检查启动系,包括点火开关、启动开关、空档启动开关及起动机情况,各部线路是否连接松动。 (2)起动机转动正常,但发动机不能启动 a)调出故障码。 b)检查燃油泵工作情况。 c)检查怠速系统是否工作正常(若怠速系统工作不正常,踏下 加速踏板时发动机能启动)。 d)检查点火系统,包括高压火花、点火正时情况、火花塞等。 e)检查进气系统有无漏气。 f )检查空气流量计或空气压力传感器是否工作不良。 g)检查喷油器、低温启动喷油器是否工作正常。 h)检查EFI系统电路,包括ECU连接器有关端子。 i )检查机械部分有无故障。 2、发动机怠速不良 1)调出故障码,分析故障原因。 2)检查进气系统有无漏气情况。 3)检查曲轴箱通风管的PCV阀的工作情况(怠速时,PCV阀应该关闭)。 4)检查节气门上的怠速调整螺钉是否调整正确,若调整螺钉调整不正确,会导致怠速时混合气过稀,导致发动机怠速不稳。

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

相关文档
最新文档