天然气燃烧特性

天然气燃烧特性
天然气燃烧特性

天然气燃烧特性

天然气最主要的成分是甲烷,基本不含硫,无色、无臭、无毒、无腐蚀性,具有安全、热值高、洁净和应用广泛等优点,目前已成为众多发达国家的城市必选燃气气源。

城市燃气应按燃气类别及其燃烧特性指数(华白数W 和燃烧势CP )分类,并应控制其波动范围。

华白数W 按式(1)计算: d Q W g

= (1)

式中:W —华白数,MJ/m 3(kcal/m 3);Q g —燃气高热值,MJ/m 3/(kcal/m 3);d —燃气相对密度(空气相对密度为1)。

燃烧势CP 按式2计算:

()d CH CO H C H K CP n m 423.06.00.1+++?= (2) 220054.01O K ?+=

(3) 式中:CP ——燃烧势;

H 2——燃气中氢含量,%(体积);

C m H n ——燃气中除甲烷以外的碳氢化合物含量,%(体积); CO ——燃气中一氧化碳含量,%(体积);

CH 4——燃气中甲烷含量,%(体积);

d ——燃气相对密度(空气相对密度为1);

K ——燃气中氧含量修正系数;

O 2——燃气中氧含量,%(体积)。

城市燃气的分类应符合表的规定。

城市燃气的分类(干,0℃,101.3kPa )表

燃气热值的单位定义及换算

燃气热值的单位有两个单位系列:

一是“焦耳”系列:J(焦耳)/ Nm3、KJ(千焦)/Nm3、MJ(兆焦)/Nm3;

换算关系是:1MJ(兆焦)=1000KJ(千焦)、1KJ(千焦)=1000J(焦耳);

二是“卡”系列:cal(卡)/ Nm3、Kcal(千卡)/Nm3;换算关系是:1Kcal (千卡)=1000cal(卡);

两个单位系列的换算关系是:1cal(卡)=4.1868 J(焦耳);1KJ(千焦)=238.85 cal(卡);1MJ(兆焦)=238.85 Kcal(千卡)。

纯天然气的组分

纯天然气的组分是CH4:98%;C2H6:0.3%;C3H8:0.3%;CmHn:

0.4%;N2:1%。

气的热值、绝对密度、相对密度

纯天然气的热值是36220KJ/Nm3(9651千卡/ Nm3)[天然气热值的一般取值是36000KJ/Nm3(8600千卡/ Nm3)];绝对密度是0.6844Kg/ Nm3;

相对密度是0.5682。这说明,天然气比空气轻。天然气在密闭空间内泄漏,将积聚在密闭空间的上部;在大气中放散,将上升至天空。

热值、汽油热值、电热功是换算的

天然气热值、汽油热值、电热功如下表:

天然气热值:36000 KJ/Nm3

汽油热值:46000 KJ/Kg

汽油密度:700 Kg/m3

电(度):3600 KJ

1升汽油的热值:32200 KJ/L

1标方天然气的热值相当于1.12升汽油的热值;

1标方天然气的热值相当于10度电的热值;

1升汽油的热值相当于8.94度电热功的热值。

天然气的价格是A元/ Nm3、汽油价格是B元/ L、电价格是C元/度,在等热值的条件下,天然气、汽油、电之间的价格比是多少?

在等热值的条件下,天然气价格/汽油价格=A/1.12B;天然气价格/电的价格=A/10C。

国家规范规定,人工煤气、天然气的热值标准

人工煤气的热值标准执行《中华人民共和国标准GB13612—92·人工煤气》,热值标准是3500 Kcal(千卡)/Nm3[14.7MJ(兆焦)/Nm3];天然气的热值标准执行《中华人民共和国标准GB17820—1999·天然气》,热值标准是7500 Kcal(千卡)/Nm3[31.40MJ(兆焦)/Nm3]。

液化天然气的燃烧特性(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 液化天然气的燃烧特性(新编 版) Safety management is an important part of production management. Safety and production are in the implementation process

液化天然气的燃烧特性(新编版) 液化天然气既具有天然气易燃易爆的特点,又具有低温液体所特有的低温特性引起的安全问题。因此,认识LNG的安全特性必须同时了解天然气的燃烧特性和LNG的低温特性。 液化天然气按照组成不同,常压下的沸点为-166~-157℃,密度为430~460kg/m3 (液),秘值41.5~45.3MJ/m3 (气),华白(Wobbe)指数49~56.5MJ/m3 ,液化天然气的体积大约是气态的1/625。在泄漏枣溢出时,空气中的水蒸气被溢出的LNG冷却,产:董明豆的白色蒸汽云。LNG气化时,其气体密度为1.5kg/m3 。气体温度上升到-107℃时,气体密度与空气密度相当,因此,LNG气化后,气体温度高于-107℃时,其密度比空气小,容易在空气中扩散。其燃烧特性主要是燃烧范围、着火温度、燃烧速度等。

一、燃烧范围 可燃气体与空气的混合物中,如燃气浓度低于某一限度,氧化反应产生的热量不足以弥补散失的热量,无法维持燃烧爆炸;当燃气浓度超过某一限度时,由于缺氧也无法维持燃烧爆炸。燃烧范围就是指可燃气体与空气形成的混合物,能够产生燃烧或爆炸的温度范围。前者是燃烧下限(LEL),后者是燃烧上限(UEL)。上、下限之间的温度范围称为燃烧范围。只有当燃气在空气中的比例在燃烧范围之内,混合气体才可能产生燃烧。 对于天然气,在空气中达到燃烧的比例范围比较窄,其燃烧范围大约在5%~15%之间,即体积分数低于5%和高于15%都不会燃烧。由于不同产地的天然气组分会有所差别,燃烧范围的值也会略有差别。LNG的燃烧下限明显高于其他燃料,柴油在空气中的含量只需要达到0.6%(体积),汽油达到1.4%(体积),点火就会燃烧。 在-162℃的低温条件下,其燃烧范围为体积分数6%~13%。另外,天然气的燃烧速度相对比较慢(大约是0.3m/s)。所以在敞开的环境条件,LNG和蒸气一般不会因燃烧引起爆炸。天然气燃烧产生的黑烟

天然气燃烧产生污染物计算方法(实用!推荐)

天然气燃烧产生污染物计算方法(非常实用)天然气燃烧产生污染物计算方法为保护环境,建设生态文明,国家鼓励使用天然气代替燃煤,但使用天然气仍会排放污染物,应当征收排污费。本文循着“污染物排放量=废气量×污染物浓度”这一计算公式,来探讨如何征收天然气锅炉的排污费。 一、废气量 根据《排污申报登记实用手册》231页举例计算,1m3天然气完全燃烧产生的废气量为10.89m3。 实际天然气燃烧时产生的废气,与天然气成分,完全燃烧的比例等都有关系,但通常认为废气量为天然气量的10-11倍。取10倍最好计算,但取10.5倍似乎更为合理。 例:1万m3天然气,燃烧后的废气量即为10.5万m3。 二、主要污染物 (一)二氧化硫 天然气中含有硫化氢(H2S),国家规定其出厂含量不能超过0.01%。天然气中硫化氢燃烧时,会生成等体积二氧化硫(SO2)。 《排污申报登记实用手册》231页举例计算,当硫化氢含量为0.0052%时,每万m3天然气产生二氧化硫为1.5kg。 李先瑞、韩有朋、赵振农合著《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化硫约为1.0kg。

天然气燃烧产生的二氧化硫,与天然气中所含硫化氢比例关系最大,在没有检测数据支撑时,二氧化硫浓度为确定为10-15mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为100mg/m3。 (二)氮氧化物 《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生二氧化氮约为6.3kg。 按这一数据,氮氧化物浓度约为60mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为400mg/m3。 (三)烟尘 天然气是清洁能源,烟尘产生量少,但也不能说没有。 《煤、天然气燃烧的污染物产生系数》一文中指出,每万m3天然气燃烧产生烟尘约为2.4kg。 按这一数据,烟尘浓度约为20-25mg/m3。 《锅炉大气污染物排放标准》规定,燃气锅炉二氧化硫最高允许排放浓度为50mg/m3。 (四)其他污染物 经过计算,天然气燃烧后产生的其他污染物排放当量都更低,本文不再论证。按照《排污收费征收管理条例》,这些污染因子不予征收排污费。 三、征收标准 将上述三个污染因子按低限代入《排污费征收核定表》,则每万立方

燃气锅炉燃烧控制系统.docx.

燃气锅炉燃烧控制系统 摘要: 本文主要介绍了锅炉燃烧控制系统的设计过程。在设计过程中介绍了锅炉燃烧控制系统的控制任务和控制特点,对于燃烧控制系统的设计方案,根据不同的控制任务分别设计了蒸汽压力控制和燃料空气比值控制以及防脱火回火选择性控制系统,并在设计中给出了不同的设计方案,以对比各自的优缺点,选择最优的控制。然后,把分别设计的控制系统组合起来,构成完整的锅炉燃烧过程控制系统。最后,对设计好的控制系统进行仪表选型。 关键词:燃气锅炉,燃烧系统,比值控制,脱火回火

目录 1.引言 (3) 2.锅炉燃烧控制系统概述 (4) 2.1 燃烧控制的任务 (5) 2.1.1 维持蒸汽出口压力稳定 (5) 2.1.2 保证燃烧过程的经济性 (5) 2.1.3 保证锅炉安全运行 (6) 2.2 燃烧控制的特点 (6) 3.燃烧控制系统设计方案 (6) 3.1 蒸汽压力控制和燃料空气比值控制 (6) 3.1.1 基本控制方案 (7) 3.1.2 改进控制方案 (8) 3.2 防脱火回火选择性控制系统 (9) 3.2.1 防脱火选择性控制系统 (9) 3.2.2防脱火回火混合型选择性控制系统 (11) 3.3 燃烧控制总体方案 (12) 4. 燃烧控制系统的仪表选型 (13) 5. 总结 (14) 参考文献 (15)

1.引言 大型火力发电机组是典型的过程控制对象,它是由锅炉、汽轮发电机组和辅助设备组成的庞大的设备群。锅炉的燃烧控制过程是一个复杂的物理,化学过程,影响因素众多,并且具有强耦合,非线性等特性。 锅炉的自动化控制经历了三、四十年代的单参数仪表控制,四、五十年代的单元组合仪表,综合参数仪表控制,直到六十年代兴起的计算机过程控制几个阶段。尤其是近一、二十年来,随着先进控制理论和计算机技术的发展,加之计算机各项性能的不断增强及价格的不断下降使锅炉应用计算机控制很快得到了普及和应用。 电厂锅炉利用煤或煤气的燃烧发热,通过传热对水进行加热,产生高压蒸汽,推动汽轮机发电机旋转,从而产生强大的电能。在锅炉燃烧系统中,燃料供给系统,送风系统以及引风系统是燃烧控制系统的重要环节。锅炉生产燃烧系统自动控制的基本任务是使燃料所产生的热量适应蒸汽负荷的需要,同时还要保证经济燃烧和锅炉的安全运行。具体控制任务可分为三个方面:一,稳定蒸汽母管压力。二,维持锅炉燃烧的最佳状态和经济性。三,维持炉膛负压在一定范围(-20~-80Pa)。这三者是相互关联的。另外,在安全保护系统上应该考虑燃烧嘴背压过高时,可能使燃料流速过高而脱火;燃烧嘴背压太低又可能回火。 本次课程设计的题目为燃气锅炉燃烧控制系统的设计。主要内容包括燃烧控制系统的概述;燃烧控制系统的基本方案;以及燃烧控制系统的仪表选型。设计方案为以主蒸汽压力控制系统为主回路,燃料量与空气量比值控制系统为内回路,燃烧嘴防脱火回火选择控制系统为辅助安全保护系统。为节省篇幅,炉膛压力控制系统在这里暂不涉及,但在实际控制系统中炉膛压力控制系统是锅炉燃烧控制系统中必不可少的组成部分之一。

1.燃气的燃烧计算

【例】已知天然气的容积成分如下:CH4 92.1% ; C2H6 3% ; C3H8 1.5% ; i-C4H io 0.05% ; n- C4H io 0.05% ; CO2 2% ; N2 1% ; O2 0.3%。天然气与空气的温度t g t a 20 C;空气 的含湿量d a 10 g/m 3干空气,天然气的含湿量不计。 试求: (一)高热值及低热值; (二)燃烧所需理论空气量; (三)完全燃烧时的烟气量(1和1.2时); 【解】查表得各组分参数如下: 根据混合法则,按式(1-2 )求得 H h H h1 r1 H h 2r2 H h n r n 39842 0.921 70351 0.03 101270 0.015 113048 0.0005 133885 0.0005 40448(kJ/m3) H l H l" H72 H lnh 35906 0.921 64397 0.03 93244 0.015 122857 0.0005 123649 0.0005 36523(kJ/m3) (二)求理论空气需要量 由所含组分计算,按式(1-3 )求得 1 V0[0.5H2 0.5CO 21 1 4 6 -[(1 -)92.1 (2 -)3(3 21 4 4 9.65 (m n)C m H n 1.5H2S O2] 4 8 10 -)1.5 (4 ) 0.1 0.3] 4 4

(三)求完全燃烧时的烟气量 1 .理论烟气量(1时) 三原子气体体积按式(1-5 )求得 V R°2V C°2V S°20.01(CO2CO mC m H n H2S) 0.01 (2 1 92.1 2 3 3 1.5 4 0.1) 1.05 (m3/m3干燃气)水蒸气体积,按式(1-6 )求得 o n V H2O0.01[H2 H2S -C m H n 120(d g V°d a)] 2 4 6 8 10 0.01 [ 92.1 3 1.5 0.1 120 (0 9.65 0.01)] 2 2 2 2 2.11(m3/m3干燃气) 氮气体积,按式(1-7)求得 V0N20.79V00.01N2 0.79 9.65 0.01 1 7.63(m3/m3干燃气) 理论烟气总体积,按式(1-8 )求得 V0V RO2V;2°V N°2 1.05 2.11 7.63 10.79 (m3/m3干燃气) 2.实际烟气量( 1.2时), ①由其组分计算: 三原子气体体积,仍按公式(1-5)求得 V R O2 1.03 (m3/m3干燃气) 水蒸气体积,按式(1-9 )求得 V H2O0.01 [H2 H2S fC m H n 120(d g V0 d a)] 4 6 8 10 0.01 [- 92.1 3 1.5 0.1 120 (0 1.2 9.65 0.01)] 2 2 2 2 2.14 (m3/m3干燃气) 氮气体积,按式(1-10 )求得 V N20.79 V0 0.01N2 0.79 1.2 9.65 0.01 1 9.16 (m3/m3干燃气) 过剩氧体积,按式(1-11)求得 V°2 0.21(1)V。 0.21 (1.2 1) 9.65 0.41 (m3/m3干燃气)

天然气燃烧特性

天然气燃烧特性 天然气最主要的成分是甲烷,基本不含硫,无色、无臭、无毒、无腐蚀性,具有安全、热值高、洁净和应用广泛等优点,目前已成为众多发达国家的城市必选燃气气源。 城市燃气应按燃气类别及其燃烧特性指数(华白数W 和燃烧势CP )分类,并应控制其波动范围。 华白数W 按式(1)计算: d Q W g = (1) 式中:W —华白数,MJ/m 3(kcal/m 3);Q g —燃气高热值,MJ/m 3/(kcal/m 3);d —燃气相对密度(空气相对密度为1)。 燃烧势CP 按式2计算: ()d CH CO H C H K CP n m 423.06.00.1+++?= (2) 220054.01O K ?+= (3) 式中:CP ——燃烧势; H 2——燃气中氢含量,%(体积); C m H n ——燃气中除甲烷以外的碳氢化合物含量,%(体积); CO ——燃气中一氧化碳含量,%(体积); CH 4——燃气中甲烷含量,%(体积); d ——燃气相对密度(空气相对密度为1); K ——燃气中氧含量修正系数; O 2——燃气中氧含量,%(体积)。 城市燃气的分类应符合表的规定。 城市燃气的分类(干,0℃,101.3kPa )表

燃气热值的单位定义及换算 燃气热值的单位有两个单位系列: 一是“焦耳”系列:J(焦耳)/ Nm3、KJ(千焦)/Nm3、MJ(兆焦)/Nm3; 换算关系是:1MJ(兆焦)=1000KJ(千焦)、1KJ(千焦)=1000J(焦耳); 二是“卡”系列:cal(卡)/ Nm3、Kcal(千卡)/Nm3;换算关系是:1Kcal (千卡)=1000cal(卡); 两个单位系列的换算关系是:1cal(卡)=4.1868 J(焦耳);1KJ(千焦)=238.85 cal(卡);1MJ(兆焦)=238.85 Kcal(千卡)。 纯天然气的组分 纯天然气的组分是CH4:98%;C2H6:0.3%;C3H8:0.3%;CmHn: 0.4%;N2:1%。

燃气锅炉燃烧控制系统

燃气锅炉燃烧控制系统 李凯凯 (山东建筑大学热能工程学院山东省济南市 250101) 摘要:此次论文主要目的是以标准燃烧器为基本设备,结合汽包压力控制、炉膛压力控制的特点和需要,设计燃气锅炉燃烧控制系统。主要方法是通过锅炉情况介绍、燃烧器类型选择、燃烧与汽压控制设计、节炉膛压力控制设计、仪表装置选型等步骤,逐一计算所需数据并选择设备类型,然后根据所得参数查阅有关资料按标准设计符合设备的控制系统。由最终设计结果可知此方法可行。 关键词:燃气锅炉、燃气控制、汽包压力、炉膛压力 0 引言 近几年来,我国城市燃气结构有了很大变化,尤其是西气东输工程的加速实施,以及不断签署的燃气协议,为长期受限制的燃气锅炉的应用推广创造了条件。一方面,燃气锅炉的燃料价格相对较高,因此应尽量提高燃料的利用效率;另一方面,气体燃料易燃易爆,燃气锅炉的危险性大,控制系统的生产保证和安全保障要求严格。国外燃气锅炉的研究历史较长,燃气燃烧控制技术比较成熟,但是燃气锅炉的燃烧控制,多为单回路常规控制,远不能适应我国各地区及各部门条件多变的需要。为了提高燃气锅炉的热效率和安全生产水平,有必要对燃所锅炉的燃烧控制技术进行研究。 1 锅炉情况 本次论文采用一台卧式三回程火管式燃气蒸汽锅炉,使用天然气为燃料,额定蒸发量2T/h,额定汽压1.25MPa,额定蒸汽温度194℃;额定耗气量160Nm3/h,排烟温度230℃,热效率90%。 1.1 燃气蒸汽锅炉的组成 结构组成:具体结构由主要部件和辅助设备组成。主要部件有炉膛、省煤器、锅筒、水冷壁、燃烧设备、空气预热器、炉墙构架组成;辅助设备主要有引风设备、除尘设备、燃料供应设备、除尘除渣设备、送风设备、自动控制设备组成。 系统组成:燃气锅炉主要是由燃烧器和控制器两个大的部分组成,其中燃烧器又能分为五个小的系统,分别为送风系统,点火系统,监测系统,燃料系统和电控系统。 1.2 燃气蒸汽锅炉的工作原理 燃气蒸汽锅炉是用天然气、液化气、城市煤气等气体燃料在炉内燃烧放出来的热量加热锅内的水,并使其汽化成蒸汽的热能转换设备。水在锅筒中不断被炉里气体燃料燃烧释放出来的能量加热,温度升高并产生带压蒸汽,由于水的沸点随压力的升高而升高,锅是密封的,水蒸气在里面的膨胀受到限制而产生压力形成热动力作为一种能源广泛使用。 燃气蒸汽锅炉的工作原理见下图。

燃气燃烧与应用-知识点

第一章燃气的燃烧计算 燃烧:气体燃料中的可燃成分(H2、 C m H n、CO 、 H2S 等)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程称为燃烧。 燃烧必须具备的条件:比例混合、具备一定的能量、具备反应时间 热值:1Nm3燃气完全燃烧所放出的热量称为该燃气的热值,单位是kJ/Nm3。对于液化石油气也可用kJ/kg。 高热值是指1m3燃气完全燃烧后其烟气被冷却至原 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。 低热值是指1m3燃气完全燃烧后其烟气被冷却至原始 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。 一般焦炉煤气的低热值大约为16000—17000KJ/m3 天然气的低热值是36000—46000 KJ/m3 液化石油气的低热值是88000—120000KJ/m3 按1KCAL=4.1868KJ 计算: 焦炉煤气的低热值约为3800—4060KCal/m3 天然气的低热值是8600—11000KCal/m3 液化石油气的低热值是21000—286000KCal/m3 热值的计算 热值可以直接用热量计测定,也可以由各单一气体的 热值根据混合法则按下式进行计算: 理论空气需要量 每立方米(或公斤)燃气按燃烧反应计量方程式完全 燃烧所需的空气量,单位为m3/m3或m3/kg。它是燃气 完全燃烧所需的最小空气量。 过剩空气系数:实际供给的空气量v与理论空气需要量 v0之比称为过剩空气系数。 α值的确定 α值的大小取决于燃气燃烧方法及燃烧设备的运 行工况。 工业设备α——1.05-1.20 民用燃具α——1.30-1.80 α值对热效率的影响 α过大,炉膛温度降低,排烟热损失增加, 热效率降低; α过小,燃料的化学热不能够充分发挥, 热效率降低。 应该保证完全燃烧的条件下α接近于1. 烟气量含有1m3干燃气的湿燃气完全燃烧后的产物 运行时过剩空气系数的确定 计算目的: 在控制燃烧过程中,需要检测燃烧过程中的过剩空气 系数,防止过剩空气变化而引起的燃烧效率与热效率 的降低。 在检测燃气燃烧设备的烟气中的有害物质时,需要根 据烟气样中氧含量或二氧化碳含量确定过剩空气系 数,从而折算成过剩空气系数为1的有害物含量。 根据烟气中O2含量计算过剩空气系数 O2′---烟气样中的氧的容积成分 (2)根据烟气中CO2含量计算过剩空气系数 2 ' 2 m CO a CO = CO2m——当=1时,干燃烧产物中CO2含量,%; CO2′——实际干燃烧产物中CO2含量,%。 1.4个燃烧温度定义及计算公式 热量计温度:一定比例的燃气和空气进入炉内燃烧, 它们带入的热量包括两部分:其一是由燃气、空气带 入的物理热量(燃气和空气的热焓);其二是燃气的化 学热量(热值)。如果燃烧过程在绝热条件下进行,这 两部分热量全部用于加热烟气本身,则烟气所能达到 的温度称为热量计温度。 燃烧热量温度:如果不计参加燃烧反应的燃气和空气 的物理热,即t a=t g=o,并假设a=1.则所得的烟气 温度称为燃烧热量温度。 理论燃烧温度:将由CO2HO2在高温下分解的热损失和发 生不完全燃烧损失的热量考虑在内,则所求得的烟气 温度称为理论燃烧温度t th 实际燃烧温度: 2.影响燃烧温度的因素 热值:一般说来,理论燃烧温度随燃气低热值 H l的增 大而增大. 过剩空气系数:燃烧区的过剩空气系数太小时,由于 燃烧不完全,不完全燃烧热损失增大,使理论燃 烧温度降低。若过剩空气系数太大,则增加了燃烧产 物的数量,使燃烧温度也降低 燃气和空气的初始温度:预热空气或燃气可加大空气 和燃气的焓值,从而使理论燃烧温度提高。 3.烟气的焓与空气的焓 烟气的焓:每标准立方米干燃气燃烧所生成的烟气在 等压下从0℃加热到t℃所需的热量,单位为千焦每标 准立方米。 空气的焓:每标准立方米干燃气燃烧所需的理论空气 在等压下从0℃加热到t(℃)所需的热量,单位为千焦 每标准立方米。 第一章思考题 第一章课后例题必须会做。 燃气的热值、理论空气量、烟气量与燃气组分的关 系,三类常用气体热值、理论空气量、烟气量的取值 范围。 在工业与民用燃烧器设计时如何使用高低热值进行计 算 在燃烧器设计与燃烧设备运行管理中如何选择过剩空 气系数 运行中烟气中CO含量和过剩空气系数对设计与运行管 理的指导作用 燃烧温度的影响因素及其提高措施。 第二章燃气燃烧反应动力学 ' 2 20.9 20.9 a O = -

燃气燃烧课程设计

《燃气燃烧》课程设计 题目:燃气燃烧课程设计 学院:建筑工程学院 专业:建筑环境与能源应用工程 姓名:张冷 学号: 20130130370 指导教师:王伟 2016年 12 月 26 日 目录

1设计概述 (1) 2设计依据 (1) 2.1原始数据 (1) 2.2燃气基本参数的计算 (1) 2.2.1热值的计算 (1) 2.2.2燃气密度计算 (2) 2.2.3燃气相对密度计算 (2) 2.2.4理论空气需要量的计算 (2) 2.3头部计算 (3) 2.3.1计算火孔总面积 (3) 2.3.2计算火孔数目 (3) 2.3.3计算火孔间距 (4) 2.3.4计算火孔深度 (4) 2.3.5计算头部截面 (4) 2.3.6计算头部截面直径 (4) 2.3.7计算火孔阻力系数 (5) 2.3.8计算头部能量损失系数 (5) 2.4引射器计算 (5) 2.4.1计算引射器系数 (5) 2.4.2计算引射器形式 (5) 2.4.3计算燃气流量 (6) 2.4.4计算喷嘴直径 (6) 2.4.5计算喷嘴截面积 (6) 2.4.6计算最佳燃烧器参数 (6) 2.4.7计算A值 (7) 2.4.8计算X值 (7) 2.4.9计算引射器喉部面积 (7) 2.4.10计算引射器喉部直径 (8) 2.4.11引射器其他尺寸计算方式如附图1: (8)

2.5火焰高度计算 (8) 2.5.1火焰内锥高度 (8) 2.5.2火焰外锥高度 (8) 2.6火孔排列 (9) 2.6.1确定火孔个数 (9) 2.6.2火孔分布直径的计算 (9) 3设计方案计算 (9) 3.1已知计算参数 (9) 3.2详细计算步骤 (10) 3.2.1头部计算 (10) 3.2.2引射器计算 (11) 3.2.3火焰高度计算及加热对象的设置高度 (12) 总结 (12) 参考文献 (13)

燃气热水器之燃烧系统5-浓淡燃烧(万和新电气股份有限公司)

之燃烧系统5-浓淡燃烧 编制:热水器研发 代先锋 dai_money@https://www.360docs.net/doc/1e8375128.html, 燃烧是物质因剧烈氧化而发光、发热的现象,也称之为火。 燃气热水器研发

NO X 来源、特性与危害 NO X 生成机理 案例 低氮氧化物技术现状 浓淡燃烧法

NO X来源、特性与危害 氮氧化物是矿物燃料(如石油、煤、天然气等)与氧在高温燃烧时产生的。 其包括一氧化二(N2O)、一氧化氮(NO)、三氧化二氮(N2O3)、二氧化氮(NO2)、四氧化二氮(N2O4)、五氧化(N2O5 ),一般来说,NOX是指NO2和NO。NO是无色无臭的气体,它在空气中极易氧化为NO2。NO2是一种红棕色有害的恶臭气体。 其含量为0.1ppm时可嗅到,1-4 ppm时,有恶臭,而达到25ppm时,则恶臭难闻。 空气中NO2含量为3.5ppm 持续1小时,开始对人有影响; 含量为20—50ppm时,对人眼睛有刺激作用; 当含量达到150ppm时。对人的呼吸器官则有强烈的刺激。特别危险的是,器官经过刺激暂时恢复以后,只要3—8小时会发生肺气肿,引起致命的危险。 二氧化氮在阳光作用下,经过系列连锁反应可生成臭氧。 臭氧是一种有毒的、危险的刺激物。

NO、NO2都是毒性很强的气体,与CO一样,NO与血液中的血色素(Hb)的结合能力远大于氧原子与血色素(Hb)的结合能力,因而当空气中NO含量达到一定浓度时,人体将因血液中缺氧而引起中枢神经麻痹。由于NO比CO更易于血色素(Hb)结合,因而其引起人体不良反应的最大允许值比CO更低(表1)。NO在空气中极易形成NO2,NO2对呼吸器官有极强的刺激作用,NO2对心脏、肝脏、肾脏都有不同程度的影响。

各种燃气燃烧器工作原理及简介

各种燃气燃烧器工作原理及简介 气体燃烧器 气体燃烧器种类较多 , 以下按空气供给方式介绍几种工业锅炉上应用较多的燃烧器。 1. 自然供风燃烧器 如图 3-45 所示 , 按炉膛形状可以选择圆形或矩形燃烧 器 , 低压燃气通过管子上的火孔流出 , 与空气事先元预混合 , 是一次空气系数α l=0 的扩散燃烧方式 , 因 而也称为扩散文燃烧器。 这种燃烧器燃烧稳定 , 运行方便 , 而且结构简单 , 可以利用 300~400Pa 的低压燃气。但炉膛过量空气系数较大 , α= 、 1.2~1.6; 排烟热损失 q2 和气体不完全燃烧热损失 q3 偏大 ; 火焰较长 , 要求炉膛容积大 ; 燃烧速度低 , 只用于很小容量的锅炉。 2. 引射式燃烧器

它的种类繁多。按燃烧方式分 , 它有部分空气预混合的本生燃烧方式和空气预混合的无焰燃烧方式两种。 所用的引射介质可以是空气 , 也可以是一定压力的燃气 , 前者需要鼓风装置。 (1) 大气式引射燃烧器 如图 3-46 所示。燃气以一定流速自喷嘴进入引射器 , 在引射器的缩口处将一次空气 ( α1=0.45~0.65) 引入 , 两者经混合后流向燃烧器头部 , 由直径为 2~10mm 的火孔流出 , 以本生火焰形式燃烧。这种燃烧器也只用于小型锅炉 , 它适用于各种低压燃气 , 而且不需要鼓风装置。但热负荷太大 , 结构笨重。 (2) 空气引射式燃烧器

如图 3-47 所示。压头为 5000~600OPa 的空气经喷嘴通过引射器的缩口处时 , 形成负压 , 把低压的燃气从四个管孔吸人 , 两种气体在混合管中混合形成均匀的气体混合物 , 它流向火孔出口 , 并在与出口处相连接的稳焰火道中燃烧。图中所示的燃烧器是与全部燃烧空气预混合的无焰燃烧器 , 炉膛出口过量空气系数小 , 燃烧强度高 , 但需要鼓风装置 , 耗电大 , 适用于带有空气预热器的阻力较大的正压锅炉。 3. 鼓风式燃烧器鼓风式燃烧器一般由分配器、燃气分流器和火道组成。种类较多 , 常用的有旋流式和平流式两 种。 这两类燃烧器的配风器与燃油燃烧器基本相似 , 燃气分流器的基本形式为单管式和多管式。其结构简单。燃烧形成的火焰特征与通常旋流式和直流式燃油燃烧器也相似 , 这里不再一一叙述。以下列举一种常用的燃气燃烧 器的例子。图 3-48 是周边供气蜗壳式燃烧器。

燃气燃烧器安全操作规程

燃气燃烧器安全操作规程 一、试机前的准备工作: 1.检查燃气管路外观是否良好无损伤及干净通畅,按所需使用管线检查相关阀门是否已开启或处于正确状态下;管路及接头法兰等有无松动、泄露现象,现场闻嗅无天然气添加臭味;燃气设施周围无动火作业及明火,如有必须予以隔离或清除。 2.首次或长时间未使用应适当排空,从燃气进气阀前排空阀放气排空1~2分钟,确保管路中无混合空气。排空结束后关闭排空阀。 二、燃烧机操作规程 1.工作前准备 开启燃烧机前必须检查燃气干净通畅,燃气开关打开,压力是否正常,燃烧机的主开关处于开的状态。 2.操作步骤 1).打开控制柜主电源,启动对应编号的燃烧机按钮开关(按一次启动,按第二次停止) 2).几秒钟后,燃烧机开始点火。 3).从小视窗查看点火情况,看到火光表示燃烧机运行正常,燃烧室温度会逐渐上升,温度逐渐上升达到所设置的温度后,大火会关闭,小火开始保温。 4).当温度下降到所设置的温度时,大火自动开始工作。 5).待工作完成后,按对应编号的按钮开关,燃烧机立即关闭,风机延时3分钟后才能停止,保证高温气体排出,保护燃烧室。 3.注意事项 1).燃烧机不能点火,先检查燃气压力是否降低,先尝试复位,让燃烧机运行并自动复位工作,连续三次以上不能正常工作并报警,请通知维修人员。 2).听是否有爆燃声音或异常情况,如有立即停止,切断电源,关闭供气阀门并通知维修人员。 3).必须安装完好的灭火装置。 4).若燃烧机有损坏或故障迹象,不可点燃燃烧机。 5).不可随意调节燃烧机上的各个调节部位,不正确的调节可能会引起火灾或爆炸。 6).查看火焰不正常,很大的火,并有黑烟,通知维修人员进行调节。 7).如有燃气泄露的气味,先关断上面的燃气供给阀,并关闭所有燃烧机,通知维修人员进行处理,原因没查明前不可开机。 8).定期检查供气阀是否开/关正常及法兰面是否有漏气现象。 9).定期检查灭火设备的可靠性,完好性,严禁过期使用。 10).定期检查燃气管道及减压阀的密封性。 11).要求现场禁止烟火,电气件防爆及禁止有电焊、切割等违章作业。

上海市天然气管网天然气特性分析

上海市天然气供气特性分析 二00四年六月

前言 1.上海市天然气的发展: 上海市是国际化特大型城市,是我国最早使用城市燃气的城市,城镇居民已实现全气化。随着城市的发展,目前已形成人工煤气250万户、天然气100万户、液化石油气240万户的城市燃气供应系统。由于人工煤气的生产过程效率低、污染严重、成本高,需要大量的煤、油的运输,鉴于上海环境保护、地理位置、运输条件和能源结构的调整,上海市将逐步淘汰煤制气和油制气,用天然气逐步替代人工煤气。东海天然气的供气和西气东输工程的投产,为上海目前和今后城市燃气提供了充足稳定的气源,使上海这一有一百多年人工煤气生产和使用历史的特大型城市获得了燃气事业再一次大发展的机遇。根据上海市的有关规划,上海将在7-10年内在市区基本完成天然气转换,预计天然气供应量2005年将达到22亿立方米、2010年达到80亿立方米,分别占上海市一次能源的6%和11%。对于上海这一国际化大都市而言,保证稳定地供气和安全使用天然气、降低燃气安全事故,是头等大事。 2.天然气来源的不同和性质上的差异: 国家统计局公布的数据显示,2001年,中国的天然气产量为303.4亿立方米。而据预测,到2005、2010和2020年,中国的天然气需求量将分别达到645、1120和2520亿立方米;同期,中国的天然气产量将分别达到625、968和1420亿立方米。我国的天然气生产,主要集中在中西部地区的四川、塔里木、柴达木、鄂尔多斯和沿海大陆架区域以及油田伴生气。除了本国生产外,中国需要通过从俄罗斯、中亚等地进口天然气以及进口液化天然气等办法来弥补供需缺口。不同的油气田的天然气由于原始生物的种类、地质生成的条件的不同,其成分会略有差异,比如四川气田的天然气含有较多的氮气、油田伴生气会有一部分轻烃类成分等,它们的热值、密度等特性都有所不同。 3.天然气的成分和特性对民用燃烧器具的影响,燃具的燃气适配性问题:每一种燃气燃烧器具都必须正常地燃烧,因此都是根据的一定的燃气的特性进行设计的。燃气的密度、理论空气量、燃烧速度等等特性不同,在燃气器具上形成的一次空气量、火焰状况也是有差异的。我国的城市燃气分类国家标准GB13611将天然气分为10T、12T、13T。燃气器具的生产也是按照燃气分类的基准气或者按照销售地区的气源特性进行设计、测试,以适应当地气源的特性,保证正常燃烧。由于上海市的特殊的地理位置和天然气发展规划,将在同一区域存在着不同来源的天然气,其成分和特性有一定差异,这必将对在上海使用的天然气器具的燃气适配性产生一定程度的影响。

天然气燃烧器操作规程

全自动燃气燃烧器 一、工作原理 燃烧器电源开关接通电源,进行燃气压力检测及温度控制信号判断,是否允许启动燃烧器。如果满足条件,则启动风机电动机,风门开到最大,进入前吹扫,这段时间内要进行风压检测(以后过程也将持续检测风压),风压不正常,则停机报警;正常,则将风门关到一级火点火位置,点火变压器点火,燃气阀门打开,供燃气燃烧,点火后,将检测火焰情况,如熄火,则停机报警,正常,则根据火力信号,决定是否投入二级火运行。在燃烧器工作的整个过程中,控制系统会判断燃气压力情况、温度控制信号,如不在工作范围,则燃烧器停机,等到条件满足后,会自动重新启动燃烧器,过程同接通控制电源的启动。 二、燃烧器的安装、调试和运行 1、安装 (1)安装前准备 A、检查烟囱(截面积和高度)是否符合设备厂家的要求和当地标准。 B、电源的电压和频率必须符合燃烧器的要求。 C、燃气系统和尺寸必须符合本说明书的要求,气路阀门稳压器及其附件应当严密,应 做气密检查。 D、检查燃烧器的随机附件是否齐备。 E、减压稳压器是否装在过滤器后的水平位置。 F、管道内壁的防锈及杂质的清理。 (2)安装 A、把石棉垫圈装在锅炉安装板上的孔和安装法兰之间,然后拧进螺栓,将燃烧器头部 伸入燃烧室的要求位置后,拧紧安装法兰上的螺栓,将燃烧器固定。锅炉板、石棉密封垫圈、安装法兰之间应密封,不许漏气,防止燃烧器运行期间,高温烟气漏出,烧坏燃烧器。 B、按供气系统图,把气源接到电磁阀。 C、按接线图将电源线接好。 2、启动和运行 (1)启动前准备 A、检查所有的气阀是否打开。 B、检查锅炉及烟囱阀门是否打开,以使燃烧产物能顺畅地排出。 C、燃烧器与燃料气管连接之前,应将阀门后管路的空气置换出来。 D、检查线路及电机旋转方向是否正确,若旋转方向相反,则将电源进线端的两相对换。 E、为点火,设置风门开度,风门开度可由调节风门控制伺服电机来实现。 F、燃烧头伸进燃烧室部分的长度是否符合厂家要求。 G、恒温器和压力开关上的连线是否按控制盒线路图连接。 H、将一级火燃气流量调到需要的位置。 I、装一台适当压力范围的U型水柱压力计,用以测量燃气的压力。 (2)启动和运行 A、主开关闭合,恒温器闭合,供电电压达到电机运转值时,风机电机接通工作。风机 供风,进行前吹扫。 对于装有风门控制伺服电机的燃烧器,伺服电机被接通,风门开到二级火相应位置,已工作的风机向燃烧室供风,实现前吹扫。 B、吹扫结束后,风门回到一级火位置,点火变压器启动三秒钟后,一级火燃烧阀及安

天然气的性质和特点

天然气的性质和特点 1、天然气是一种易燃易爆气体,和空气混合后,温度只要达到550℃就燃烧。在空气中,天然气的浓度只要达到5-15%就会爆炸。 2、天然气无色,比空气轻,不溶于水。一立方米气田天然气的重量只有同体积空气的55%左右,一立方米油田伴生气的重量,只有同体积空气的75%左右。 3、天然气的主要成分是甲烷,本身无毒,但如果含较多硫化氢,则对人有毒害作用。如果天然气燃烧不完全,也会产生一氧化碳等有毒气体。 4、天然气的热值较高,一立方米天然气燃烧后发出的热量是同体积的人工煤气(如焦炉煤气)的两倍多,即35.6-41.9兆焦/立方米(约合8500-10000千卡/立方米)。 5、天然气可液化,液化后其体积将缩小为气态的六百分之一。每立方米天然气完全燃烧需要大约十立方米空气助燃。 6、一般油田伴生气略带汽油味,含有硫化氢的天然气略带臭鸡蛋味。天然气的主要成分是甲烷,甲烷本身是无毒的,但空气中的甲烷含量达到10%以上时,人就会因氧气不足而呼吸困难,眩晕虚弱而失去知觉、昏迷甚至死亡。

天然气中如含有一定量的硫化氢时,也具有毒性。硫化氢是一种具有强烈臭鸡蛋味的无色气味,当空气中的硫化氢浓度达到0.31毫克/ 升时,人的眼、口、鼻就会受到强烈的刺激而造成流泪、怕光、头痛、呕吐;当空气中的硫化氢含量达到1.54毫克/升时,人就会死亡。因此,国家规定:对供应城市民用的天然气,每立方米中硫化氢含量要控制在20毫克以下 天然气的化学组成 天然气是指烃类气体。地壳中,天然气就其产状分析,有游离态、溶解态(溶于原油和水中)、吸附态和固态气水合物四种类型。从分布特点又可分为聚集型和分散型两类。气藏气、气顶气、凝析气、油溶气属聚集型,也称为常规型天然气;水溶气、煤层气、固态气水合物则属分散型,也称为非常规型天然气。从与油藏的关系划分,气顶气、油溶气以及油藏之间或油藏上方的、在成因上与成油过程相伴的气藏气,均归于伴生气;与油没有明显联系的或仅含有极少量原油的气藏气,成因上与煤系有机质或未成熟的有机质有关而生成的天然气称之为非伴生气。 在我国,常规的天然气贮存形式是普遍存在的,包括气层气、溶解气、水溶气、凝析气。一般说,“气层气”是指在原始储层条件下,天然气以自由气相贮集于储层内。“溶解气”指原始储层条件下,天然气以溶解状态存于储层内的原油中。“水溶气”指在原始储层条件下,

燃气的燃烧计算

【例】 已知天然气的容积成分如下:CH 4 92.1%;C 2H 6 3%;C 3H 8 1.5%;i-C 4H 10 0.05%;n-C 4H 10 0.05%;CO 2 2%;N 2 1%;O 2 0.3%。天然气与空气的温度20==a g t t ℃;空气的含湿量10=a d g/m 3干空气,天然气的含湿量不计。 试求: (一)高热值及低热值; (二)燃烧所需理论空气量; (三)完全燃烧时的烟气量(1=α和2.1=α时); 【解】查表得各组分参数如下: (一)求高热值和低热值 根据混合法则,按式(1-2)求得 n n h h h h r H r H r H H +++= 2211 0005013388500050113048015010127003070351921039842.....?+?+?+?+?=40448=(kJ/m 3) n n l l l l r H r H r H H +++= 2211 000501236490005012285701509324403064397921035906.....?+?+?+?+?=36523=(kJ/m 3) (二)求理论空气需要量 由所含组分计算,按式(1-3)求得 ]5.1)4 (5.05.0[2112220O S H H C n m CO H V n m -++++= ∑ ]3.01.0)410 4(5.1)483(3)462(1.92)441[(211-?++?++?++?+?= 65.9=(m 3/m 3)

(三)求完全燃烧时的烟气量 1.理论烟气量(1=α时) 三原子气体体积按式(1-5)求得 )(01.022222S H H mC CO CO V V V n m SO CO RO +++=+=∑ )1.045.13321.9212(01.0?+?+?+?+?= 05.1=(m 3/m 3干燃气) 水蒸气体积,按式(1-6)求得 )](1202[01.00220 2a g n m O H d V d H C n S H H V ++++=∑ )]01.065.90(1201.0210 5.1283261.9224[01.0?+?+?+?+?+??= 11.2=(m 3/m 3 干燃气) 氮气体积,按式(1-7)求得 20001.079.02N V V N += 101.065.979.0?+?= 63.7=(m 3/m 3干燃气) 理论烟气总体积,按式(1-8)求得 0002 22N H RO V V V V ++= 63.711.205.1++= 79.10=(m 3/m 3干燃气) 2.实际烟气量(2.1=α时), ① 由其组分计算: 三原子气体体积,仍按公式(1-5)求得 03.1V 2RO =(m 3/m 3干燃气) 水蒸气体积,按式(1-9)求得 )](1202 [01.00222a g n m O H d V d H C n S H H V α++++=∑ )]01.065.92.10(1201.0210 5.1283261.9224[01.0??+?+?+?+?+??= 14.2=(m 3/m 3 干燃气) 氮气体积,按式(1-10)求得 2001.079.02N V V N +=α 101.065.92.179.0?+??= 16.9=(m 3/m 3干燃气) 过剩氧体积,按式(1-11)求得 0)1(21.02V V O -=α

燃气燃烧与应用知识点.doc

第一章 燃气的燃烧计算 根据烟气中 O 2 含量计算过剩空气系数 燃烧:气体燃料中的可燃成分( H 2、 C m H n 、CO 、 H 2S 等)在一定条件下与氧发生激烈的氧化作用,并产生 a 20.9 20.9 2 ' O 大量的热和光的物理化学反应过程称为燃烧。 O 2′--- 烟气样中的氧的容积成分 燃烧必须具备的条件:比例混合、具备一定的能量、 (2)根据烟气中 C O 2 含量计算过剩空气系数 具备反应时间 3 热值:1Nm 燃气完全燃烧所放出的热量称为该燃气的热 3 值,单位是 kJ/Nm 。对于液化石油气也可用 kJ/kg 。 a CO 2 m ' CO 2 CO 2m ——当 =1 时,干燃烧产物中 C O 2 含量, %; 高热值是指 1m 3 燃气完全燃烧后其烟气被冷却至原 3 燃气完全燃烧后其烟气被冷却至原 C O 2′——实际干燃烧产物中 CO2含量, %。 1.4 个燃烧温度定义及计算公式 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。 热量计温度:一定比例的燃气和空气进入炉内燃烧, 3 低热值是指 1m 燃气完全燃烧后其烟气被冷却至原始 它们带入的热量包括两部分:其一是由燃气、空气带 入的物理热量 ( 燃气和空气的热焓 ) ;其二是燃气的化 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。 学热量 ( 热值) 。如果燃烧过程在绝热条件下进行,这 3 一般焦炉煤气的低热值大约为 16000—17000KJ/m 3 天然气的低热值是 36000—46000 KJ/m 3 液化石油气的低热值是 88000—120000KJ/m 两部分热量全部用于加热烟气本身,则烟气所能达到 的温度称为热量计温度。 燃烧热量温度:如果不计参加燃烧反应的燃气和空气 按 1KCAL=4.1868KJ 计算: 的物理热,即 t a =t g =o ,并假设 a =1.则所得的烟气 3 焦炉煤气的低热值约为 3800—4060KCal/m 3 天然气的低热值是 8600—11000KCal/m 3 液化石油气的低热值是 21000—286000KCal/m 温度称为燃烧热量温度。 理论燃烧温度:将由 C O 2H O 2 在高温下分解的热损失和发 生不完全燃烧损失的热量考虑在内,则所求得的烟气 温度称为理论燃烧温度 t th 热值的计算 热值可以直接用热量计测定,也可以由各单一气体的 实际燃烧温度: 热值根据混合法则按下式进行计算: 理论空气需要量 2. 影响燃烧温度的因素 每立方米 或公斤 燃气按燃烧反应计量方程式完全 ( ) 热值:一般 说来,理论燃烧温度随燃气低热值 的增 H l 3 3 3 /m /kg 。它是燃气 燃烧所需的空气量,单位为 或 m m 大而增大 . 完全燃烧所需的最小空气量。 过剩空气系数 : 实际供给的空气量 v 与理论空气需要量 v 0 之比称为过剩空气系数。 过剩空气系数:燃烧区的过剩空气系数太小时,由于 燃烧不完全,不完全燃烧热损失增大,使理论燃 烧温度降低。若过剩空气系数太大,则增加了燃烧产 物的数量,使燃烧温度也降低 燃气和空气的初始温度:预热空气或燃气可加大空气

燃气燃烧所需空气量及燃烧产物.doc

燃气燃烧所需空气量及燃烧产物 燃气的燃烧计算,是按照燃气中可燃成分与氧进行化学反应的反应方程式,根据物质平衡和热量平衡的原理,来确定燃烧反应的诸参数,包括:燃烧所需要的空气量、燃烧产物的生成量及成分、燃烧完全程度、燃烧温度和烟气焓。这些参数是燃气燃烧设备设计、热工管理必要的数据,也是评定生产操作、提高热效率、进行传热和空气动力计算不可缺少的依据。 考虑到燃气、空气和燃烧产物各组成所处的状态,可以相当精确地把它们当作理想气体来处理。所以,燃烧计算中气体的体积都按标准状态(0℃、101325Pa)计算,其摩尔体积均为22.4L,计算基准可以用1m3的湿燃气,也可以用1m3干燃气。必须注意的是,后者还要带入所含的饱和水汽量,这就是大多数场合下所使用的基准——含有1m3干燃气的湿燃气。 确定燃气燃烧所需空气量和燃烧产物量,属于燃烧计算的物料平衡的内容。一、空气需要量 (一)理论空气需要量V0 V0是指1m3燃气按燃烧反应方程式完全燃烧所需要供给的空气量,m3空气/m3干燃气,它是燃气完全燃烧所需的最小空气量。 V0的计算方法为,先按照燃烧反应方程式和燃烧计算的氧化剂条件(假设干空气体积仅由21%的氧和79%的氮组成),确定燃烧所需的理论氧气量,然后换算成理论空气需要量。

从单一可燃气体着手。例如,CO的燃烧反应方程式,连同随氧带入的氮,可表示为 CO+0.502+3.76×0.5N2=C02+1.88N2 上式表明,1m3的C0完全燃烧,理论需氧量为0.5m3,随氧带入的氮量为1.88m3,相当的理论空气需要量是0.5/0.21=2.38m3。 对气态重碳氢化合物CmHn,燃烧反应方程式为 CmHn+(m+n/4)O2+3.76(m+n/4)N2 =mC02+ (n/2)H20+3.76(m+n/4)N2 (1—1) 也清楚地表明,1m3的CmHn完全燃烧,需要(m+n/4)m3的理论氧,同时带入3.76(m+n/4)m3的氮,故理论空气需要量为 (m+n/4)/0.21=4.76(m+n/4)m3。以此类推,对组成为ψ(CO)+ψ(H2)+ψ(CH4)+ψ(CmHn)+ψ(H2S)+ψ(N2)+ψ(02)=100%的1m3干燃气,需要的理论氧量,用符号V(O2)O表示为: V(O2)O=O.01[0.5ψ(CO)+0.5ψ(H2)+2ψ(CH4)+∑(m+n/4)ψ(CmHn)+1.5ψ(H2S)-ψ(02)]m3 (1—2) 需要的理论空气量为: V0=1/21[0.5ψ(CO)+0.5ψ(H2)+2ψ(CH4)+∑(m+n/4)ψ(CmHn)+1.5ψ(H2S)-ψ(02)]m3 (1—3) 显然,V0完全取决于

相关文档
最新文档