电池充放电原理,及如何选择电池充放电测试仪

电池充放电原理,及如何选择电池充放电测试仪
电池充放电原理,及如何选择电池充放电测试仪

锂离子脱嵌和充放电原理

从微观世界(原子级)来观察电池正负极的结构,各极活性物质的结晶结构为层叠状,这种结构使锂离子的嵌入(脱嵌)变得容易。锂离子在分子间作用力的作用下为固定状态。当对正负极施加电场时,锂离子只需要较低的能量就能发生迁移,进行嵌入。锂离子电池充放电的机制也可以用图1 来说明。图中方程式中的正极活性物质为锰酸锂。

图1

放电时电极周围的变化

图1 是放电时锂离子嵌入和迁移的示意图。在负极,碳层之间存在锂离子,负极比正极的能量高。外部存在负载时,负极的锂离子释放电子,向能量低的正极迁移。从负极脱嵌的锂离子,通过电解液和隔膜小孔向正极迁移,嵌入层状结构的正极活性物质中。同时,电子被接收,锂离子被固定而变得稳定。如果过放电,锂离子过多地聚集在正极,会使内阻增大,电池发热,导致急剧劣化。从图1 中可见,负载电流(电池容量)几乎是由可移动的锂离子数量决定的。电子从集流体活性物质中穿过,到达外部端子。正极的集流体为铝,负极的集流体为铜。这样做的理由是:在正负极各自的电势下,铝和铜是不会被锂离子

掺杂(渗透)的金属。

充电时电极周围的变化

图2 显示了充电时锂离子的嵌入和迁移过程。

图2

充电时,外部电压施加在外部端子上,强制产生与放电反应相反的反应。由此,正极的锂离子释放电子,在电场作用下通过电解液迁移到负极,嵌入负极的活性物质内部。同时,电子被接收,锂离子被负极活性物质固定。锂离子在电解液中快速迁移,在负极表面减速,在负极活性物质内部非常缓慢地扩散。这与汽车离开高速公路,进入普通公路,然后驶入自家附近街道的过程相似。充电时,锂离子在负极表面呈现拥堵状态。

充电时电池在劣化

作为电解液的有机溶剂在正极分解,在负极表面与锂离子发生反应,形成固体电解质界面膜(SEI)。因此,迁移的锂离子数量减少,导致电池容量下降。充电时,在负极表面刻意制造这个让化学反应容易发生的状态。这与后面讲到的电池劣化相关内容也有关联。另外,过充电使锂离子在负极过多聚集,内阻

增大,电池发热,会导致急剧劣化。

SOC 和电压的关系

OCV 是由构成电池的材料决定的。图3展示了以0.02C 的微弱电流充放电时的充放电曲线和OCV 的关系。横轴表示SOC,纵轴表示电压。

图3

如果进行微弱电流的充放电,端子电压只比OCV 高了I×R(充电电流×电池内阻)。放电时,端子电压比OCV 低I×R (放电电流×电池内阻)。从SOC 来看,充电电压和放电电压的平均值几乎与OCV 一致。从图8 中可以看出,SOC 高的地方,OCV 也高;SOC 低的地方,OCV 也低。而且,OCV 和SOC的关系几乎与温度变化不相关,是稳定的。因此,对SOC上下限进行管理,就是对OCV上下限进行管理。

过充电和过放电的控制方法

充电时,端子电压比OCV 高,如果端子电压控制在上限电压以下,就可以防止过充电。而放电时,端子电压低于OCV,如果端子电压被控制在下限电压以上,就可以防止过放电。OCV 的上下限值,OCV-SOC 曲线的斜率,根据所用正极材料的不同而变化。一般而言,含镍的正极材料具有大容量,含有锰的正极材料具有高电压,使用磷酸铁的正极材料具有低电压、低斜率(接近

平坦)的变化趋势。

PBM-M系列便携式电池组充放仪是为满足售后领域对不同电压平台及容量的电池组充放的需求而开发;该系列产品采用高效的双级电力电子变换及专有的负载技术,使其具有极宽的输出电压适应范围(2V启调),小体积、易便携、可靠性高等特点。

杭州固恒能源科技有限公司从事于新能源汽车后市场领域,是一家专注于动力电池的应用以及循环利用等方面的研发、生产、销售,并提供全套检测维护解决方案的企业。研发了一系列动力电池,机电,机电控制维保领域的相关产品,有效的降低了服务商的运营维护成本,延长了电池的使用寿命,我们致力于打造新能源汽车后市场领域的工具链及数据链,全力打造一个完善的新能源汽车核心动力检测维护系统。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

锂离子电池工作原理

锂离子电池工作原理 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe

放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C 锂离子电池是一种二次电池(充电电池),它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。电池一般采用含有锂元素的材料作为电极,是现代高性能电池的代表。 组成部分 钢壳/铝壳/圆柱/软包装系列: (1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电集流体使用厚度10--20微米的电解铝箔。 (2)隔膜——一种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。 (3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

笔记本电池充放电原理

笔记本电池充放电原理 (1) NB 电池: 目前电池皆以锂电池(Li-Ion) 为主, 锂离子电池除了轻巧,电容量又大,而且也没有记忆特性。当一颗电池被反覆的充到一特定的电量时,它会产生出一种化学记忆特性,日後任你再怎样充电,都没法超过那个特地的电量额度了,这就是电池的记忆性。锂离子电池没有这种问题,但它唯一的缺点是怕冷。而锂电池是以持续等电压方式来充电的, 我们以下图来加以说明锂电池的充电原理: 在上图中, 横轴是充电时间, 纵轴为电压, 在充电过程中,电池的电压数缓缓的升高,到达一个顶点(在我们图上是 4.2 伏特) 然後保持恒定,一直以4.2v 来充电, 所以为定电压充电(固定在4.2v, 但并非所有锂电池都是固定在 4.2 v, 要看各厂商的规格), 同时,充电电流则是缓缓下降。一旦电流低到一个设定的阈值(我们图上的例子是80 mA (毫安培)),充电器则自动停止充电, 这里的所设定的阀值, 也必须是各厂商而定. 而锂电池有六个对外的接脚连接至Notebook, Pins: 1. 接地(GND) 2. TS (侦测电池插入) 3. HDQ BUS (主要在存取电池的各项叁数) 4. BAT_BC 5. No connection 6. 电池输入/ 输出电压 (2) Gauge IC: Gauge IC 一般称为"电池管理晶片", 而华硕Notebook 常用的电池当中皆含有

此Gauge IC, 以M2A 为例, 其电池中所包含的Gauge IC 就是采用美国Bechmar q 公司的锂电池管理晶片"BQ2050H". 而Gauge IC 中包含了电池容量暂存器,温度暂存器, 电池识别(ID) 暂存器, 电池状态暂存器, 锂电池充电状态暂存器, 放电计数暂存器, 这些暂存器中的值, 会因为使用的时间或使用不当而产生变化, 导致电池充不满, 或使用时间变短等情形, 而这些暂存器中的值是可以利用特殊的方式来更改的, 大家常听到的电池学习, 其实就是更改电池容量暂存器以及电池状态暂存器中的值, 将原本暂存器中错误或误差的值加以修正, 使电池的充电时间及充电容量能恢复正常. (3) Charge IC: Charge IC 顾名思义就是用来控制电池充电的IC, 华硕常用的Charge IC 为M B3877 系列, 但Charge IC 并无法单独工作, 必须搭配一颗可程式化的IC (如: PIC 16C54) 才能正常工作, 而此PIC 16C54 是一颗可程式化的IC, 里面记载着电池充电时所需要的数据, 例如: 要用多大的电压电流来充电, 必须符合 哪些条件, 电池才会被充电, 电池充饱时要切断哪些电源以及电池的充电指示灯该如何变化(闪烁或改变颜色) 等等, 而这些"值" 或"条件" 都是RD 预先设定好的, 下图以A1B 的充电简易方块图为各位说明NOTEBOOK 的充电流程: 在上图中, 只有AC_IN (外加电源) 有讯号进来时, 才会进行电池的充电动作,而Battery 中的Gauge IC 会告知MB3877(Charge IC) 目前的电池状态(例如: 是否需要充电, 电量多少等等), 而PIC16C54 亦会侦测目前是否符合充电的条件(例如: AC_IN 是否有讯号, Battery 是否有插好等等), 如果目前Battery 是符合需要充电的条件, 其充电过程如下: Step 1: AC_IN 有讯号, 而且也已侦测到Battery in. Step 2: PIC 16C54 会发出CHG_EN 的讯号, 告知MB 3877 可以对Battery 进行充电.

锂离子电池工作原理

锂离子电池工作原理

正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 负极反应:放电时锂离子脱插,充电时锂离子插入。 电池总反应 以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就象运动员一样在摇椅来回奔跑。所以Li-ion Batteries又叫摇椅式电池。 一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越

快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。 正极 正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。 正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。 充电时:LiFePO?→ Li1-xFePO? + xLi + xe 放电时:Li1-xFePO?+ xLi + xe →LiFePO? 负极 负极材料:多采用石墨。新的研究发现钛酸盐可能是更好的材料。 负极反应:放电时锂离子脱插,充电时锂离子插入。 充电时:xLi + xe + 6C →LixC6 放电时:LixC6 → xLi + xe + 6C

锂电池保护电路

锂电池保护电路 锂电池过充电,过放电,过流及短路保护电路 下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个 MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能. 锂电池保护工作原理: 1、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 此状态下保护电路的消耗电流为μA级,通常小于7μA。 2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。 在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。 3、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。 由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

锂电池保护电路原理分析

锂离子电池保护电路原理分析 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。 与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些

锂离子电池充放电机理的探索

锂离子电池充放电机理的探索 及“锂亚原子”模型的建立 贵州航天电源科技有限公司张忠林杨玉光 摘要:锂离子电池的研究和发展一直都是以“摇椅理论”为指导,由于受该理论的影响,很多现象很难用传统的电化学理论进行解释。作者在生产实践中通过对一些现象的观察,并做了大量的试验和研究,提出“锂亚原子”的模型,并在此模型的基础上,对锂离子电池的充放电反应机理和一些现象用电化学理论进行了解释。 主题词:锂离子电池、反应机理、锂亚原子 一、前言 锂离子电池是在锂金属电池基础上发展起来的。由于锂金属电池在充放电时出现锂枝晶,刺破隔膜造成短路,出现爆炸等现象,这一问题长期困扰锂金属电池的发展,目前仍很难投入到民用市场。锂离子电池研究始于20世纪80年代,1991年首先由日本索尼公司推出了批量民用产品,由于其具有比能量高、体积小、重量轻、工作电压高、无记忆效应、无污染、自放电小等优点,受到市场欢迎,并迅速占领市场,广泛用于移动通讯、笔记本电脑、移动DVD、摄像机、数码相机、蓝牙耳机等便携式电子产品。目前主要产地集中在日本、中国和韩国,预计2004年全球需求量将达到10亿只。 由于锂离子电池从开始研究到现在才20多年时间,真正投入应用也只有十多年的时间,基础理论的研究还不是十分成熟,对锂离子电池的生产和发展很难起到全面指导作用,特别是对电池充放电反应机理的认识还存在很大分歧,有些现象用目前的理论和机理还很难解释。本文对锂离子电池充放电反应机理提出了一些看法,并对生产中存在的现象进行了解释,希望与锂电池同行共同探讨。二、基本原理 目前锂离子电池公认的基本原理为“摇椅理论”,该理论认为锂离子电池充放电反应机理不是通过传统氧化还原反应来实现电子转移,而是通过锂离子在层状物质的晶格中嵌入和脱出,发生能量变化。

蓄电池的充电原理

综合监测单元模块说明V4.0 一、概述 综合监测单元模块是对系统交、直流检测及对整流模块进行控制的一种设备,内部采用CPU控制,高精度的模数转换,采用RS485数字口与上位机通讯,采样回路与数字口光耦隔离,因此该模块采样速度快,可靠性高。同时给彩屏提供DC24V电源。 二、功能方框图 三、使用方法 模块为板后安装,外形尺寸和面板示意分别如下图所示: 图一:外形尺寸

图二:丝印图 接线端口定义: 综合监测单元 复位 电源0 112 通讯 J4合母电压正485 - B 485 - A 控母电压正大 地母线电压负路交流电压 J61路交流A相1路交流B相1路交流C相路交流电压 J7交流电流 J8G N D + 12 V A G N D - 12 V C A N L C A N H 温 度J10 G N D 温 度电源 J11PC: 0 V PC:+ 24 V 电 源J1大 地电 源 正电 源 负J2开关量输入J3 DI 9直流电压检测J52路交流A相2路交流B相2路交流C相直流电流检测J91212流电流交流电池电1234567891011121212345123451234 1234567 1212J0通讯 B 2 A 2线母光闪正组池电负 组池电123 12345678910111213141516 12345 678910 11 12131415 16 1718192021 22232425 继电器输出 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7 DI 8 DI 10COM DI 11 DI 12 DI 13 DI 15 DI 14 DI 16 DI 17 DI 18 DI 19 DI 20 DI 21 DI 22 DI 23 DI 24 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7 DO 8 + 12 V - 12 V 流电母控3+ 5 V 通讯

锂电池过充电_过放_短路保护电路详解

该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状 4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。

7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电 电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电 压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为 (20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响? 在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电

锂电池的工作原理

锂电池的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富

锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

锂电池组保护板均衡充电基本工作原理

成组锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。常用的均衡充电技术有恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 锂电池组保护板均衡充电基本工作原理 采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;13为分流放电支路。单节锂电池保护芯片数目依据锂电池组电池数目确定,串联使用,分别对所对应单节锂电池的充放电、过流、短路状态进行保护。该系统在充电保护的同时,通过保护芯片控制分流放电支路开关器件的通断实现均衡充电,该方案有别于传统的在充电器端实现均衡充电的做法,降低了锂电池组充电器设计应用的成本。

浅谈锂离子电池充放电

浅谈锂离子电池充放电 【摘要】本文浅析了锂离子电池充放电的原理,及其对电池寿命的影响。 【关键词】锂离子电池;充放电深度 0.引言 锂离子电池因其端电压高、比能量大、充放电寿命长、放电性能稳定、自放电率低和无污染等优点[1-2],得到了广泛的应用。在日常生活的使用中,超长时间充电和完全用空电量会造成过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏。从分子层面看,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,而过度充电将把太多的锂离子硬塞进负极碳结构里去,使得其中一些锂离子再也无法释放出来。因此对锂离子电池充放电过程的研究,有助于对锂电池进行合理的充电控制、对锂电池质量检测及延长锂电池的使用寿命等。 1.锂离子电池的充放电原理 目前锂电池公认的基本原理是所谓的”摇椅理论”。锂电池的充放电不是通过传统的方式实现电子的转移,而是通过锂离子在层状物质的晶体中的出入,发生能量变化。在正常充放电情况下,锂离子的出入一般只引起层间距的变化,而不会引起晶体结构的破坏,因此从充放电反映来讲,锂离子电池是一种理想的可逆电池。在充放电时锂离子在电池正负极往返出入,正像摇椅一样在正负极间摇来摇去,故有人将锂离子电池形象称为摇椅池。 电池由正极锂化合物、中间的电解质膜及负极碳组成。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。一般采用嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4。做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz等。电解质采用LiPF6的乙烯碳酸脂(EC)丙烯碳酸脂、(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的高分子材料。隔膜采用聚烯微多孔膜如PE、PP 或它们复合膜。外壳采用钢或铝材料,具有防爆的功能。锂离子电池的额定电压为3.6V。电池充满时的电压(称为终止充电电压)一般为 4.2V;锂离子电池终止放电电压为2.5V。如果锂离子电池在使用过程中电压已降到2.5V后还继续使用,则称为过放电,对电池有损害。 锂离子电池的特性是通过其充放电过程中端电压的变化反映出来的。电池端电压的变化间接体现了电池的充放电容量、内阻、表面升温、充放电平台、电极极化程度、寿命等指标随时间变化的规律。因此,充放电电压特性一致的电池在电化学特性上具有很好的一致性[3]。利用电池的动态特性配组的结果也会相应不同。

锂离子电池自动充放电系统的设计开题报告

锂离子电池自动充放电系统的设计开题报告

————————————————————————————————作者:————————————————————————————————日期:

本科毕业设计开题报告 题目:锂离子电池自动充放电系统的设计专题: 院(系):电气与信息工程学院 班级:电气09-12班 姓名:徐圣男 学号: 24号 指导教师:朱显辉 教师职称:讲师

黑龙江科技学院本科毕业设计开题报告 题目锂离子电池自动充放电系统的设计来源工程应用1、研究目的和意义 随着微电子技术的快速发展,使得各种各样的电子产品不断的涌现,并朝着便携和小型轻量化的趋势发展。为了能够更加有效地使用这些电子产品,可充电电池得到快速的发展。常见的可充电电池包括镍氢电池、镍镉电池、锂电池和聚合物电池等。其中,锂电池以其高的能量密度、稳定的放电特性、无记忆效应和使用寿命长等优点得到广泛的应用。目前绝大多数的手机、数码相机等均使用锂电池。电池的使用寿命和单次循环使用时间与充电器维护过程和使用情况密切相关。一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当而造成的记忆效应,即电池活性衰退现象。 但锂电池的不足之处在于对充电器的要求比较苛刻,对保护电路的要求较高。其要求的充电方式是恒流恒压方式,为有效利用电池容量,需将锂离子电池充电至最大电压,但是过压充电会造成电池损坏,这就要求较高的控制精度(精度高于1%)。另外,对于电压过低的电池需要进行预充充电终止检测除电压检测外。还需采用其他的辅助方法作为防止过充的后备措施,如检测电池温度、限定充电时间,为电池提供附加保护等。为此,研发性能稳定、安全可靠、高效经济的锂电池智能充电器显得尤为重要。 本课题采用单片机为控制电路来制作一个能用LCD显示充电电压和电流,能够定时开关和充完自动停充的4.2V的锂电池智能充电器。采用单片机和充电集成电路进行充电器的设计,不但能够实现对锂电池进行充电,而且还能够实现相应的过压和温度保护,从而可以充分发挥锂电池的性能,并避免了充电器在充电时可能对电池造成损害的情况发生,具有一定的智能功能。该方案有效地保护了电池、缩短了充电时间并尽量延长锂电池的使用寿命,符合目前的环境保护潮流。 本课题的研究成果广泛应用于手机、MP3等便携式电子产品,为人类日常生活和生活质量的提高有着深远的意义。

数据中心机房UPS蓄电池充电放电原理以及几种充电方式解析完整版

数据中心机房U P S蓄电池充电放电原理以及 几种充电方式解析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

前言: 蓄电池在机房UPS中广泛的应用,铅酸蓄电池的充放电是个复杂的电化学过程,尽管很多电池都有很长的设计寿命,但在实际应用中,由于充电方式不当或维护不到位,大大缩短了电池寿命,为了延长电池使用寿命,必须理解充电原理并采用合理的充电放电方式,本文在介绍电池故障原因的同时,着重分析蓄电池充电放电的原理以及UPS蓄电池的几种充电方式。 1 机房UPS蓄电池充电原理 1、UPS浮充充电时,请用充电电压单格(20℃时的设定值),进行定电压充电或以下的电流进行定电流充电。温度有0C以下或40C以上时,有必要对充电电压进行修正,以20C为起点每变化一度,单格电压变化-3mv。 2、循环充电时,充电电压以单格(20℃时的设定值),进行定电压电压充电。温度在5C以下或35℃以上进行充电时,以20℃为起点,每变化一度充电电压调整-4mv/单格。 3、充电初期电流控制在以下。 4、充电量设为放电量的100-120%,但环境温度在5C以下时,设为120-130%。 5、温度越低(5C以下)充电结束时间越长,温度越高(35C以上)越容易发生过充电,所以特别是在循环使用时,在5C~30C内进行充电较好。 6、为防止过充电尽量安装充电计时器,或自动转换成涓流式充电方式。 7、充电时电池温度要控制在-15C~+40C的范围内。

2 机房UPS蓄电池放电原理 1、放电时请将电池温度控制在-15℃-+50℃的范围内。 2、连续放电电流请控制在3CA以下(H控制在6CA以下)。 3、放电终止电压依电流的大小而变化,大体如下所述。注意放时,电压不得低于下述电压。 4、放电以后请迅速充电。如不小心过放电之后也请立即充电。 3 UPS蓄电池的几种充电方式 UPS蓄电池的充电方式主要有恒流充电、恒压充电、快速充电、均衡充电、恒压限流充电、智能充电这几种方式: 1、恒流充电

DW01、8205A锂电池保护板工作原理及过放过充短路保护解析

锂电池保护板工作原理及过放过充短路保护解析 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS 管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。

2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压

镍氢电池的工作原理

镍氢电池的工作原理 镍氢电池和同体积的镍镉电池相比,容量增加一倍,充放电循环寿命也较长,并且无记忆效应。镍氢电池正极的活性物质为NiOOH(放电时)和Ni(OH)2(充电时),负极板的活性物质为H2(放电时)和H2O(充电时),电解液采用30%的氢氧化钾溶液,充放电时的电化学反应如下: javascript:=picsize(this,600) border=0 dypop="按此在新窗口浏览图片"> 从方程式看出:充电时,负极析出氢气,贮存在容器中,正极由氢氧化亚镍变成氢氧化镍(NiOOH)和H2O;放电时氢气在负极上被消耗掉,正极由氢氧化镍变成氢氧化亚镍。 过量充电时的电化学反应: javascript:=picsize(this,600) border=0 dypop="按此在新窗口浏览图片">

从方程式看出,蓄电池过量充电时,正极板析出氧气,负极板析出氢气。由于有催化剂的氢电极面积大,而且氢气能够随时扩散到氢电极表面,因此,氢气和氧气能够很容易在蓄电池内部再化合生成水,使容器内的气体压力保持不变,这种再化合的速率很快,可以使蓄电池内部氧气的浓度,不超过千分之几。 从以上各反应式可以看出,镍氢电池的反应与镍镉电池相似,只是负极充放电过程中生成物不同,从后两个反应式可以看出,镍氢电池也可以做成密封型结构。镍氢电池的电解液多采用KOH水溶液,并加入少量的LiOH。隔膜采用多孔维尼纶无纺布或尼龙无纺布等。为了防止充电过程后期电池内压过高,电池中装有防爆装置。 电池充电特性 镍镉电池充电特性曲线如图1所示。当恒定电流刚充入放完电的电池时,由于电池内阻产生压降,所以电池电压很快上升(A点)。此后,电池开始接受电荷,电池电压以较低的速率持续上升。在这个范围内(AB之间),电化学反应以一定的速率产生氧气,同时氧气也以同样的速率与氢气化合,因此,电池内部的温度和气体压力都很低。 javascript:=picsize(this,600) border=0 dypop="按此在新窗口浏览图片">

相关文档
最新文档