有机化学小常识(异构体比例确定、熔点和色谱相关知识)

有机化学小常识(异构体比例确定、熔点和色谱相关知识)
有机化学小常识(异构体比例确定、熔点和色谱相关知识)

有机化学小常识(异构体比例确定、熔点和色谱相关知识)

一、 异构体比例的确定

有机合成实验中,经常会遇见一个反应生成两种不同的异构体(如:syn和anti;exo 和endo)。这种情况下,必须要确定这两种异构体的比例。确定异构体比例时一般遵循以下原则:

(1)确定异构体的比例可以采用1H NMR、GC或HPLC,但是归根结底还是需要1H NMR法。采用1H NMR法确定异构体比例时,最好选用同一位置的氢。绝对不可以使用SP3杂化的氢对SP2杂化的氢求比例,因为杂化不同,相同数目氢的积分面积可能不一致。

(2)通过1H NMR法确定比例时一定不能分离。通常反应的后处理做到柱层析或减压蒸馏之前,否则得出的数据不可靠。例如:某反应生成了exo和endo两个异构体,分别为95 mg和5 mg,那么这两种异构体的真正比例应该是19:1。假如柱层析时每个异构体损失了3 mg,那么但是如果通过柱层析后算出的比例是92:2,也就是46:1,这与真实的情况已经相差很大了。

二、 色谱法

色谱法的种类较多,按使用的流动相和固定相的不同,可将色谱法分为以下几类:气相色谱、液相色谱、离子色谱、薄层色谱和纸色谱。

色谱分析的全过程主要包括四个步骤:样品的采集、样品的制备、色谱分析和数据处理与结果的表达。色谱分析样品的采集和制备是一个非常重要的和复杂的过程,通常将色谱样品的采集和样品的制备统称为色谱分析样品的处理。由于色谱分析技术涉及的样品种类繁多、样品组成及其浓度复杂多变、样品物理形态范围广泛,对色谱分析方法的直接分析测定构成的干扰因素特别多,所以需要选择并进行科学和有效的处理方法及其技术。样品的制备和处理方法及其技术必须遵循下面的原则:

(1) 收集的样品必须具有代表性。

(2) 取样方法必须与分析目的一致,并且采集到你想要的样品。

(3) 分析样品制备过程中尽可能防止和避免预测定组分发生化学变化或者丢失。

(4) 在样品处理过程中,如果将欲测定组分进行化学反应时(例如:将不能气化的预测定组分转化成可气化物质的衍生化过程,或者将不适合测定的组分通过化

学反应转化成适合测定的物质),这一变化必须是已知的和定量的完成。

(5) 在分析样品制备过程中,要防止和避免预测定组分的玷污,尽可能减少无关化合物引入制备过程。

(6) 样品的处理过程尽可能简单易行。

此外,在实际分析样品之前,某些样品可能会发生变化(例如光化学过程、微生物和空气中的氧所引起的变化),致使被测定的物质发生变化。因此,在制备样品之后应当尽肯能快的进行分析,或者使用合适的方法消除这些干扰(不使这些变化发生),做好样品的保存。

(一)气相色谱法GC

1、气相色谱对样品的要求是气体或者是可气化的液体或固体。气相色谱法具有高效、快速、灵敏和应用范围广等显著特点,这主要表现在:

(1)分离效率高:不但能够分离一般化合物,而且能够使非常复杂的混合物,如石油、煤焦油中的多达上百个组分得到有效分离。也可以使性质相近、较难分离的有机同系物、异构体得以分离。采用特殊固定液,还可以分离手性异构体,这是其他分析方法所无法比拟的。

(2)灵敏度高:可以检测出μg.g-1(10-6)级甚至 ng.g-1(10-9)级的物质量。采用富集装置,检出量还可进一步下降。因而,气相色谱法特别适合于大气中痕量有机污染物的分析、检测。

(3)分析速度快:一般在几分钟或几十分钟内可以完成一个试样的分析。

(4)应用范围广:适用于沸点低于 400℃的各种有机或无机试样的分析。

2、气相色谱样品的制备

气相色谱样品的制备相对液相色谱样品来讲简单一点,一般来讲,只要除去不溶性物质和高沸点物质即可。通常可以通过过硅胶短柱的方法除去无机物等不溶性物质。选用的溶剂最好只含有C、H、O元素,如异丙醇、乙酸乙酯等。除特殊情况外,溶剂不要含有卤族元素,否则检测样品时氢火焰监测器会烧掉溶剂生成酸,从而破坏检测器。气相色谱样品的浓度要求不是很严格,通常浓度稍低会更好一些。

(二)液相色谱法HPLC

作为对高沸点、热不稳定有机化合物及生化试样的高效分离分析方法,高效液相色谱法在分析化学中占有重要地位。高效液相色谱与气相色谱两者的分析对象几乎涉及了所有的有机化合物。随着生物有机化学工业的迅速发展,高效液相色谱的作用将会更加重要。

1、高效液相色谱法的类型

依据分离机理和固定相的不同,高效液相色谱法一般可分为以下几种类型:

(1)吸附色谱(液-固吸附色谱):以固体吸附剂为固定相,如硅胶、氧化铝等,目前较常使用的是5-10μm的硅胶吸附剂。流动相可以是各种不同极性的一元或多元溶剂。分离原理是组分在两相间经过反复多次的吸附与解吸分配平衡。

(2)分配色谱(液-液分配色谱):早期通过在担体上涂渍一薄层固定液制备固定相,与流动相一起构成液液两相,各组分在两相间分配系数的不同,经反复多次分配平衡而实现分离。现多为化学键合固定相,即用化学反应的方法通过化学键将固定液结合在担体表面。通常反应发生在硅胶表面的Si-BBOH 基团上,形成硅氧碳键型(Si-O-CBB),硅氧硅碳型(Si-O-Si-CBB),硅碳型(Si-CBB)和硅氮型(Si-NBB)四种类型。以第二种应用较多,如十八烷基键合硅胶柱(简称碳十八柱,ODS柱)。

(3)离子交换色谱:固定相为离子交换树脂(H+或 OH-),流动相为无机酸或无机碱的水溶液。各种离子因它们与树脂上的交换基团的交换能力的不同而得到分离。

(4)凝胶色谱(空间排阻色谱):以凝胶为固定相。凝胶是一种经过交联的、具有立体网状结构和不同孔径的多聚体的通称。如葡聚糖凝胶、琼脂糖等软质凝胶;多孔硅胶、聚苯乙烯凝胶等硬质凝胶;具有较好特性的可控孔径玻璃珠等。凝胶色谱法又称凝胶渗透法、凝胶过滤法。当试样随流动相进入分离柱时,试样中的小分子扩散、渗透到孔穴内部,而大分子则被排阻在孔穴之外,不同大小的分子,可通过的孔穴大小、数目不同,走过的路径和需要的时间不同,被排阻的大分子首先被流动相带出,其他不同大小的分子依次流出。当以疏水性的聚苯乙烯凝胶为固定相,非水溶剂(四氢呋喃)作流动相时,可用来测定聚合物的分子量分布。以亲水性的葡聚糖凝胶为固定相,水溶液为流动相,可分离多肽、蛋白质等。高效液相色谱已经具有了很高的分离能力,随着新型高选择性填料的开发,柱效还可能提高,但很难通过采用毛细管液相色谱柱来大幅度提高柱效,这主要是由于液体阻力较大,柱压太高,且进样量少时组分信号将淹没在高压泵的脉冲之中,难于检测。

2、高效液相色谱法的应用

高效液相色谱的应用范围十分广泛,特别是对于高沸点、热稳定性差及具有生理活性物质的分离分析更能发挥其优越性。水不溶性物质的分析:对于水不溶性物质的分析,如苯系物、稠环芳烃等,考虑样品的溶解,需要使用有机溶剂作为流动相,分离方式可以是正相法也可以是反相法。如采用反相液-液色谱法分析稠环芳烃时,使用十八烷基键合硅胶固定相

(ODS 柱),甲醇-水为流动相,采用线性梯度淋洗方式(甲醇∶水 = 20%~100% ),紫外检测器,可以分离苯、萘、联苯、菲、蒽、芘、苯并芘等多种稠环芳烃。水溶性物质的分析:对于可离解的水溶性试样,如有机酸碱化合物。离子交换树脂作为固定相,无机酸碱的水溶液为流动相,采用离子交换的分离方式进行分析。对于溶于水,不离解的试样,可采用反相液-液分配色谱的分离方式。

3、液相色谱样品的制备

液相色谱样品的制备要求相对严格一些。一般遵循以下原则:

(1)样品一定要纯化干净,除去乙酸乙酯等有紫外吸收的溶剂。

(2)样品的浓度要小些。这里提供给大家一个经验规则:70~100 mg 样品加入3 mL 异丙醇,从中取出一滴,加入1 mL 溶剂即可。当然,不同化合物的紫外吸收强弱和溶解度各不相同,特殊情况下应该具体情况具体分析。

(3)溶解样品所用的溶剂原则上应该尽可能的与流动相一致。通常,为了操作上的方便,用异丙醇溶解样品即可。

(4)固体样品制备,通常情况下从待分析样品中取出一点即可。但存在一些极端的情况,化合物溶解度差,容易析出,相当于重结晶,因此存在样品ee 值分布不均匀,需要注意以下几个方面的问题:a )柱层析分离样品时,样品可能由于溶解性的原因在柱子上析出,使得从柱层析所得到的若干试管产品ee 值不一样。b )柱层析分离得到的样品在旋转蒸发脱去溶剂时,通常情况下瓶壁上的样品首先析出,瓶底的样品最后析出。这样就会造成瓶中样品ee 值分布不均匀。c )固体样品制备时必须保证样品完全溶解,否则溶解的和未溶解的样品ee 值不同。解决这些问题较好的方法是:将全部样品用溶解度好的溶剂(例如二氯甲烷等)全部溶解,从中取出一滴,脱去溶剂后加入异丙醇使其全部溶解。这样所得数据是比较准确的。

(5)液体样品制备相对比较简单,从中取出一点即可,因为不存在分布不均匀和溶解度差等问题。

N

H

MeO 2C

CO 2Me CO 2Et Cl OH N O O A B

据两个例子:化合物A 在柱分离后,旋转蒸发除去溶剂,得到白色固体。由于脱溶过程中,瓶壁上的样品首先析出,瓶底的样品最后析出。这样就造成瓶中样品分布不均匀,从而使得同一瓶中不同位置的样品ee 值不同,经HPLC 确认可相差10个百分点左右。化合物B 在柱层析时,使用石油醚、乙酸乙酯混合溶剂洗脱过程中,由于B 的溶解度不理想,很容易在柱子上析出,经HPLC 确认前面几试管和后面几试管的ee 值不同,可以相差4、5个百分点。考虑到B 在二氯甲烷中溶解度较好,最后在洗脱剂中加入一定量的二氯甲烷解决B 的溶解度问题,避免了其在柱子上析出,使该问题得到了解决。

三、 熔点的测定

熔点,实质上是该物质固、液两相可以共存并处于平衡的温度。测定物质的熔点时需要注意以下方面的问题:

(1)同一化合物,由于重结晶时采用的溶剂不同,可能造成晶型不同,此时溶点差别可能会比较大,有时候甚至相差20℃。因此报道化合物的熔点时,必须在后面注明重结晶的溶剂。

(2)同一化合物,重结晶后用油泵抽一段时间与不用油泵抽相比,温度也可能相差10℃

以上。

(3)重结晶时,有的溶剂可能会与化合物形成包和物。一旦形成包和物,溶剂就不能被油泵抽掉。

(4)测定熔点时应注意观察在初熔前是否有萎缩或软化、放出气体以及其他分解现象。例如一物质在112℃开始萎缩,在 113℃时有液滴出现,在 114℃时全部液化,应记录如下:熔点113-114℃,112℃萎缩。

(5)有的样品较长时间加热易分解,可先将溶液热至低于样品熔点20℃时,再放人样品测定。而有的化合物只能测得分解点而测不到熔点,即到一定温度时样品完全分解而不熔化,这时应记录为:130.5℃(分解)。测定易升华样品的熔点,应用两端封闭的熔点管,并将熔点管全部浸人液体中测定。对于易吸潮的样品,也可用两端封闭的熔点管测定。

(6)市售的温度计,其刻度可能不准确,因此,常需对测熔点用的温度计进行校正。其方法是可以用标准温度计与之比较校正之,若无标准温度计,可采用纯有机化合物的熔点作为标准进行校正。

(7)当温度接近样品的熔点时,控制温度上升的速度为1-2 ℃/min,当样品结晶的棱角开始变圆时为初熔,结晶形状完全消失为全熔,记录这两个温度。

下面举一例说明:

化合物CH2=CHCH2NHTs的熔点,因重结晶溶剂的改变而不同。如:59-61o C(正己烷,乙醚)[1];64-65o C(乙醇,水)[2];63-66o C(正己烷,二氯甲烷)[3]。

四、 薄层色谱溶剂极性的选择:TLC

TLC是实验室常用的检测手段,一般对展开剂选择:

(1)极性小的用乙酸乙酯:石油醚系统;

(2)极性较大的用甲醇:氯仿系统,甲醇:氯仿对于胺类比较好;

(3)极性大的用甲醇:水:正丁醇:醋酸系统。

(4)拖尾可以加入少量三乙胺或冰醋酸。

关于显色:

含有苯环,芳环,多共轭键对紫外有强吸收的化合物,可用紫外光显色。没有紫外吸收或紫外吸收很弱的化合物,需要使用显色剂显色。

茚三酮适合含氮的(伯、仲)胺化合物。碘能使大多数化合物显色,尤其是含氮化合物(有些酰胺是不灵敏的)。浓硫酸或者乙醇-硫酸靠炭化发黑显色,电炉加热也是此原理。高锰酸钾和磷钼酸铵是无机物溶液显色剂。以上是通用显色剂。

这些都不灵时,要找专用显色剂。常用的是:(1)磷钼酸显色剂:磷钼酸 5 %-10 %的乙醇溶液,淡黄色,久置变为浅绿色,不影响使用。浸板或喷板,加热,浅黄色背景,还原性物质显蓝绿色斑点,如果斑点太浓,可能显深黄色。(2)CAM显色剂:钼酸铵9.6 g,硫酸铈0.4 g,10 %硫酸水溶液200 Ml,混匀,极淡的黄色溶液,棕色瓶密闭保存,喷板,加热,白色背景,还原性物质显深蓝色斑点。其它的显色剂还有:

显色剂化合物

苯胺邻苯二甲酸酯碳水化合物,糖类

溴甲酚绿羧酸

二甲氨基苯甲醛氨基酸,多肽

磷钼酸苯酚类

若丹明类酯类

五、柱层析

(1)称量。200-300目硅胶,称30-70倍于上样量;如果极难分,也可以用100倍量的

硅胶。干硅胶的视密度在0.4左右,所以要称40g硅胶,用烧杯量100ml也可以。

(2)搅成匀浆。加入干硅胶体积一倍的溶剂用玻璃棒充分搅拌。如果洗脱剂是石油醚/乙酸乙酯/丙酮体系,就用石油醚拌;如果洗脱剂是氯仿/醇体系,就用氯仿拌。如果不能搅成匀浆,说明溶剂中含水量太大,尤其是乙酸乙酯/丙酮,如果不与水配伍走分配色谱的话,必须预先用无水硫酸钠久置干燥。氯仿用无水氯化钙干燥,以除去1%的醇。如果样品对酸敏感,不能用氯仿体系过柱。

(3)装柱。打开柱下活塞,将匀浆一次倾入柱子内。随着沉降,会有一些硅胶沾在柱子壁上,用石油醚(氯仿)将其冲入柱中。

(4)压实。沉降完成后,加入更多的石油醚,用双联球或气泵加压,直至流速恒定。柱床约被压缩至9/10体积。无论走常压柱或加压柱,都应进行这一步,可使分离度提高很多,且可以避免过柱时由于柱床萎缩产生开裂。

(5)上样。干法湿法都可以。石英沙是没必要的。上样后,加入一些洗脱剂,再将一团脱脂棉塞至接近硅胶表面。然后就可以放心地加入大量洗脱剂,而不会冲坏硅胶表面。

(6)过柱和收集。柱层析实际上是在扩散和分离之间的权衡。太低的洗脱强度并不好,推荐用梯度洗脱。收集的例子:10 mg上样量,1 g硅胶,0.5 mL收一馏分;1-2 g上样量,50 g硅胶(200-300目),20-50 mL收一馏分。

(7)检测。要更多地使用专用喷显剂,如果仅用紫外灯,会损失较多产品,紫外的灵敏度一般比喷显剂底1-2个数量级。

(8)送谱。收集的产品旋干,在送谱前通常需要重结晶。如果样品太少或为液体,可过一小凝胶柱,作为送谱前的最后纯化手段。可除去氢谱1.5ppm左右所谓的“硅胶”峰。

六、重结晶

(1)重结晶时选择溶剂的顺序

与“相似相溶”的原理背道而驰就行了,大极性的东西,用中等极性的溶剂结晶;小极性的东西,用较大极性的溶剂。这样,有一半以上的情况是适合的。

(2)什么情况下考虑用混合溶剂?

先试:石油醚(正己烷)、乙醚、乙酸乙酯、乙醇、水,再试:丙酮、甲醇、乙腈、苯、氯仿、乙酸、吡啶等。如果还不行,就只好混合了。乙醚可以利用其挥发性或沿玻璃向上爬而使沉淀析出的特性。丙酮如不与水配伍,应加以干燥。

(3)用混合溶剂时(比如乙醇加水)加多少水才合适?

混合溶剂法:用过量热的良溶剂溶解,过滤,加热,缓慢加入不良溶剂至有浑浊,加热至澄清,静置等待。

(4)重结晶的产率如何提高?

用分级结晶法。积累的母液过柱子。

(5)重结晶时经常得到油状液,并不析出晶体,如何解决?

不好办。首先建议用其他纯化方法。如果一定要用结晶法,以下经验可能有帮助:(a)过柱预纯化,粗分离后再结晶;(b)石油醚热提-冷却法;(c)选低沸点的溶剂如乙醚等。备注:

(1)关于用乙醚重结晶。回流乙醚时,要加一冷凝管。不断从上口加乙醚,直至混浊消失,有时候是因为溶解的较慢,而不是不能溶,所以要有耐心。如果加入很多乙醚还有少量沉淀不溶,则将其滤去,滤液浓缩至有固体析出,再加热,加入少量乙醚使澄清。自然放冷,可得晶型较好的结晶。过滤。用少量乙醚洗晶体。洗涤液合并入母液,在盛母液的瓶口蒙一层滤纸,或塞一团卫生纸,让乙醚自然挥发,而不能落入灰尘,直到有满意数量的晶体出来(别太贪了,挥发干了就又要重来)。

(2)“石油醚热提-冷却法”也是用来对付油状物的方法,加入石油醚,沸腾,倾出上清液,底部油继续加入石油醚热提取,直至石油醚层无色,则基本提取完全。冷却后一般会析出晶体。

参考文献:

(1) Miyata, O., Tetrahedron, 2000, 56, 6199

(2) Wedekind, Chem. Ber., 1909, 42, 3941

(3) Caddick, S., J. Am. Chem. Soc., 2004, 126, 1024

最新有机化学同分异构体专练

09-16年有机化学同分异构体专练姓名 (1)化合物Q相对分子质量为86,碳的质量分数为0.558,氢为0.07,其余为氧。 能发生水解反应 能使溴的四氯化碳溶液褪色两个条件的同分异构体的结构简式:_______、________、______、__________; Q的另一种同分异构体,其分子中所有碳原子在一条直线上,它的结构简式为______________。 (2)写出满足下列条件的D的一种同分异构体的结构简式 ①苯的衍生物,且苯环上的一取代产物只有两种; ②与Na2CO3 溶液反应放出CO2气体; ③水解后的产物才能与FeCl3溶液发生显色反应. (3)链烃A有支链且只有一个官能团,其相对分子质量在65~75之间,1 mol A完全燃烧消耗7 mol氧气,则A 的结构简式是____________,名称是____________ 链烃B是A的同分异构体,分子中的所有碳原子共平面,其催化氢化产物为正戊烷,写出B所有可能的结构简式:________________________。 C也是A的一种同分异构体,它的一氯代物只有一种(不考虑立体异构,则C的结构简式为 ____________________。(4)某分子名称为间甲基苯甲酸有多种同分异构体,其中 属于酯类的、含有苯环、能与新制取的氢氧化铜反应、核磁共振氢谱表明分子中苯环上有四种氢同分异构体有 (5)H属于氨基酸,与的水解产物互为同分异构体。H能与FeCl3溶液发生显色反应,且苯环上 的一氯代物只有2种。写出两种满足上述条件的H的结构简式:__________。 (6)含有苯环,且与对苯二甲醛互为同分异构体的酯有______种,写出其中一种同分异构体的结构简式: (7)写出分子式为C9H12含有苯环的同分异构体有种其中核磁共振氢谱出现两组峰,峰面积比为3:1的是 (8)的同系物X比其摩尔质量少14,X的同分异构体中能同时满足如下条件:①苯环上只有两个取代基;②既能发生银镜反应,又能和饱和NaHCO3溶液反应放出CO2,共有______种(不考虑立体异构)。 X的一个同分异构体发生银镜反应并酸化后核磁共振氢谱为三组峰,且峰面积比为2:2:1,写出X的这种同分异构体的结构简式 (9)写出同时满足下列条件的的一种同分异构体的结构简式:。 ①能与金属钠反应放出H2; ②是萘()的衍生物,且取代基都在同一个苯环上; ③可发生水解反应,其中一种水解产物能发生银镜反应,另一种水解产物分子中有5种不同化学环境的氢。(10)写出含有HC≡C-、氧原子不与碳碳双键和碳碳三键直接相连、呈链状结构的OHCCH=CHCHO物质的所有同分异构体的结构简式:

(完美版)高中有机化学方程式总结

高中有机化学方程式总结 一、烃 1.甲烷 烷烃通式:C n H 2n -2 (1)氧化反应 甲烷的燃烧:CH 4+2O 2 CO 2+2H 2O 甲烷不可使酸性高锰酸钾溶液及溴水褪色。 (2)取代反应 一氯甲烷:CH 4+Cl 2 CH 3Cl+HCl 二氯甲烷:CH 3Cl+Cl 2 CH 2Cl 2+HCl 三氯甲烷:CH 2Cl 2+Cl 2 CHCl 3+HCl (CHCl 3又叫氯仿) 四氯化碳:CHCl 3+Cl 2 CCl 4+HCl 2.乙烯 乙烯的制取:CH 3CH 2OH H 2 烯烃通式:C n H 2n (1)氧化反应 乙烯的燃烧:H 2C=CH 2+3O 2 2CO 2(2)加成反应 与溴水加成:H 2C=CH 2+Br 2 CH 2Br —CH 2Br 与氢气加成:H 2C=CH 2+H 2 CH 3CH 3 与氯化氢加成: H 2C=CH 2+HCl CH 3CH 2Cl 与水加成:H 2C=CH 2+H 2O CH 3CH 2OH 点燃 光 光 光 光 浓硫酸 170℃ 高温 催化剂 △ 图1 乙烯的制取

乙烯加聚,生成聚乙烯:n H 2 3.乙炔 乙炔的制取:CaC 2+2H 2O HC ≡CH ↑+Ca(OH)2 (1)氧化反应 乙炔的燃烧:HC ≡CH+5O 2 4CO 2+2H 2O 乙炔可以使酸性高锰酸钾溶液褪色,发生氧化反应。 (2)加成反应 与溴水加成:HC ≡CH+Br 2 HC=CH B r CHBr=CHBr+Br 2 CHBr 2—CHBr 2 与氢气加成:HC ≡CH+H 2 H 2C=CH 2 与氯化氢加成:HC ≡CH+HCl CH 2=CHCl (3)聚合反应 氯乙烯加聚,得到聚氯乙烯:n CH 2 n CH n 4.苯 苯的同系物通式:C n H 2n-6 (1)氧化反应 苯的燃烧:2C 6H 6+15O 2 12CO 2+6H 2O 苯不能使溴水和酸性高锰酸钾溶液褪色。 CH 2-CH 2 点燃 图2 乙炔的制取 催化剂 △ Br CH 2—CH Cl CH=CH 点燃

柱子基础知识

在各种不同的反相色谱柱中,即使是最通用的C18色谱柱对相同分析物也有不同的色谱行为。也就是说,每一种C18色谱柱都有其或多或少的不同特性。例如:硅胶基质的不同、或是碳载量的不同、或是硅胶孔径的不同…等等。这些不同的特性就造成虽然都是C18色谱柱,但有其不同的分析效果。在此我们将反相色谱柱做个简单的分类和介绍。 (1)硅胶基质基本分成四类: a.全多孔硅胶:目前较常使用,有较多种的粒径和键合相可以选择,对仪器的要求 不高。 b.乙基桥连杂化硅胶颗粒:硅氧硅键替换成硅乙基硅键,可以在碱性条件下更稳定。 增强pH 稳定范围,与全多孔硅胶的性能相似,优化碱性化合物在高pH条件 的分析。 c.整体硅胶柱:背压极低,减少柱床的阻塞。适合直接分析“脏”的样品,例如血 清。 d.核壳硅胶颗粒:这是未来色谱柱发展的趋向,在常规HPLC液相上使用能够得 到UPLC超高效的分析效果;在UPLC上使用,更是如虎添翼! (1)反相固定相基本分成三类: a.疏水性:例如C18、C8、C4 …等等; b.疏水带极性:极性封端或是镶嵌,使得疏水固定相带有极性分离作用; c.苯基:例如五氟苯基柱。 为了应对越来越复杂的化合物分析,只用疏水性的色谱柱,已经不能满足分析的需要。因为分析化合物和固定相之间的作用,基本分为下列五种的作用(1)疏水作用,(2)氢键给予能力,(3)氢键接受能力,(4)立体空间作用,和(5)阳离子选择性。为了选择最适用我们分析的色谱柱,我们必须综合考虑这五种作用力。国际主要的色谱生产厂家,都会将自己所生产的反相色谱柱综合以上的5 种作用力进行分类。Phenomenex 公司也不例外,为的是方便所有色谱分析者能够迅速的选择适用的色谱柱。 本质上是填料(固定相)的不同,正相色谱柱填料极性强,洗脱顺序由弱到强;反相色谱柱填料极性弱,洗脱顺序由强到弱。以下是详细说明: 1、正相色谱正相色谱用的固定相通常为硅胶(Silica)以及其他具有极性官能团胺基团,如(NH2,APS)和氰基团(CN,CPS)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他极性基团极性较强,因此,分离的次序是依据样品中各组分的极性大小,即极性较弱的组份最先被冲洗出色谱柱。正相色谱使用的流动相极性相对比固定相低,如正已烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反向色谱反向色谱用的填料常是以硅胶为基质,表面键合有极性相对较弱官能团的键合相。反向色谱所使用的流动相极性较强,通常为水、缓冲液与甲醇、乙腈等的混合物。样品流出色谱柱的顺序是极性较强的组分最先被冲洗出,而极性弱的组分会在色谱柱上有更强的保留.

有机化学同分异构体题目集

同分异构体: 1.互为同分异构体的一对物质是( ) A. 乙醇和乙醚 B. 硝基乙烷和氨基乙酸 C. 淀粉和纤维素 D. 乙酸和乙酸酐 2.下列不互为同分异构体的一组物质是( ) A. 丙酸和甲酸乙酯 B. 丁醇和2-甲基-1-丙醇 C. 异丁醇和乙醚 D. 丙酰胺和丙氨酸 3.下列各组化合物中,属于同分异构体的是( ) A. 蔗糖和葡萄糖 B. 乙醇和丙醛 C. 乙酸和甲酸甲酯 D. 苯和已烷 E. 萘和蒽 4.已知二氯苯的同分异构体有三种,从而可以推知四氯苯的同分异构体数目是( . ) A. 1 B. 2 C. 3 D. 4 E. 5 5.下列四种分子式所表示的化合物中,有多种同分异构体的是 A . CH4O B. C2HCl3 C. C2H2Cl2 D. CH2O2 6.进行一氯取代反应后,只能生成三种沸点不同的产物的烷烃是( ) A. (CH3)2CHCH2CH2CH3 B. (CH3CH2)2CHCH3 C. (CH3)2CHCH(CH3)2 D. (CH3)3CCH2CH3 7.某烃的一种同分异构体只能生成一种一氯代物,该烃的分子式可以是( )答案之外,还有吗? A. C3H8 B. C4H10 C. C5H12 D. C6H14 8.A是一种酯,分子式是C14H12O2,A可以由醇B跟羧酸C发生酯化反应得到。A不能使溴(CCl4溶液)褪色。氧化B可得到C。 1写出A、B、C的结构简式: A B C 2写出B的两种同分异构体的结构简式,它们都可以限NaOH反应。 、 9.已知丁基共有四种。不必试写,立即可断定分子式为C5H10O的醛应有( B ) A. 3种 B. 4种 C. 5种 D. 6种 10.液晶是一类新型材料。MBBA是一种研究得较多的液晶化合物。它可以看作是由醛A和胺B去水缩合的产物。

人教版《有机化学基础》方程式总结

高二化学《有机化学基础》化学反应方程式总结(一)烷烃 1.甲烷燃烧: CH4 +2O2 CO2 + 2H2O 2.甲烷与氯气在光照条件下反应: CH4 + 3Cl2 CHCl3+ 3HCl CH4 + 4Cl2 CCl4 + 4HCl CH4 + 2Cl2 CH2Cl2 + 2HCl 3.甲烷高温分解: CH4 C + 2H2 (二)烯烃 乙烯的制取:CH3CH2 OH H2C=CH2↑+H2O 氧化反应 乙烯的燃烧:H2C=CH2+3O22CO2+2H2O 乙烯可以使酸性高锰酸钾溶液褪色,发生氧化反应。 加成反应与加聚反应 1.乙烯与溴的四氯化碳溶液反应:CH2=CH2 + Br2 CH2BrCH2Br 2.乙烯与水反应:CH2=CH2 + H2O CH3CH2OH 3.乙烯的催化加氢:CH2=CH2 +H2CH3CH3 4.乙烯的加聚反应:n CH2=CH2 浓硫酸 170℃ 点燃

5. 乙烯与氯化氢加成:H2C=CH2+HCl CH3CH2Cl 6.乙烯与氯气加成:CH2=CH2 + Cl2 CH2ClCH2Cl 7. 1—丁烯与氢气催化加成:CH2=CH2CH2CH3 +H2CH3CH2CH2CH3 8.环己烯催化加氢: H2 + 9. 1,3环己二烯催化加氢: 2H2 + 10. 1,3-丁二烯与溴在温度较低和较高时的反应: CH2=CH—CH=CH2+Br2 CH2BrCH=CHCH2Br CH2=CH—CH=CH2+Br2CH2BrCHBrCH=CH2 11. 1,1—二氯乙烯加聚:n CCl2=CH2 12.丙烯加聚:n H2C=CHCH3 13. 2—甲基—1,3—丁二烯加聚: n (三)炔烃 乙炔的制取:CaC2+2H2O CH≡CH↑+Ca(OH)2 1.乙炔燃烧: 2C2H2 + 5O24CO2 + 2H2O 2.乙炔与足量溴的四氯化碳溶液反应:CH≡CH + Br2 CHBr2CHBr2 3.乙炔与氢气催化加成:CH≡CH + 2H2 CH3CH3

气相色谱柱知识详解

气相色谱柱知识详解 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在24mm,长度为110m左右;后者内径在0.20.5mm,长度一般在25100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。 填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和气液色谱填充柱有关固定相的内容。

有机化合物—同分异构体书写教学提纲

第一章 认识有机化合物 一、有机化合物的分类 a 按碳的骨架分类 链状化合物:如CH 3CH 2CH 2CH 3、CH 3CH=CH 2、HC ≡CH 等 ?, 有机化合物 脂环化合物:如 环状化合物 芳香化合物:如 又:链状烃和脂环烃统称为脂肪烃。 b 按官能团分类(请填写下列类别有机物的官能团) 类别 官能团 饱和或一元有机物通式 烷烃 烯烃 炔烃 芳香烃 卤代烃 醇 酚 醚 醛 酮 羧酸 酯 162332A.5 B.4 C.3 D.2 练习2:拟除虫菊酯是一类高效,低毒,对昆虫具有强烈触杀作用的杀虫剂,其中对光稳定的溴氰菊酯的 结构简式如下图。下列对该化合物叙述不正确的是( ) C Br Br O O CN O

A. 属于芳香化合物 B. 属于卤代烃 C. 具有酯类化合物的性质 D. 在一定条件下可以发生加成反应 二、有机化合物的结构特点 (一)碳原子的成键特点 ①碳原子价键为四个; ②碳原子间的成键方式:C—C、C=C、C≡C; ③碳链:直线型、支链型、环状型等 ④甲烷分子中,以碳原子为中心,4个氢原子位于四个顶点的正面体立体结构。 (二)分子构型: 甲烷:正四面体型 乙烯:平面型 苯:平面正六边型 乙炔:直线型 例题3:某烃结构式如下:-C≡C-CH=CH-CH3,有关其结构说法正确的是() A 所有原子可能在同一平面上 B 所有原子可能在同一条直线上 C 所有碳原子可能在同一平面上 D 所有氢原子可能在同一平面上 练习4:二氟甲烷是性能优异的环保产品,它可替代某些会破坏臭氧层的“氟里昂”产品,用作空调、冰箱和冷冻库等中的致冷剂。试判断二氟甲烷的结构简式() A.有4种 B.有3种 C.有2种 D.只有1种 练习 5:现有如下有机物:1.乙烷2.乙烯3.乙炔4.苯,它们分子中碳-碳原子间化学键键长由大到小排列顺序正确的是() A.1>4>2>3 B.4>1>2>3 C.3>2>1>4 D.2>4>3>1 三、有机化合物的命名 (一)习惯命名法 碳原子数在十以下的,依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸来表示。如:戊烷、辛烷等。 (二)系统命名法 ①选主链:分子里最长的碳链(如果有两条含C原子数相同的最长,选含支链最少一条作主链)叫 “某烷”- ②定起点:主链中离支链较近的一端编号:1、2、3…(如果有多种定起点方式,采用支链位置 序号之和最少的那一种方式) ③把支链作为取代基 ④写名称——支链名称在前,母体名称在后;先写简单取代基,后写复杂取代基; 例题4:下列命名中正确的是() A.3—甲基丁烷 B.2,2,4,4—四甲基辛烷 C.1,1,3—三甲基戊烷 D.4—丁烯 练习12:给下列物质进行命名

有机化学基础化学方程式

有机化学基础化学方程式 Modified by JEEP on December 26th, 2020.

有机反应方程式 (一)烷烃 1.甲烷燃烧: (2·P34)CH4 +2O2 CO2 + 2H2O 2.甲烷与氯气在光照条件下反应(2·P56)CH4 + 3Cl2 CHCl3+ 3HCl CH4 + 4Cl2 CCl4 + 4HCl CH4 + 2Cl2 CH2Cl2 + 2HCl 3.甲烷在一定条件下可被氧化成一氧化碳和氢气(2·P56)2CH4+O22CO+4H2 4.甲烷高温分解(2·P56)CH4 C + 2H2 (二)烯烃 1.乙烯与溴的四氯化碳溶液反应(2·P60)CH 2=CH2 + Br2 CH2BrCH2Br 3.乙烯与水反应(2·P60)CH2=CH2 + H2O CH3CH2OH 4.乙烯的催化氧化制乙醛(2·P77)2CH2=CH2 + O2 2CH3CHO 5.乙烯的催化氧化制乙酸(2·P77)CH2=CH2 + O2 2CH3COOH 6.乙烯的催化加氢(2·P64)CH2=CH2 +H2CH3CH3 8.乙烯的加聚反应(2·P78)n CH2=CH2 9.乙烯与氯气在一定条件下生成氯乙烯(3·P46) CH2=CH2 + Cl2CH2=CHCl+HCl 10.乙烯与氯气加成(3·P46)CH 2=CH2 + Cl2 CH2ClCH2Cl 12. 1—丁烯与氢气催化加成(3·P47) CH2=CH2CH2CH3 +H2CH3CH2CH2CH3 13.环己烯催化加氢(3·P49) H2 + 14. 1,3环己二烯催化加氢(3·P49) 2H2 + 16. 1,3-丁二烯与溴在温度较低和较高时的反应(3·P42) CH2=CH—CH=CH2+Br2 CH2BrCH=CHCH2Br CH2=CH—CH=CH2+Br2CH2BrCHBrCH=CH2 17. 1,1—二氯乙烯加聚(3·P47)n CCl 2=CH2 18.丙烯加聚(3·P47)n H 2C=CHCH3 19. 2—甲基—1,3—丁二烯加聚(3·P47)n (三)炔烃 1.乙炔燃烧(2·P37)2C2H2 + 5O2 4CO2 + 2H2O 2.乙炔与足量溴的四氯化碳溶液反应(2·P60)CH≡CH + Br 2 CHBr2CHBr2 3.乙炔与氢气催化加成(3·P47)CH≡CH + 2H2 CH3CH3

色谱柱知识

1.仪器都有个梯度精度的参数指标,那这个参数的好坏是取决于泵和比例阀两个东西吗?还是还有别的影响? 2.液相泵分为串联泵和并联泵,请问两种形式的泵有什么区别?各有什么优点? 3.在检测四元比例阀是否漏液时,“将管路里吸入一小段气泡”是在一个管路里吸入气泡吗? 如果是,那么另外三个管路的吸滤头是放在流动相中,还是提起来呢? 4.如果没有那个压力曲线可查,在平常维护仪器时,是否应该检测四元比例阀是否漏液,多久一次? 5.我的Agilent1200二元泵A泵前一段时间出口单向阀漏液,怀疑是压力过大顶坏了,换了一个单向阀,但是换完之后就是走梯度的时候在前几分钟的压力不稳,波动比较大,相应的色谱图也有一些问题,找工程师说是有盐析出,需要用长时间冲洗,但是效果一直不好,不得已只能走等度的样品了,想请你给点意见! 6.二元高压梯度系统的阻尼器在泵后的三通后边,四元低压梯度系统的阻尼器在泵的两个柱塞杆之间阻尼器位置不同有什么影响呢? 7.一时冲动,就去把入口单向阀给拆了,结果装不回来了,感觉那里面也没有什么太多的元件啊,就一个小铁圆柱,弹簧一个,一个小黑色橡胶垫圈,一个透明圆形垫片,怎么装回的时候就不能将两个部件密闭好呢?有没有单向阀的构件图片呢? 8.泵头里的溶剂通过出口球阀压入第二个腔体中,此时第二个腔体吸收全部第一个腔体溶剂,然后打出一半?还是第二个腔体吸收一半,剩下的一半直接流到色谱柱里去了? 9.用混合有机相(乙腈:甲醇)的时候,二元高压泵混合器以及出口单向阀那里经常堵,随着实验时间延长,压力也越来越高。所以不得不用了一段时间就拆下来超声清洗。这个可能是什么原因导致压力升高?还有使用的此流动相,柱子的寿命明显就缩短了【用的是乙腈甲醇混合有机相,磷酸水(添加三乙胺)】,是不是这样的流动相容易导致填料的流失或结构的破坏? 10. 蠕动泵清洗时,只是清洗泵的柱塞杆,还是对单向阀也有清洗作用? 11.您说了,高压有利于溶剂的混合,那么低压四元梯度,如何有效保证溶剂的混合?不知道混合池的结果怎么样? 12.Waters、安捷伦、岛津您能就三种品牌的泵、单向阀等构造做下简介和对比说明吗?他们的优势都在那里? 13.目前市场上关于安捷伦,沃特斯,岛津的液相色谱卖的最多,在泵的性能上,各个厂家有都在宣传彩页上写的非常好,以前记得有一句话:岛津的检测器,安捷伦的柱子,沃特斯的泵!但是现在好像沃特斯的泵的指标在三个厂家中最差,是不是现在安捷伦和岛津泵比沃特斯的好啊?而且三个厂家的泵的主要特点及内部材质有何不同? 14.四元梯度,日常用A和D,那么B和C长时间闲置,该如何维护保养?放在甲醇溶剂里,会不会对系统有影响?放在空瓶里,管路有气泡会不会影响到其他两路? 15.您讲座里提到的压力曲线,我们几乎从来没有调用过,要怎么调出来? 16.我们的是WATERS的,那个四元比例阀的地方一直有液体漏出来,流动相是缓冲盐,是不是结晶了还是那个弹簧坏了啊。要怎么维护啊,工程师说要用热水冲洗。要不要拆开看看啊? 17.有根柱子的柱压过大,反接冲洗后效果也不明显,还有其他的方法吗? 18.我们那个老仪器比例阀经常出现漏液,有什么好的办法可以解决?是不是因为拆卸次数多了引起的呢?还有那个曲线是不是需要经常做? 19.aligent1100在线脱气,有机相一切正常,水相当流速为0.8ml/min时压力稳定,大于0.

最新高中有机化学同分异构体

烃及烃的衍生物的同分异构体推导规律 同分异构现象是有机物普遍存在的重要现象,也是有机物品种繁多的原因之一。在学习有机化学时,同学们对推导有机物的同分异构体往往会感到困难。在此,介绍下面的一些方法和推导规律进行有关的推导,即可避免重复,又不至于漏写。 一、推导烃的同分异构体: 首先,对烷烃而言,可归纳为以下四点: 1. 主链由长到短,短至主链碳原子数目不得少于或等于全部碳原子数的二分之一。 2. 支链的大小由整到散。 3. 支链的位置由“心”到“边”(末端碳原子除外)。 4. 支链的排布由相“对”,相“邻”到相“间”。 例一:分子式为C7H16的所有同分异构体的构造式(为清楚从简只用碳的骨架表示) 分析:可按上述方法 1. 先写出最长为七个碳原子的主链: C─C─C─C─C─C─C (1) 2. 后写出少一个碳原子的直链作主链,把取下来的一个碳原子作为支链加到直链上,并由“心”到“边”地依次变动位置: C─C─c -C─C─C (2) │ C C─C─C─C─C─C (3) │ C 3. 再写出少两个碳原子的直链,把取下来的两个碳原子作为支链加在这一直链上,先“整”加一个乙基,后“散”加两个甲基。添加这些取代基时注意由“心”到“边”和由“对”、“邻“到“间”: C─C─C─C─C (4) │ C │ C C │ C─C─C─C─C (对位) (5) │ C C │ C─C─C─C─C (对位) (6) │ C

C─C─C─C─C (邻位) (7) ││ C C C─C─C─C─C (间位) (8) ││ C C 4. 取下三个碳原子,其余的四个碳原子(其数目大于全部碳原子数目的二分之一),还可组成“主链”。但此时取下的三个碳原子再无“整”的可能,而只能“散”了。 C │ C─C─C─C (9) ││ C C 即C7H16只可能有上述九种同分异构体 以上方法在推导烯烃,炔烃和芳香烃的同分异构体时也可应用,不过此时除了碳链异构外,还要考虑它们的官能团异构, 官能团位置异构和互变异构及立体异构。 二、推导烃的衍生物的同分异构体。 下面以醇和醚,醛和酮,羧酸和酯等碳原子数目相同时推导出各种同分异构体的规律。 1、醛和酮的同分异构体的推导方法 O O O 醛的通式‖和酮的通式‖中分别去掉羰基‖可得R—H, R─C─H R─C─R’[─C─] O R—R’都是烷烃,所以要推出醛和酮的同分异构体,只要醛酮的分子中去掉‖基, [—C—] O 剩下的烷烃构造中不同种键上再加‖基,便得所有同分异构体 [—C—] 例1,写出分子式为C4H8O的同分异构体: O ‖H H H 去掉[—C—] ││2 │1 C4H8O——————H—C—.C—C─H ││3 │ H H H 键(1)上加羰基: O ‖(丁醛) CH2─CH2─CH2─CH

高中有机化学基础方程式熟练官能团代表物的性质

有机化学基础方程式(熟练官能团代表物的性质) 使用须知:有机化学是一个大得分点,从选择到二卷有机合成,都是高频考点,有机合成几乎是必考项目。而要破解有机题,最基础的书熟练各种官能团的性质。借助本资料请根据笔记本上面所讲解的知识点以及课本教材,在空白部分尽量把没有涉及到的内容添补进来。 一、烃 1.甲烷 烷烃通式:C n H 2n -2 (1)氧化反应 甲烷的燃烧:CH 4+2O 2 CO 2+2H 2O 甲烷不可使酸性高锰酸钾溶液及溴水褪色。 (2)取代反应 (连锁反应) 一氯甲烷:CH 4+Cl 2 CH 3Cl+HCl 二氯甲烷:CH 3Cl+Cl 2 CH 2Cl 2+HCl 三氯甲烷:CH 2Cl 2+Cl 2 CHCl 3+HCl (CHCl 3又叫氯仿) 四氯化碳:CHCl 3+Cl 2 CCl 4+HCl 2.乙烯 乙烯的制取:CH 3CH 2OH H 2C=CH 2↑+H 2O (了解装置设备,如何除杂,如何检验) 烯烃通式:C n H 2n (1)氧化反应 乙烯的燃烧:H 2C=CH 2+3O 2 2CO 2+2H 2O 乙烯可以使酸性高锰酸钾溶液褪色,发生氧化反应。 (2)加成反应 与溴水加成:H 2C=CH 2+Br 2 CH 2Br —CH 2Br 与氢气加成:H 2C=CH 2+H 2 CH 3CH 3 与氯化氢加成:H 2C=CH 2+HCl CH 3CH 2Cl 与水加成:H 2C=CH 2+H 2O CH 3CH 2OH (3)聚合反应 乙烯加聚,生成聚乙烯:n H 2C=CH n (写出加聚反应的通式) 3.乙炔 乙炔的制取:CaC 2+2H 2O HC ≡CH ↑+Ca(OH)2 (1)氧化反应 乙炔的燃烧:HC ≡CH+5O 2 4CO 2+2H 2O 乙炔可以使酸性高锰酸钾溶液褪色,发生氧化反应,生成CO 2。 (2)加成反应 与溴水加成:HC ≡CH+Br 2 HC=CH Br CHBr=CHBr+Br 2 CHBr 2—CHBr 2 与氢气加成:HC ≡CH+H 2 H 2C=CH 2 与氯化氢加成:HC ≡CH+HCl CH 2=CHCl (3)聚合反应 氯乙烯加聚,得到聚氯乙烯:n CH n 乙炔加聚,得到聚乙炔:n HC ≡ n 4.苯 苯的同系物通式:C n H 2n-6 点燃 光 光 光 光 浓硫酸 170℃ 高温 催 化剂 △ 2-CH 2 点燃 催化剂 △ Br 2—CH Cl CH=CH

高考之有机化学同分异构体

2018年高考化学同分异构体 【同分异构体错题展示】 1.(2016课标Ⅱ)分子式为C 4H 8Cl 2的有机物共有(不含立体异构) A . 7种 B .8种 C .9种 D .10种 2.(2015课标Ⅱ)分子式为C 5H 10O 2并能与饱和NaHCO 3溶液反应放出气体的有机物有(不含立体异构) ( ) A .3种 B .4种 C .5种 D .6种 有关同分异构体解答错误的原因是: ⑴ 不知道书写同分异构体的步骤 ⑵ 不知道同分异构体的书写方法; ⑶ 不会判断有限制条件的情况下同分异构体的书写。 同分异构体是指分子式相同而结构式不同的物质之间的互称。 关键要把握好以下两点: 1. 分子式相同 2. 结构式不同: (1)碳链异构(烷烃、烷烃基的碳链异构) (2)位置异构(官能团的位置异构) (3)官能团异构(官能团的种类异构) 同分异构体的书写步骤一般为: 碳链异构 → 位置异构官→能团异构 1. 碳链异构 基本方法:主链由长到短,支链由整到散,位置由心到边(烃基不能到端),排布由邻位到间位, 再到对位(或同一个碳原子上)。 位置:指的是支链或官能团的位置。 排布:指的是支链或官能团的排布。 例如:己烷(C 6H 14)的同分异构体的书写方法为:

⑴ 写出没有支链的主链。 CH 3—CH 2—CH 2—CH 2—CH 2—CH 3 ⑵ 写出少一个碳原子的主链,将这个碳原子作为支链,该支链在主链上的位置由心到边,但不 能到端。 CH 3—CH 2—CH —CH 2—CH 3 CH 3—CH 2—CH 2—CH —CH 3 CH 3 CH 3 ⑶ 写出少两个碳原子的主链,将这两个碳原子作为支链连接在主链上碳原子的邻位、间位或同 一个碳原子上。 CH 3—CH —CH —CH 3 CH 3—C —CH 2—CH 3 CH 3 3 3 3 故己烷(C 6H 14)的同分异构体的数目有5种。 2. 位置异构 ⑴ 烯炔的异构(碳链的异构和双键或叁键官能团的位置异构) 方法:先写出所有的碳链异构,再根据碳的四键,在合适位置放双键或叁键官能团。 ⑵ 苯同系物的异构(侧链碳链异构及侧链位置“邻、间、对”的异构) 例请写出如C 9H 12属于苯的同系物的所有同分异构体 苯的同系物,必有苯环,还有3个碳原子,这3个碳原子可以是一个丙基,丙基有2种;也可以是2个取代基,1个甲基、1个乙基,有邻、间、对3种;也可是3个取代基,这3个甲基可相邻,也可两邻一间,也可3个间位,共有8种。 【注意】苯环上有两个取代基时有3种,苯环上连三个相同取代基有3种、连三个不同取代基有

气相色谱柱知识汇总篇(2020.12.11)

气相色谱柱 知 识 汇 编 编辑时间:2020年12月11日

第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在2~4mm,长度为1~10m左右;后者内径在0.2~0.5mm,长度一般在25~100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。

大学有机化学反应方程式总结(较全)

大学有机化学反应方程式总 结(较全) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

有机化学 一、烯烃 1、卤化氢加成 (1) CH CH 2 R HX CH 3R X 【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。 【机理】 CH 2 C H 3+ CH 3 C H 3X + CH 3 C H 3 +H + CH 2 +C 3X + C H 3X 主 次 【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。 【注】碳正离子的重排 (2) CH CH 2 R CH 2CH 2 R Br HBr ROOR 【特点】反马氏规则 【机理】 自由基机理(略) 【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。 【本质】不对称烯烃加成时生成稳定的自由基中间体。 【例】 CH 2 C H 3Br CH CH 2Br C H 3CH + CH 3 C H 3HBr Br CH 3CH 2CH 2Br CH CH 3 C H 3 2、硼氢化—氧化 CH CH 2 R CH 2CH 2R OH 1)B 2H 62)H 2O 2/OH -

【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。 【机理】 2 C H 33H 32 3H 32 CH CH 2C H 3H BH 2 CH CH=CH (CH 3CH 2CH 2)3 - H 3CH 2CH 2C 22CH 3 CH 2O CH 2CH 2CH 3 H 3CH 2CH 2C 2CH 2CH 3 + O H - O H B - OC H 2CH 2CH 3CH 2CH 2CH 3 H 3CH 2CH 2B OC H 2CH 2CH 3 CH 2CH 2CH 3H 2CH 2CH 3 HOO -B(OCH 2CH 2CH 3)3 B(OCH 2CH 2CH 3)3 + 3NaOH 3NaOH 3HOC H 2CH 2CH 33 + Na 3BO 3 2 【例】 CH 3 1)BH 32)H 2O 2/OH -CH 3H H OH 3、X 2加成 C C Br /CCl C C Br Br 【机理】

色谱柱基本知识

色谱柱 色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。目录 1简介 2构造 3填料 4分类 1. 4.1 安装 2. 4.2 流动相 3. 4.3 样品制备 4. 4.4 保存操作 5发展方向 6性能评价 7注意事项 8新进展

柱效;对于同系物分析,只要500即可;对于较难分离物质对则可采用高达2万的柱子,因此一般 10~30cm左右的柱长就能满足复杂混合物分析的需要。 柱效受柱内外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,还要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向内算起30倍粒径的厚度。在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。 2构造 色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。柱管多用不锈钢制成,压力不高于70 kg/cm2 时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。为提高柱效,减小管壁效应,不锈钢柱内壁多经过抛光。也有人在不锈钢柱内壁涂敷氟塑料以提高内壁的光洁度,其效果与抛光相同。还有使用熔融硅或玻璃衬里的,用于细管柱。色谱柱两端的柱接头内装有筛板,是烧结不锈钢或钛合金,孔径0.2~20µm(5~10µm),取决于填料粒度,目的是防止填料漏出。 色谱柱按用途可分为分析型和制备型两类,尺寸规格也不同:①常规分析柱(常量柱),内径 2~5mm(常用4.6mm,国内有4mm和5mm),柱长10~30cm;②窄径柱(narrow bore,又称细管径柱、半微柱semi-microcolumn),内径1~2mm,柱长10~20cm;③毛细管柱(又称微柱microcolumn),内径0.2~0.5mm;④半制备柱,内径>5mm;⑤实验室制备柱,内径20~40mm,柱长10~30cm;⑥生产制备柱内径可达几十厘米。柱内径一般是根据柱长、填料粒径和折合流速来确定,目的是为了避免管壁效应。 3填料 常见的分配柱填料:碳十八柱[1](ODS/C18)、碳八柱(MOS/C8)、碳六柱(Hexyl/C6)、 碳四柱(Butyl/C4)、碳一柱(Methyl/C1)、阴离子交换柱(SAX)、 阳离子交换柱(SCX)、苯基柱(Phenyl)、氨基柱(Amino/NH2)、 氰基柱(Cyano/CN/Nitrile) 常见的吸附柱填料:硅胶柱 4安装 1、首先应确认柱和仪器的接头以及管路是否匹配。为减少死体积,进样阀、柱子、检测器之间

有机化学基础方程式总结(重点)

有机化学基础知识和方程式总结 一、脂肪烃: 1.烷烃【C n H2n+2(n≥1)】化学性质:不与强酸、强碱、强氧化剂和强还原剂反应,不能使溴的四氯化碳溶液或酸性高锰酸钾溶液褪色。(1)取代反应CH3CH3 + Cl2→ CH3CH2Cl + HCl (光照条件)(2)氧化反应—可燃性C n H2n+2 + (3n+1)/2O2→ nCO2 + (n+1)H2O (点燃) (3)分解反应:烷烃在隔绝空气的条件下加热或加催化剂可发生裂化或裂解。C8H18→ C4H10 + C4H8 , C4H10→ CH4 + C3H6 2.烯烃(CH2=CH2)【C n H2n (n≥2),二烯烃C n H2n-2(n≥4)】(1)烯烃通入酸性高锰酸钾溶液中会使溶液褪色 (2)催化氧化2CH2=CH2 + O2→ 2CH3CHO (催化剂,加热) (3)可燃性烯烃燃烧火焰明亮,伴有黑烟C n H2n + 3n/2O2→ nCO2 + nH2O (点燃) (4)烯烃与H2,X2,HX,H2O发生加成反应①氢气(H2) CH2==CH2 + H2→ CH3—CH3 (催化剂,加热) ②溴水,卤素单质(X2) CH2==CH2 + Br2→ CH2Br—CH2Br 常温下使溴水褪色 ③水CH2==CH2 + H—OH → CH2(OH)—CH3或CH3—CH2OH (催化剂,加热,加压) ④氯化氢CH2==CH2+ HCl → CH2Cl—CH3或CH3—CH2Cl (催化剂,加热) 3.炔烃(HC≡CH)【C n H2n-2(n≥2)】物理性质:无色无味,密度比空气略小,微溶于水,易溶于有机溶剂.有特殊难闻臭味. 化学性质:能发生加成反应、氧化反应和聚合反应。但比烯烃困难。 (1)乙炔的制取CaC2 (俗名电石)+ 2H2O → Ca(OH)2 + C2H2↑收集方法:排水集气法 (2)使酸性高锰酸钾溶液褪色(3)可燃性2C2H2 + 5O2→ 4CO2 + 2H2O (点燃)火焰明亮,伴有浓烈黑烟(4)加成反应氢气:HC≡CH + 2H2→ CH3CH3 (催化剂,加热) 水:HC≡CH + H2O → CH3CHO (催化剂,加热) 卤素:HC≡CH + 2Br2→ CHBr2—CHBr2 (1,1,2,2 –四溴乙烷)(5)加聚反应n HC≡CH → [CH==CH]n 二、卤代烃【R—Br】 1.物理性质(1)气味:具有一种令人不愉快的气味且蒸汽有毒。 (2)沸点①卤原子种类及个数相同时,卤代烃的沸点随碳原子数增加而升高;②卤代烃的同分异构体的沸点随烃基中支链的增加而降低;③同一烃基的不同卤代烃的沸点,随卤素原子的相对原子质量的增大而升高。 (3)溶解性难溶于水,易溶于有机溶剂,有些卤代烃本身就是良好的有机溶剂,如四氯化碳等。 2.化学性质(1)水解反应(取代反应)CH3CH2Br +NaOH → CH3CH2OH + NaBr (氢氧化钠的水溶液,加热)(2)消去反应(邻碳有氢)CH3—CH2Br + NaOH → CH2==CH2↑ + NaBr + H2O (氢氧化钠的醇溶液,加热) 补充:发生消去反应的条件①C原子数目≥2②与—X相连的C原子的邻位C上有H原子③与苯环上的H不能消去三、醇【R—OH】 1.醇的物理性质低级饱和一元醇为无色透明的液体,往往有特殊气味,能与水混溶。十二个碳原子以上的高级醇为蜡状固体,难溶于水。 2.醇的化学性质乙醇的燃烧C2H6O +3O2→ 2CO2 + 3H2O 乙醇与钠反应2CH3CH2OH + 2Na→2CH3CH2ONa + H2↑ (1)消去反应CH3—CH2OH → CH2=CH2↑ + H2O(浓硫酸.170℃,乙醇:浓硫酸=1:3)浓硫酸作用:催化剂,脱水剂(2)脱水反应C2H5—OH + HO—C2H5→ C2H5—O—C2H5 + H2O (浓硫酸,140℃) (3)取代反应←氢氧化钠的水溶液(逆反应)C2H5—OH + H—Br → C2H5—Br + H2O (加热) (4)氧化反应乙醇使酸性KMnO4,K2Cr2O7溶液褪色 CH3CH2OH →(氧化)CH3CHO(乙醛)→(氧化)CH3COOH(乙酸) 在Cu作催化剂时醇被氧化为醛或酮现象方程:CuO + 2CH3CH2O H → 2Cu + 2CH2CHO + 2H2O 总反应式:2CH3CH2OH + O2→ 2CH2CHO + 2H2O (条件:Cu,加热) 必须有—CH2OH才能被氧化,若没有则只能生成羰基。 四、醛【R—CHO】【还原反应:加氢去氧;氧化反应:加氧去氢】 1.氧化反应(1)银镜反应注意:a.试管必须洁净 b.水浴加热,使其受热均匀 c.实验完毕后,用稀HNO3清洗试管CH3CHO + 2Ag(NH3)2OH → CH3COONH4+ 2Ag↓ + 3NH3 + H2O (加热,用于检验醛基) (2)与新制氢氧化铜反应(用于检验醛基) CH3CHO + 2Cu(OH)2+ NaOH → CH2COONa + Cu2O↓(砖红色沉淀) + 3H2O (加热) (3)与空气氧化2CH3CHO + O2→ 2CH3COOH (催化剂,加热) 2.加成反应CH3CHO + H2→ CH3CH2OH (催化剂,加热)

有机化学《同分异构体》

高考化学一轮复习专题《同分异构体》 一、同系物、同分异构体、同素异形体和同位素概念辨析 二、同分异构体的种类及书写规律 1、种类:分类别异构、碳链异构、位置异构、顺反异构、对映异构等 2、书写规律 (1)烷烃 只存在碳链异构,书写时具体规律如下:①成直链,一条线;②摘一碳,挂中间,往边移,不到端;③摘二碳,成乙基;二甲基,同、邻、间。 (2)具有官能团的有机物 如:烯烃、炔烃、芳香族化合物、卤代烃、醇、醛、酸、酯等,书写时要注意它们存在官能团位置异构、官能团类别异构和碳链异构。一般书写顺序是:一般的书写顺序为:类别异构→碳链异构→位置异构,一一考虑,这样可以避免重写或漏写。 (3)芳香族化合物 取代基在苯环上的相对位置分邻、间、对3种 【例1】写出分子式为C5H10的同分异构体。 【例2】某有机物的结构简式为,它的同分异构体中属于芳香醇的共有: 3、同分异构体书写的某些方法 (1)取代法:把烃的衍生物看作烃分子中的氢原子被其它原子或原子团取代的产物,如卤代烃、醛、羧酸、醇等的书写都可以这样处理。 【例3】已知某有机物分子中含两个—CH3,一个—CH2—,两个,两个—Cl,该有机物可能的结构简式有 种,分别为 若把—Cl换成—OH,其余不变,则该有机物的结构简式为有种。 (2)消去法:如在书写烯烃、炔烃的同分异构体时,烯烃可看作烷烃相邻两个碳原子上各失去一个氢原子形成的,炔烃则可看作相邻两个碳原子上各失去两个氢原子形成的。 按1:1物质的量之比 【例4】某有机物与H 加成后生成的结构为: 则该有机物可能的结构有种,若有机物与 H2按1:2加成,则原有机物可能的结构有种。 (3)插入法:在书写醚、酯类、酮等同分异构体时,醚可看作烃中的C—C键之间插入 一个氧原子,酮可看作C—C之间插入一个来书写,而酯则可看作C—C或C—H键之间插入一个 来书写。 【例5】写出分子式为C8H8O2的属于酯的芳香族化合物的同分异构体

相关文档
最新文档