分子影像研究中分子探针技术的进展

分子影像研究中分子探针技术的进展
分子影像研究中分子探针技术的进展

分子影像研究中分子探针技术的进展

键词:分子影像学分子探针

分子医学的发展已经从根本上改变传统临床医学的检测、诊断和治疗的模式。

分子医学包括分子诊断、分子治疗和分子影像三个部分。分子诊断是在体外以蛋白、RNA和DNA水平对疾病进行早期、特异性诊断,并对疾病治疗效果进行监测。分子治疗是阻止疾病发生、发展的关键步骤,在分子水平上进行特异性阻断或抑制,以达到预防和治愈疾病的目的。

分子影像的诞生为疾病研究和诊断建立了一个全新的平台。分子影像技术的关键核心是分子探针。本文介绍分子影像探针技术的进展,希望我国分子影像工作者能够从分子影像学关键技术入手,加速我国分子影像技术的发展。为了系统阐述分子探针的制备和进展,我们从分子影像学简介、分子探针原理和制备、分子探针制备中注意的问题和分子探针的进展四个部分进行介绍。

一分子影像学简介

分子影像学包括临床前期分子影像研究和临床分子影像应用两个部分。目前只有SPECT/CT、SPECT、PET、PET/CT、MRI(MRS)和分子荧光成像能够胜任临床分子影像工作。分子影像和目前的医学影像相比具有高特异性、高灵敏度和高图像分辨率等特点,能够真正实现无创伤,以及分子水平的临床诊断。并且提供以解剖结构为基础,以分子水平为基准的疾病发生和发展的信息,为临床对疾病诊断提供定位、定性、定量和对疾病分期的准确依据。

一般而言,如果能够在基因改变的早期检测到不良变化的发生,就可以做到疾病早期发现和早期诊断。只有在分子水平认识疾病原因和变化,才能提出分子水平的治疗方案,达到疾病根治的效果。图1提示医学影像发展的过程和趋势,可以看出分子影像是今后医学影像发展的主要方向。

1. 分子影像学基础

分子影像是采用高特异的探针,无创地与体内细胞特定的分子靶位结合,以影像方式反映分子水平的变异信息。由于分子影像是在功能蛋白质水平对疾病进行研究,所以分子影像的本质是将先进的影像技术与生物化学、分子生物学等技术紧密结合,完成分子水平成像。分子影像具有高灵敏度和高特异性。

由于分子影像的目的是建立高灵敏和高特异的无创伤性影像学方法,所以它研究的重点包括以下几个方面:

(1)探讨细胞和特异性代谢、酶、受体及基因表达。目前临床广泛应用的CT、MRI及超声图像的特异性不能满足临床对特异性检测的要求,分子影像正好在这方面弥补了它们的不足。(2)以分子影像学手段进行靶向治疗药物和基因治疗方法的研究。(3)在分子病理学的基础上评价治疗效果和预后。(4)建立分子水平上药物代谢的动力学模型。(5)建立个性化治疗

的平台。

分子影像技术不但可用于研究人体疾病发生和发展过程,同时被用于人体生理、生化的研究。图2所示的是采用磁共振技术进行分子影像研究的示意图。

2. 分子影像学在基础研究和临床中应用

分子影像技术在基础研究和临床诊断中具有以下特点:(1)在生物体上可以重复进行生理、病理生理和生物化学的研究分析,具有良好的可对比性。特别是临床前期活体小动物研究,提供了在同一动物体上进行重复性研究的可能,并可通过精确定量分析获得准确的药代动力学模型,从而加速新药开发。(2)在基因表达和基因治疗疗效研究领域,分子影像技术是目前公认的最佳方法之一。尽管基因表达和基因治疗目前仍处于临床前期研究阶段,但是在研究基因技术对脑胶质瘤、干细胞对心肌缺血的治疗中,分子影像技术已显示了其独特的优势。(3)在进行酶和受体研究过程中,分子影像技术的无创检测能力很受临床的欢迎。

分子影像技术已经成为临床前期研究的重要手段,由PET/CT、SPECT/CT和高场强MRI共同建立了新的临床分子影像平台。

分子影像在临床有广泛的应用前景,但是目前分子影像、特别是临床分子影像还刚刚起步。临床应用最为广泛的是糖代谢显像、小分子显像、酶、受体和基因表达显像(图3)。

3. 分子影像研究设备在应用中的选择

MRI除了能够进行弥散成像和MRS在代谢水平成像外,对酶、受体和基因表达的显像剂研究还处于临床前的研究阶段。估计采用MRI进行临床酶、受体成像,还需要进行更多的临床实际应用研究。由于SPECT/CT系统的灵敏度和分辨率均不够理想,使SPECT/CT 分子影像学应用受到一定限制。对于PET/CT而言,代谢研究已经是非常成熟的临床检查项目。

分子影像设备各自的特点不同,CT、光成像、PET、常规核医学SPECT、MRI以及MRS成像设备的空间分辨率、时间分辨率和检测灵敏度,以及设备价格和使用成本等诸多方面存在差异,合理选用将有利于研究工作的开展(图4)。表1分别显示CT、光成像、PET、常规核医学SPECT、MRI以及MRS成像设备空间、时间分辨率。表中数据显示:MRI在空间和时间分辨率明显优于PET,光成像设备介于PET和MRI之间。而光成像设备和CT 设备的成本要低于MRI和PET。

尽管MRI在分子水平探测灵敏度方面不如PET,但是与PET相比MRI技术相对简单,因此易于普及,加上最新采用的分子纳米技术优化了MRI探针制备,从而推动MRI分子影像学的发展。

光成像设备介于PET和MRI之间。而光成像设备和CT设备的成本要低于MRI和PET。

PET设备具有更多的正电子放射性药物供临床及临床前期的研究,所以PET在分子影像的研究中发挥着重要的作用。

表2所示的是各种分子影像设备在临床前期研究中实际应用技术方法。

由于临床分子影像设备的探测器结构设计不断改进,使系统的分辨率和灵敏度得到较大提高。以前猴、兔等中型动物活体试验必须使用动物PET、动物MRI等设备,现在都能在临床分子影像设备上完成。目前在临床前期分子影像设备上主要进行裸鼠等小型动物模型的活体试验。对于荧光成像,由于受深度响应限制,在使用中存在一定的局限性。

二分子影像研究中分子探针原理和制备

分子影像中的关键技术是分子探针的制备和应用,只有开发满足研究或临床需求的,具有高灵敏度、高特异性的分子探针,才能从根本上推动分子影像的发展。众所周知,分子影像设备的供应商不可能每年都推出新型的设备,也就是讲分子影像设备的发展是阶梯状,而分子影像中分子探针的开发和制备却是连续的。所以,从另外一个角度来看分子影像中分子探针的研究比分子影像设备开发更重要。

对于PET、PET/CT和SPECT、SPECT/CT而言,探针就是放射性示踪剂。与MRI

和光分子成像探针相比,放射性示踪剂形式的探针制备比较简单,但是成本要高得多。对于荧光素标记的荧光分子探针成本低、容易制备,可以在体外研究中使用。与放射性示踪剂和荧光素标记分子探针相比较,基于MRI的顺磁性分子探针使用得要少得多。

1. 分子探针概念

分子影像技术由于使用了分子探针技术,因此在成像方法和诊断效果上形成了与传统医学影像的本质区别。有了分子探针和相关的影像设备后才能够完成分子成像。

分子探针(Molecular Probe)是一种特殊的分子,将该特殊分子引入体内(被称为分子探针)与组织、细胞特定的分子(被称为靶分子)特异性结合时产生可探测的信号,这些信号可以用PET、PET/CT、超高分辨率CT、MRI以及化学荧光或发光设备进行成像(图5)。

分子探针是分子影像成像的关键,分子影像技术对分子探针的要求主要有以下几点:(1)分子探针必须具有生物学兼容性,能够在人体内参与正常生理代谢。同时分子探针必须以微量分子为标记物载体,从而不会对人体造成任何伤害。(2)分子探针必须能够克服体内生理屏障。人体内具有许多屏障,比如血脑屏障、血管壁、细胞膜等。分子探针必须通过这些屏障才能和目标靶分子结合。(3)分子探针要求与靶分子具有高灵敏度和特异性的结合。分子生物学载体具有与目标靶分子高灵敏和高特异结合的特点,分子探针正是利用了这一特点达到分子影像示踪剂的要求,从而出色地胜任临床特异性诊断的任务。

常用的小分子探针有:与靶分子特异结合的受体、生物酶;单克隆抗体则归为大分子探针(图6)。

按照临床诊断或基础研究的需要,可以选用不同分子生物学载体设计符合分子影像学要求的探针,以完成特异性诊断或研究的任务。

2. 对从分子探针获得的生物信号进行放大

PET、PET/CT和光成像在分子探针只需纳摩尔(Nanomolar),甚至皮摩尔(Picomolar)浓度水平,就能够获得高质量图像。受探测灵敏度限制,即使使用高浓度分子探针成像,MRI获得的信号也非常小,需要成像前在体内和体外增强信号以改善图像质量。这种信号增强技术统称生物信号放大,对分子探针信号放大是分子影像设备设计中非常重要的部分。

表3所表示的是不同影像技术达到探测要求时的探针浓度水平。从表中可以看出,对MRI分子影像技术而言,提高探测灵敏度是至关重要的。最近几年,提高MRI检测灵敏度的技术和方法有了明显进展,使MRI在分子影像领域取得了令人瞩目的迈进。MRI分子影像技术与PET(PET/CT)技术相比,具有简单、稳定和重复性好等优点,所以用MRI开展分子影像工作很受临床医生的欢迎。

正是由于PET(PET/CT)分子影像技术具有高灵敏度特点,只需微量分子探针就可获得

理想的图像,非常适合受体和酶等作为探针,用这类探针进行放射性核素标记,使其具有示踪特性以获取分子影像。

3. 分子探针的制备

随着标记技术的发展,特别是一些全自动化标记设备和药盒的商品化,使得分子探针的制备已日趋规范。图7 为采用放射性核素、荧光染料、稳定放射性核素13C、顺磁性元素制备分子探针的示意图。可以看出,分子探针由生物标志物和标记物两个部分组成。无论哪种标记技术,它们采用的生物标志物部分是基本相同的,只是采用的标记染料、放射性核素、磁性物质不同而已。探针是分子影像的基础和核心,分子影像若没有探针就像射击没有子弹一样。从制备分子探针的角度看,分子影像应该是一门独立的综合性学科。

在分子探针制备中,首先需要考虑选择哪种标志物。目前研究中和正在使用的标志物有:有机化合物、多肽类和抗体类。从合成的难易程度比较,有机化合物最容易合成。有机化合物合成的成本低,但是有机化合物与组织细胞靶结合的特异性最差。抗体类与组织细胞靶位结合的特异性高,但是合成过程复杂,有时受检者存在过敏的问题。以多肽类作为标志物具有最佳的性价比。在确定探针的标志物后,我们就需要考虑选择哪种标记物的问题。对于分子探针也存在着“金标准”,一般将碳(11C,13C)或氢(3H)标记物制备的分子探针作为“金标准”。确立分子探针“金标准”后,可以采用荧光或放射性核素标记的探针作为替代的分子探针。对于顺磁性标记的分子探针,由于其对标志物性能影响较大,同时顺磁性金属元素使用的量较大,对人体存在毒性,所以仅仅局限于体外或有限的临床前期研究中。

对于分子荧光和PET (PET/CT),如果没有荧光物质和放射性核素标记示踪剂前体,就无法进行分子影像成像。但是MRI却不同,MRI探针包括标记物和体内非标记物两部分。MRI使用的某些探针即使未进行标记,仍然可以通过MRS频谱分析进行分子影像成像。标记探针的放射性核素可以选用124I、18F、11C、123I、99m Tc;MRI探针标记物可以选用Gd、Fe、13C等,标记物选择是根据具体成像要求来决定的。目前发展的趋势是采用最佳性价比分子探针进行分子成像。比如,18F的放射性半衰期是11C的6倍,并且18F探针图像质量明显优于11C探针,采用18F标记的放射性示踪剂比11C标记的放射性示踪剂更具有临床实用性。进行MRI显像时,Gd标记的探针比13C标记的探针具有更高的性价比。对于受体显像探针不能只从性价比考虑,因为它需要一定比活度才能对图像进行精确的定量分析。

三分子探针制备的影响因素

在分子影像成像过程中,分子探针决定了分子影像成像的特异性及灵敏度。选择的分子探针的标志物决定了分子探针的特异性高低,选择的分子探针标记物决定了分子探针成像的灵敏度。我们期望的是能够制备成本低,但是具有高特异性、灵敏度的分子探针。但是常常由于条件的限制不得不对分子探针的灵敏度、特异性和制备成本之间的制约做出必要的妥协。降低分子探针的标志物和标记物成本可能会降低分子探针的灵敏度和特异性,但是却提高了分子探针的实用和推广价值。

1. 分子探针制备中分子标志物和标记物的选择

分子探针中的探针的标志物决定整个分子探针的特异性,选择最佳的标志物是制备分子探针的基础和前提。分子探针制备需要有机化学、分子生物学、化学的基础知识和相关的制

备工艺。分子探针的制备是一门专门的学科。图8是从探针标记难易程度、标记后对标志物结构和性能的影响、探针灵敏度和特异性等因素考虑选择探针标志物。从综合因素考虑目前采用多肽类作为探针生物标志物已经成为发展的趋势。

在选择最佳的探针生物标志物后,需要对选择的生物标志物或其它的官能团进行保护,或是引入一些特定的离去基团以便于标记物进入标志物中。由于标志物不同,采用的官能团保护方法和引入离去基团的方法会有明显的不同。

对于已经修饰的标志物需要考虑分子探针标记物选择的问题。再好的分子探针生物标志物,如果没有分子标记物标记那也无法进行分子影像成像。图9是从标记难易程度和标记成本、标记后对探针整体结构影响、标记后对分子探针生物学性能的影响等因素考虑如何选择放射性核素、荧光素或顺磁性的标记物。采用11C标记的分子探针是最佳选择,但是11C 标记的分子探针存在成本高的问题。为此,一般采用11C标记的分子探针作为探针的“金标准”,开发低成本的分子标记物。比如,采用18F作为分子标记物取代11C标记的分子探针。相比较采用顺磁性金属作为分子标记物会对分子探针的生物学性能有不同程度的影响,对此需要特别注意。

2. 影响分子探针稳定性的因素

分子探针的特性不但在制备过程中会受影响,在应用过程中也会受多种因素的影响。这些包括分子探针标志物稳定性、结构和生物学特性等,以及制备后分子探针受酸碱度、保存温度、在体外保存时间、在体内环境等因素影响下的变化。在分子探针制备过程中需要注意的是选择高特异性的分子标志物,特别是在标记过程中需要保证分子探针生物学特性、物理化学性能的相对稳定性。对于取代反应标记的分子探针容易发生标记物脱落的现象,对于分子标记物通过螯合物形成的分子探针大多会在不同程度上影响分子探针的性能,尤其是一些采用顺磁性金属制备的MRI分子探针形成的胶体容易在肝脏聚集,因而形成一些假阳性结果。在分子探针制备后需要注意对分子探针的酸碱度进行调节,使其保持在中性的环境下。对于影响分子探针稳定的一些因素需要在探针制备过程和保存过程特加注意。

四分子探针制备技术进展

如以上所述,分子探针是分子影像的核心。最近几年有关分子探针制备的理论和方法已经取得很大进步。这些包括:选择多肽类的生物标志物、选择高特异性和高选择性的标记方法、采用双标记或多标记的方法等。

1. 选择多肽类作为分子探针的生物标志物

多肽类既兼顾了单抗类特异性,又具有有机化合物类制备简单、成本低的特点。所以,采用多肽类作为分子探针的生物标志物已经成为一种发展的趋势。

2. 采用高选择性、高度特异性的分子探针标记方法

以前在选择分子标志物后,需要对分子标志物上一些官能团进行保护后才能采用分子标记物进行标记。最近采用高选择性、特异性分子探针的标记方法明显提高分子探针制备效率,降低分子探针制备的成本。

3. 采用双标记或多标记方法制备分子探针

由于放射性核素、荧光素或一些顺磁性的金属元素作为分子探针的标记物均具有一定的局限性。为了克服单一分子探针标记物的局限性,有时将放射性核素标记和荧光素标记结合起来,一个分子探针可以采用不同的成像设备进行分子成像,这样能加速分子探针研究,同时获得更多的分子信息。

4. 建立同一标志物基础上的不同标记物平台,加速探针开发速度

以前,不同标记方法需要制备不同的标志物。这样不但增加了探针制备的成本,也增加了探针制备的过程。现在,可以选择同一标志物对于放射性核素标记、荧光标记、还是Gd等顺磁性标记均可以直接完成,不用对标识物进行修饰。

综上所述,分子探针在制备过程和制备后保存也受到多种因素的影响。有效的控制这些影响因素对于分子探针制备至关重要。随着分子影像在临床前期研究和临床应用深度和广度的增加,分子影像学对分子探针的需求也在不断地提高。分子探针的制备在分子影像领域具有重要的价值。

分子影像研究中分子探针技术的进展上课讲义

分子影像研究中分子探针技术的进展

分子影像研究中分子探针技术的进展 键词:分子影像学分子探针 分子医学的发展已经从根本上改变传统临床医学的检测、诊断和治疗的模式。 分子医学包括分子诊断、分子治疗和分子影像三个部分。分子诊断是在体外以蛋白、RNA和DNA水平对疾病进行早期、特异性诊断,并对疾病治疗效果进行监测。分子治疗是阻止疾病发生、发展的关键步骤,在分子水平上进行特异性阻断或抑制,以达到预防和治愈疾病的目的。 分子影像的诞生为疾病研究和诊断建立了一个全新的平台。分子影像技术的关键核心是分子探针。本文介绍分子影像探针技术的进展,希望我国分子影像工作者能够从分子影像学关键技术入手,加速我国分子影像技术的发展。为了系统阐述分子探针的制备和进展,我们从分子影像学简介、分子探针原理和制备、分子探针制备中注意的问题和分子探针的进展四个部分进行介绍。 一分子影像学简介 分子影像学包括临床前期分子影像研究和临床分子影像应用两个部分。目前只有SPECT/CT、SPECT、PET、PET/CT、MRI(MRS)和分子荧光成像能够胜任临床分子影像工作。分子影像和目前的医学影像相比具有高特异性、高灵敏度和高图像分辨率等特点,能够真正实现无创伤,以及分子水平的临床诊断。并且提供以解剖结构为基础,以分子水平为基准的疾病发生和发展的信息,为临床对疾病诊断提供定位、定性、定量和对疾病分期的准确依据。 一般而言,如果能够在基因改变的早期检测到不良变化的发生,就可以做到疾病早期发现和早期诊断。只有在分子水平认识疾病原因和变化,才能提出分子水平的治疗方案,达到疾病根治的效果。图1提示医学影像发展的过程和趋势,可以看出分子影像是今后医学影像发展的主要方向。 1. 分子影像学基础 分子影像是采用高特异的探针,无创地与体内细胞特定的分子靶位结合,以影像方式反映分子水平的变异信息。由于分子影像是在功能蛋白质水平对疾病进行研究,所以分子影像的本质是将先进的影像技术与生物化学、分子生物学等技术紧密结合,完成分子水平成像。分子影像具有高灵敏度和高特异性。 由于分子影像的目的是建立高灵敏和高特异的无创伤性影像学方法,所以它研究的重点包括以下几个方面:

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来;20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR 成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩大,它是真正意义上的功能水平和分子水平的成像。20世纪90年代后出现了PACS,实现了医学影像的大融合,将各种数字化的图像串联起来,可进行数字化图像的远程传输和远程会诊,并与医院的HIS、CIS、RIS等进行联网,实现了数字化医院。 由于医学影像设备的不断发展,医学影像技术的日新月异,医学影像学的CT、MR、介入、普放,超声和核医学等亚学科逐渐建立,医学影像技术学科也逐渐形成。 医学影像学的发展经历了三个阶段;X线的临床应用,放射学的形成,医学影像学的形成。总体走向是建立现代医学影像学:从大体形态学向分子、生理、功能代谢/基因成像过渡;从胶片采集、显示向数字采集/电子传输发展;对比剂从一般性组织增强向组织/疾病特异性增强发展。;介入治疗,以及与内镜、微创治疗/外科的融合、发展。具体走向是:影像信息更加具有敏感性、直观性、特异性、早期性;图像分析由定性向定量发展:由显示诊断信息向提供手术路径方案发展;图像采集与显示:由二维模拟向三维全数字化发展;图像存储由胶片硬拷贝向软拷贝无胶片化,乃至图像传输网络化发展;从单一图像技术向综合图像技术发展

分子影像技术简介及其在肿瘤方面的应用

分子影像技术简介及其在肿瘤方面的应用 【摘要】分子影像技术是运用影像学手段显示组织水平、细胞和亚细胞水平的特定分子,反映活体状态下分子水平变化,对其生物学行为在影像方面进行定性和定量研究的科学[1]。分子影像技术能够可视化活体生物分子水平上正常和异常的生物进程,是一种新的生物医学方法,在活体内的细胞和亚细胞水平的生物可视化、特征化和量化细胞进程。分子影像技术在临床医学上具有重大的应用价值,本文主要对肿瘤方面的应用进行简单综述。 【关键字】分子影像技术肿瘤分子探针技术 肿瘤是威胁人类健康的重要疾病之一。肿瘤的早期诊断和治疗是提高患者生存质量和治愈率的关键。传统的X线、超声、CT、MRI 和 PET 难以发现早期阶段的肿瘤,对其定位、定性诊断相当困难,而随着纳米技术的发展及分子探针在影像学中的不断应用,影像医学已从对传统的解剖和生理功能的研究深入到分子水平成像,为肿瘤的早期诊断、治疗及生物学特性研究带来了希望[2]。 1.分子影像技术的基本概念 分子影像学是传统的医学影像技术与现代分子生物学相结合产生的一门新兴学科。分子影像技术能够从细胞、分子层面探测到疾病的初期变化,具有传统成像手段所没有的无创伤、实时、活体、特异、精细显像等优点[3]。分子影像技术是将分子生物学技术和现代医学影像学相结合的产物通过发展新的工具、试剂及方法探查疾病过程中细胞核分子水平的异常[4]。 2.分子影像技术的特点 分子影像技术主要是利用各种医学影像技术,对人体内部生理或病理过程在分子水平上进行无损伤的、实时的成像[5]。传统的医学影像技术以人体内部的物理性质或生理特性作为成像对比的源,如密度、散射、质子密度、或血流量等生理量,

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

超声分子影像学研究进展_王志刚

专论 Progress of ultrasound molecular imaging WAN G Z hi -gang * (I nstitute o f Ultrasound I maging ,Chongqing Medical University ,Chongqing 400010,China ) [Abstract ] With the rapid development of ultra so und mo lecular probe technology ,ultrasound mo lecula r imaging has be -co me o ne o f the ho t spo ts in mo lecular imaging research field .T he desig n o f mo lecular pr obes is the key point a nd pr erequi -site fo r ult rasound molecular imag ing .Peo ple increasing ly pay mo re attention to the targ eted ultrasound co nt rast agents which are the ultrasound molecular probe .T he intersection of multiple disciplines will pr omo te the development o f ultra -so und mo lecular imaging . [Key words ] U ltrasound mo lecular imaging ;Ultr aso no g raphy ;Contra st media 超声分子影像学研究进展 王志刚 * (重庆医科大学超声影像学研究所,重庆 400010) [摘 要] 随着超声分子探针技术的兴起,超声分子成像成为当前医学影像学研究的热点之一。分子探针的设计是超声分子成像研究的重点和先决条件。靶向超声微泡(球)造影剂在分子影像中的研究、应用,愈来愈受到关注,而多学科的融合使其具有更大的发展空间。 [关键词] 超声分子影像学;超声检查;造影剂[中图分类号] R445.1 [文献标识码] A [文章编号] 1003-3289(2009)06-0921-04 [基金项目]国家自然科学基金面上项目(30770566、30770565)。[作者简介]王志刚(1945-),男,重庆人,教授。研究方向:超声诊断与治疗。 [通讯作者]王志刚,重庆医科大学超声影像学研究所,400010。E -mail :w zg62942443@https://www.360docs.net/doc/1f12119281.html, [收稿日期]2009-04-20 [修回日期]2009-04-30 随着国内关于“超声分子影像学”概念的首次提出[1],超声分子成像成为当前医学影像学研究的热点之一。超声分子成像技术系将特异性配体连接到小于红细胞的超声造影剂表面,通过血液循环特异性地积聚于靶组织,观察靶组织在分子或细胞水平的特异性显像,能够反映病变组织在分子基础上的变化。其优点包括:①无创、无毒、无放射污染;②超声显微镜已能对细胞结构进行活组织观察,达到与病理显微镜相媲美的水平;③能实时、动态、多次重复地对靶组织进行观察[2];④可设计单靶点、多靶点和多模式的超声分子探针;⑤最近研 究发现的敏感粒子声学定量(SPAQ )技术[3] 能实现对肿瘤表达受体水平的在体、动态、实时定量;⑥敏感度高,可以探测到 单个超声微泡的信号[4] ,微泡直径约1~3μm ,直径明显小于大多数细胞,表明超声可以探测到单个细胞甚至比单个细胞更微小的结构的信号;⑦可用于直接测量微血管或大血管内的血流速度。 分子成像研究的重点和先决条件是分子探针的设计。分 子探针是指能与靶组织特异性结合的物质(如配体或抗体 等),与能产生影像学信号的物质(如同位素、荧光素或顺磁性原子)以特定方法相结合而构成的一种复合物。借助分子探 针可间接反映分子或基因的信息[5] 。目前所使用的超声分子探针是超声微泡(球)造影剂。1 超声分子探针的分类 超声分子探针按探针构成成分分为:①磷脂微泡(球)造影剂:脂类造影剂,具有使用安全、稳定性好、造影效果好、易于靶向修饰、可用药物或基因的载体等优势,但存在有效增强显影时间较短的问题;②高分子(聚合物)微泡(球)造影剂:其外壳为可生物降解的高分子聚合物及其共聚体,能根据需要设计不同的声学特性,改变其降解速度和持续时间。目前高分子造影剂处于实验研究阶段,如Schering 公司研制的SH U563A 、Acusphere 公司的A I -700,对压力的耐受性好,易于靶向修饰,并且是良好的药物控释载体,但需要较高的声学输出才能引起微泡的非线性共振;③液态氟碳纳米粒:该类造影剂具有独特的优势,其组织穿透力强,能够穿过血管内皮细胞进入组织间隙,实现血管外聚集显像;固有的稳定性使其在体内具有更长的半衰期,便于延迟显像或重复检查;具有天然的同时增强超声和CT 显像的内在属性,是良好的多模态造影剂[6];易于靶向修饰,同时可作为一些药物的载体。 超声分子探针按探针粒径大小分类有微米级超声造影剂和纳米级超声造影剂,前者为常规超声造影剂,平均直径约2 · 921·中国医学影像技术2009年第25卷第6期 C hin J M ed Imagin g Technol ,2009,Vol 25,No 6 DOI :10.13929/j .1003-3289.2009.06.079

分子信标:新型核酸分子探针要点

分子信标:新型核酸分子探针 摘要: 分子信标是基于荧光共振能量传递原理设计的一种发夹型寡聚核酸分子荧光探针,能够与待测核酸序列分子相互作用发生结构变化产生不同强度的荧光信号及电化学信号等,具有高灵敏度、高选择性、适于活体检测等优点。本文介绍了分子信标的作用原理,不同的分子信标类型以及应用,最后对前景作出了预测。 关键词:分子信标荧光探针灵敏度选择性活体检测 引言: 从20世纪60年代初至今,分子信标(Molecular beacon,MB)已被广泛地应用于生物、药物、化学等多个领域【1,2,3,4】。近年来,MB特别是基于DNA结构的MB,已成为一种重要工具,用于核酸的复制、重组、翻译和表达的研究【5,7,12】。为了满足后基因组时代的发展需求,人们通过各种分子工程策略,发展了许多敏锐性更高、选择性更优的MB。 自从1996年Tyagi和Krame【6】首次建立了分子信标探针,由于其独特的性质和多功能性,如操作简单、灵敏度高、特异性强等。在它出色地完成了液相靶标测定(实时PCR测定)任务之后,人们又将其应用于核酸实时定量测定、活体分析、化学与生物传感、疾病基因检测与诊断等研究中【8,9,10,11】。又由于易于对其进行修饰和改性,在这十来年的发展中,人们在经典分子信标模型的基础上,设计出了许多新型的分子信标,如无茎分子信标,用PNA【13】链代替ssDNA形成的PNA分子信标,以及LNA分子信标等。这些新型的分子信标是为了满足不同的需要而设计的,特异性更强,稳定性更好,为许多新的研究领域提供了一个平台。为了满足基因组学和蛋白质组学的发展,对分子信标的固定化也成了必然的发展趋势,自从谭蔚泓【14】首次将分子信标固定在硅胶上以来,固定化分子信标也迅速发展起来。尤其是后来设计的将分子信标固定在金表面【15,16】,利用金的强摩尔消光系数进行淬灭,简化了分子信标的设计,更加方便对其进行操作,大大促进了基因微阵列技术的发展。

《医学影像诊断学》学习指南

《医学影像诊断学》学习指南 一、课程介绍: 《医学影像诊断学》是运用X线、CT、MRI等成像技术来研究人体组织器官在正常和病理状态下的成像,以唯物辩证法的观点进行综合分析,进而判断病变性质,为临床治疗提供重要诊断依据的一门学科。随着医学影像医学检查手段和方法的不断进步,医学影像诊断学内容亦在不断丰富和更新,成为包括超声、X线、CT、MR、ECT、PET 和介入放射学等一门独立而成熟的临床学科。在本门课程的教学内容中除反映国内、外医学影像学的现状和成熟的观点外,还兼顾我国医学教育事业发展的实际需要,以系统为主线,在每系统中均以总论、正常X线、CT、MR表现和基本病变的表现为主,适当地编入了部分常见病和多发病的影像学诊断,以保持学科的系统性、完整性,忌片面求新求深。 本课程讲授中,为适应学生在今后工作中查阅外文文献和国际交流的需要,在学习中还需讲授重要名词和术语的英文单词。 二、课程学习目标: 1、掌握医学影像诊断学的基础理论与基本知识。 2、熟练掌握医学影像诊断学范畴内的各项技术,掌握各种影像学检查方法的原理 和疾病诊断合理方法的选择、疾病的影像学诊断基础(包括常规放射学、CT、MR、超声学、核医学、介入放射学。 3、能够运用影像学的诊断技术进行疾病诊断的能力。 4、了解影像诊断的理论前沿和发展动态。 三、课程学习内容与安排 医学影像专业本科生要求掌握各种影像检查方法的成像原理、检查技术,掌握各系统正常和基本病变的影像学表现,掌握一些常见病和多发病的影像诊断,了解本专业成像技术的最新进展。按照本专业的教学计划要求,分为理论课和实践课二大模块。 在理论课中按系统分为11个部分共78学时,实践课教学分为实验课、见习和实习3个部分。

遥感卫星影像数据采购知识要素

北京揽宇方圆信息技术有限公司 (一)遥感卫星数据类型有哪些? 北京揽宇方圆卫星公司可提供多种遥感数据类型供用户选择,目前来说是国内遥感数据最多的遥感数据中心,分辨率从0.3米到30米的光学卫星影像,还有各种极化方式的雷达卫星影像,高光谱卫星影像,还有解密的1960年至1980年的锁眼卫星影像,根据自己的情况来定,也可以把自己的卫星数据需求告诉我们,给您推荐合适的卫星数据类型。如果您想获取高程信息DEM、DLG等信息,需要购买的就是卫星影像立体像对数据,并不是所有卫星都有立体像对哦。 (二)遥感卫星数据影像有哪些级别? 卫星公司北京揽宇方圆销售的都是1A级别原始卫星影像,光学卫星影像原始数据都是以全色+多光谱捆绑形式提供,卫星影像一般可以经过一定的处理,形成各级别的影像数据,不同的级别可以针对不同的用户需求,在订购时需特别注意。 *名词(全色就是黑白数据,多光谱是指红绿蓝近红外) (三)遥感卫星数据影有没有最小数量起订的说法? 北京揽宇方圆提醒您在购买卫星影像时,都要确认购买面积大小或景数。对于高分辨率影像来说,一般是按面积大小来计算,单位为平方公里。但是往往有个最小购买面积,例如,WorldView影像的存档数据最低起购面积为25平方公里,且需要满足四边形两边相距大于等于5公里;而中低分辨率影像则往往按景数来计算,景是一幅卫星影像的通俗讲法,例如,一景高分一号卫星影像,范围大小为32.5×32.5公里。 (四)遥感卫星存档数据是指什么? 北京揽宇方圆详解遥感卫星存档数据:是指先前卫星已经拍摄过的某区域的影像数据,已存档在数据库中,是现成品。该种影像的购买价格相对较低,订购时间较快。但是订购前需要对既定需求区域做出确认,即确认所需区域是否有卫星影像数据存档、卫星影像存档数据的拍摄时间、拍摄质量(包含了云量、拍摄倾角等因素)等。 (五)遥感卫星编程数据是什么意思? 北京揽宇方圆遥感公司对遥感卫星编程数据的解释是指地面编程控制卫星对需求区域拍摄最新的影像,可以让用户得到需求区域最新的影像。但是编程影像的拍摄周期通常较长,订购初期需要先向卫星运营公司申请拍摄区域的拍摄周期,然后由卫星公司反馈计划拍摄周期。在这个拍摄周期中,并不能够保证拍摄成功,这与所拍摄地的天气情况、拍摄数据的优先级权重以及需求数据范围有关。 (六)遥感卫星影像数据价格如何一般是多少? 目前市面上的商业遥感卫星数量较多,北京揽宇方圆是国内遥感数据资源最多的公司,不同的行业根据自己的遥感项目业务要求,对各卫星影像的分辨率、波段数量、质量以及影像拍摄的时间要求各异,而卫星

医学影像学的进展对临床医学的影响

随着放射学发展为医学影像学,该专业从临床医学中的一个辅助性学科跃升为支撑性学科。现代的医学影像学对先进科学技术依赖之深决定了它必将随着现代科技的前沿迅猛发展,进而对临床医学整体产生深刻的影响。 一.医学影像学对临床医学的宏观影响 (一)形态学信息显示方式的改变 医学影像学目前显示的信息类型已经从简单的二维的模拟影像转 科有重要的意义;脑功能性成像已 开发了若干年,且已在广泛的临床 应用中;CT与MRI的肿瘤灌注成像 已逐步开展,以提供参数性诊断信 息;心脏与其他实质性器官,如肝 脏,灌注成像将提供相应器官微循 环改变的更直观的信息;心脏的 MR向量成像是研究心腔内循环状 况的新方法;分子影像学与基因影 像学的出现反映了医学影像学几乎 同步地冲入了这些崭新的医学领域。 这些还只是新的信息模式的一部份。 这些新的信息模式给临床医生提供 了大量新的有用的诊断信息,直接 影响对疾病的病情与预后的判断。 (四)对医学基本理论的冲击 医学影像学的迅速进展和新的 信息类型涌现,对临床医学乃至基 础医学的冲击已经到了必需改写教 科书的程度。如MR皮层功能定位研 究已发现了传统的解剖学与生理学 不了解、甚至描述不正确的神经反 射投射路径;脑与心肌的灌注成像 可直接提供缺血的脑或心肌存活状 况,从而需要彻底修改传统的治疗 方案;介入放射学的多种技术开发 使教科书中很多疾病的诊断与治疗 方法的描述要作重大修改。事实上, 介入放射学的开展是当前外科手术 中蓬勃发展的微创技术的先驱。 二.医学影像学对主要应用领 域的影响 (一)中枢神经系统 1.卒中 传统的CT检查对缺血性 卒中诊断的时间盲区达24小时或更 久;传统的MRI诊断缺血性卒中的 时间盲区也为12小时左右;MRI扩 散成像、MR灌注成像以及发展较晚 但应用更普及的CT灌注成像可提早 到发病后2小时作出诊断。缺血性卒 中的溶栓治疗是公认的介入性治疗变为: 1.数字化影像 可用为各种重 建、重组和数字化存贮与传输的基 础; 2.复杂的重组影像 可作2D、3D、 4D显示、内窥镜显示、曲面重组、多 平面重组、最大强(密)度投影、最小 强(密)度投影、遮蔽表面显示、容积 再现等; 3.除形态学信息以外还可作功 能性信息和代谢性信息的显示; 4.可作不同类型信息(CT、MRI、 PET……)的融合显示与形态学、功 能性与代谢性信息的融合显示。 当代的影像学信息可以把相当 于大体解剖学的形态学信息乃至远 较大体解剖学信息丰富的各类信息 直观地提供给临床医生,使临床医 生免去解读常规的二维模式信息以 及横断层面信息的困难,得到丰富 的、很多是其他检查方法无法提供 的信息类型。 (二)形态学信息显示时相的改变 信息显示中时间分辨力的提高 已从早期的“实时重建”,发展为动态 器官的实时动态显示和多期相采集, 从时间的概念上扩大了采集到的信 息的“质”与“量”。如肝脏的多层CT 动态扫描已经可以准确地分辨动脉 早期、动脉期、动脉晚期、门脉流入 期、门脉晚期等期相,从而可捕捉到 以往不能显示的病变和/或表现。 此外,MR扩散成像、MR灌注成 像、CT灌注成像等除特定应用外,也 具有显示时相方面的优势,如可以 显著地提早脑缺血病变的显示时间, 从传统CT的发病后24小时提早到发 病后2小时。 (三)新的信息模式不断涌现 近年开发并日趋完善的脑白质 束成像(tractography)是基于MR扩 散成像发展的扩散张量成像(tensor imaging)的直接结果,对神经内、外

分子影像学与分子影像技术第一讲小动物在体成像与分子影像

分子影像学与分子影像技术 第一讲 小动物在体成像与分子影像
中科院自动化所医学影像研究室
主要内容 一、医学影像技术与分子影像 二、小动物在体成像 三、小动物在体成像仿真平台 四、总结
医学影像技术的发展 ? 结构成像
? X-ray ? CT 成像 ? MRI成像 ? 超声成像
? 功能成像
? fMRI 功能核磁共振成像 ? PET正电子断层成像 ? SPECT单光子发射断层成像
? 分子影像
? 光学成像 ? 磁共振波谱成像 ? 核素成像
19--20世纪 看到病变
■ 结构成像 ? X-ray ? MRI成像 ? CT 成像 ? 超声成像
20世纪90年代 看到功能
■ 功能成像 ? fMRI 功能核磁共振成像 ? PET正电子断层成像 ? SPECT单光子发射断层成像
1

21世纪以来 看到细胞、分子水平的变化
■ 分子成像 ? 光学成像 ? 核磁共振成像 ? 核素成像
实时、在体 特异性
医学影像技术 信息技术
分子影像学
分子影像技术可以在 细胞、基因和分子水 平上实现生物体内部 生理或病理过程的无 创实时动态在体成像 ,从而为疾病病程的 在体监测、基因治疗 的在体示踪、药物在 体疗效评测、功能分 子的在体活动规律研 究提供了新的技术平 台。
分子生物学
分子影像学
临床医学
化学
物理学
新兴交叉学科
国内外研究现状和发展趋势
?
分子影像学面临的挑战性问题
? ? ?
? ? ?
?
2002年,Science的十大突破之一:基于成像测量(包括 光学成像)的分子与细胞事件动力学过程的可视化研究 近年来,Nature杂志刊载了分子影像学方面的系列文章 2002年,美国国立卫生研究院路线图NIH Roadmap 2000-2002年,美国国家科学基金委NSF发布了四次 Biophotonics Partnership Initiative (生物光子学合作伙伴 计划)招标指南 2002年10月我国召开了以分子影像为议题的香山会议
分子探针技术 成像技术 数据分析与处理(信息技术)
分子探针技术 数据分析与处理 成像技术
分子探针和靶分子
分子探针 从体外注入到体内的分子参与体内生理活 动,并且探查人体内部的某种特定分子,因 此称为分子探针。 生物大分子 ? 靶分子 体内某种特定的分子,是需要探查和成像 的分子,称为靶分子。
? ?
分子探针的特点
纯度高,不含杂质; ? 对人体无害,没有副作用; ? 具有良好的生理功能,能参与人体正常的 生理活动; ? 能够克服人体内部的“生理屏障”,顺利到达 靶分子所在的器官; ? 示踪剂、分子探针和靶分子应该紧密结 合,不能脱落。
2

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

分子蒸馏技术及其应用的研究进展(精)

综述与专论 分子蒸馏技术及其应用的研究进展 陈立军陈焕钦 (华南理工大学化学工程研究所,广州510640 摘要分子蒸馏是一种在高真空下进行的特殊蒸馏技术。分子蒸馏是一项国内外正在工业化开发应用的高新分离技术,尚未实现大规模的工业化。分子蒸馏技术同普通蒸馏技术的差别很大。介绍了分子蒸馏基本原理、技术特点、主要装置和优势。此外还详细介绍了分子蒸馏技术在国内外的应用新进展,并提出了未来分子蒸馏领域的重点研究方向。关键词 平均自由程分子蒸馏应用进展R esearch Progress in the T echnique of Molecular Distillation and its Application Chen Lijun Chen H uanqin (R esearch I nstitute of Chemical E ngineering ,Southern China U niversity of T echnology ,G uangzhou 510640 Abstract The m olecular distillation (short -path distillation or unobstructed distillation is a special separation technique of liquid -liquid and a special distillation technique under the high vacuum.It is an industrializing Hi -tech at home and abroad and not used in

医学影像学的发展与现状

医学影像发展与医学影像技术学的形成 ◆医学影像是临床医学中发展最快的学科之一,它发展速度快,更新周期短,每1~2年就出现 一项新技术。显著的特点是从疾病的形态学诊断发展到疾病的功能诊断,从大体形态诊断发展到分子水平诊断,以及定性和定量的诊断,从诊断的临床辅助科室发展到临床治疗的介入科室。以致在医学影像学的基础上形成了医学影像诊断学、医学影像治疗学和医学影像技术学等亚学科。 ◆1895年德国物理学家伦琴发现X线,并把X线用于人体检查,开创了放射医学的先河。在 此后的100多年内X线检查占着主导地位,幷广泛地用于临床,使得放射医学逐渐形成一个独立的学科,对临床疾病的诊断起着举足轻重的作用。当时的放射科医生来源有二,在大的教学医院的主要是医疗系毕业的学生,中小医院主要是放射中专班毕业的学生。此时放射科技术人员,在大的教学医院有解放前教会医院培养的技术人员和自己培养的学徒,中小医院的放射科诊断和技术没分家。在20世纪60~80年代,放射科医生基本上是正规学校毕业的学生,而技术人员则是招工顶职、复员军人、护士改行,或者是初高毕业生。 ◆随着科学技术的发展,医学影像发展很快,新的医学影像设备不断涌现,新的影像技术不断 产生,医学影像检查和治疗在临床的作用越来越大,应用范围不断扩展。对人员的要求越来越高。20世纪60年代出现影像增强技术,使得放射科以上在黑暗房间的检查彻底解放出来; 20世纪70年代出现CT成像技术,该设备以高的密度分辨率使得放射科结束只能观察人体的骨骼和骷髅的历史,还能够观察人体的软组织病变,解决了传统X线难以解决的诊断难题,尤其是三维成像技术,为临床疾病的诊断和治疗开辟广阔的前景;20世纪80年代出现MR成像技术,它以更高的软组织分辨率和多方位多参数的检查技术,能够观察人体更加细微的病变,解决普通X现、CT和心血管造影难以解决的问题,同时具有无辐射损伤和无创伤的特点,在人体的功能成像和分子水平有其独特的优势;20世纪80年代出现介入放射学,它通过微小的创伤解决了临床上某些疾病难以处理或创伤大的问题,使得放射科成为继内科和外科后的第三大治疗学科;20世纪80~90年代出现CR和DR成像技术,使得放射科进入全面的数字化X线检查,在成像质量、工作效率、图像保存和劳动强度等方面显示极大的优越性;20世纪90年代出现激光打印技术,使放射科技术人员彻底告别暗室手工冲洗胶片的历史,提高了工作效率,降低了劳动强度,保证了图像质量,幷实现了数字化图像的传输和打印;超声技术近来发展越来越快,临床应用范围越来越广,它以无创伤、效率高、诊断准确而受到广大的临床科室亲眯;核素扫描技术近年来发展很快,临床应用范围也不断扩

常见地遥感卫星地介绍及具体全参数

常见的遥感卫星的介绍及具体参数 遥感卫星(remote sensing satellite )用作外层空间遥感平台的人造卫星。用卫星作为平台的遥感技术称为卫星遥感。通常,遥感卫星可在轨道上运行数年。卫星轨道可根据需要来确定。遥感卫星能在规定的时间覆盖整个地球或指定的任何区域,当沿地球同步轨道运行时,它能连续地对地球表面某指定地域进行遥感。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的图像数据通过无线电波传输到地面站,地面站发出指令以控制卫星运行和工作。以下列出较为常见的遥感卫星: 一、Landsat卫星 美国NASA的陆地卫星(Landsat)计划(1975年前称为地球资源技术卫星——ERTS ),从1972年7月23日以来,已发射7颗(第6颗发射失败)。目前Landsat1—4均相继失效,Landsat 5仍在超期运行(从1984年3月1日发射至今)。Landsat 7于1999年4月15日发射升空。其常见的遥感扫描影像类型有MMS影像、TM图像。 (一)、MSS影像 MSS影像为多光谱扫描仪(MultiSpectral Scanner)获取的图像,第一颗至第三颗地球卫星(Landsat)上反光束导管摄像机获取的三个波段摄影相片分别称为第1、2、3波段,多光谱扫描仪有4个波段获取的扫描影像被命名为4、5、6、7波段,两个波段为可见光波段,两个波段为近红外波段,此外,第三颗地球卫星上还供有热红外波段影像,这个影像称为第8波段,但使用不久,就因为一起的问题二关闭了。 表 1 :Landsat上MSS波段参数

(二)、TM影像 TM影像是指美国陆地卫星4~5号专题制图仪(thematic mapper)所获取的多波段扫描影像。 影像空间分辨率除热红外波段为120米外,其余均为30米,像幅185×185公里2。每波段像元数达61662个(TM-6为15422个)。一景TM影像总信息量为230兆字节),约相当于MSS影像的7倍。 因TM影像具较高空间分辨率、波谱分辨率、极为丰富的信息量和较高定位精度,成为20世纪80年代中后期得到世界各国广泛应用的重要的地球资源与环境遥感数据源。能满足有关农、林、水、土、地质、地理、测绘、区域规划、环境监测等专题分析和编制1∶10万或更小比例尺专题图,修测比例尺地图的要求。 表 2 :Landsat上TM波段参数 (三)、ETM 1999年4月15日,美国发射了Landsat-7,它采用了增强-加型专题绘图仪(ETM)遥感器来获取地球表层信息,它与TM的区别在于增加了全色波段,分辨率为15米,并改进了热红外波段影像的分辨率。

分子蒸馏技术的原理和应用(精)

分子蒸馏技术的原理和应用 分子蒸馏技术简介 分子蒸馏是一项较新的尚未广泛应用于产业化生产的分离技术,能解决大量常规蒸馏技术所不能解决的题目。分子蒸馏是一种特殊的液-液分离技术,能在极高真空下操纵,它依据分子运动均匀自由程的差别,能使液体在远低于其沸点的温度下将其分离,特别适用于高沸点、热敏性及易氧化物系的分离。由于其具有蒸馏温度低于物料的沸点、蒸馏压强低、受热时间短、分离程度高等特点,因而能大大降低高沸点物料的分离本钱,极好地保护了热敏性物质的特点品质,该项技术用于纯自然保健品的提取,可摆脱化学处理方法的束缚,真正保持了纯自然的特性,使保健产品的质量迈上一个新台阶。 分子蒸馏技术,作为一种对高沸点、热敏性物料进行有效的分离手段,自本世纪三十年代出现以来,得到了世界各国的重视。到本世纪六十年代,为适应浓缩鱼肝油中维生素A的需要,分子蒸馏技术得到了规模化的产业应用。在日、美、英、德、苏相继设计制造了多套分子蒸馏装置,用于浓缩维生素A,但当时由于各种原因,应用面太窄,发展速度很慢。但是,在过往地三十多年中,人们一直在不断地重视着这项新的液-液分离技术的发展,对分离装置精益求精、完善,对应用领域不断探索、扩展,因而一直有新的专利和新的应用出现。特别是从八十年代末以来,随着人们对自然物质的青睐,回回自然潮流的兴起,分子蒸馏技术得到了迅速的发展。 对分子蒸馏的设备,各国研制的形式多种多样。发展至今,大部分已被淘汰,目前应用较广的为离心薄膜式和转子刮膜式。这两种形式的分离装置,也一直在精益求精和完善,特别是针对不同的产品,其装置结构与配套设备要有不同的特

点,因此,就分子蒸馏装置本身来说,其开发研究的内容尚十分丰富。 在应用领域方面,国外已在数种产品中进行产业化生产。特别是近几年来在自然物质的提取方面应用较为突出,如:从鱼油中提取EPA与DHA、从植物油中提取自然维生素E等。另外,在精细化工中间体方面的提取和分离,品种也越来越多。 我国对分子蒸馏技术的研究起步较晚,八十年代末期,国内引进了几套分子蒸馏生产线,用于硬脂酸单甘酯的生产。国内的科研职员也曾经作过一些研究,但未见产业化应用的报道。 分子蒸馏成套产业化装置具有设计新奇、结构独特、工艺先进,可明显进步分离效率。从小试到产业化生产又到小试的反复循环实验探索中,特别解决了产业化生产中轻易出现的突出题目。如有效地解决了物料返混题目,明显地进步了产品质量,创造性地设计了有补偿功能的消息密封方式;实现了产业装置高真空下的长期稳定运行。该项技术属国内领先、国际先进。 截止目前为止已经开发的产品有二十余种,如:硬脂酸单甘酯、丙二醇酯、玫瑰油、小麦胚芽油、米糠油、谷维素等。并已确定了应用分子蒸馏技术的有关工艺条件,为进行产业化生产奠定了基础。 分子蒸馏的原理和装置的结构决定其有如下特点: 1、分子蒸馏的操纵温度远低于物料的沸点: 由分子蒸馏原理可知,混合物的分离是由于不同种类的分子溢出液面后的均匀自由程不同的性质来实现的,并不需要沸腾,所以分子蒸馏是在远低于沸点的温度下进行操纵的,这一点与常规蒸馏有本质的区别。 2、蒸馏压强低: 由于分子蒸馏装置独特的结构形式,其内部压强极小,可以获得很高的真空,因此分子蒸馏是在很低的压强下进行操纵,一般为×10-1Pa数目级(×10-3为托数目级)。

帕金森病分子影像学研究进展.

?1908? DiB。1974;109(4:429。4. 13Kreid盯ME,Ups蚰D九B阳mh坶copy for砒elect越iB in d圯ICU:a c蛳托pon and陀view 0f the lit岫tu陀[J].ch髓t,2003;124(1:344.50. “ D’IPpol如R,№啮i A,C唧etIi C,d以Indicali帆8细n既iblefib铲。埘c b啪chos∞py柚d i协saf;ty ill tlIe very elderly[J].M∞山di^Jch Ch曲t Di8,2007;67(1:23-9. 15Ha£‘otuwa K,G锄ble EA,0’ShmIghnc捌Iy T,甜以Sa鲫0f br∞ch∞oo_ py,bi 叩sy,卸d BAL in瑚e眦h patie山诵tlI COPD[J】.Chest,2002; 122(6:1909?12. 16赵秀云,史秀宁,于振萍,等.减轻气道吸痰对动物呼吸道黏膜损伤的实验研究[J].中华护理杂志,2008;43(1:87—90. 17Ko】lef MH,A缸阻B,A删eto A,村以鳓ver?coaled蜘dm∽hcaI hll瑚柚d i 呲id朗ce 0f v曲tiIal舛-as8∞ialed pnc岫mia:tI地NAscENT啪?枷zed蒯[J].JA^IA,2懈;300(7:805-13. 1S Sole ML,By∞JF,hdy JE。d以A mIIlti8ite飘lrvey 0f∞c6∞iIlg tech— IIiqll鹳柚d aiⅣay叫删l学唧棚t p眦ti嘲(J】.Am J c血c眦,2003;12 (3:220.30;qIlIiz 231-2. 眇 C删∞P,Dellari S。Ruiz sA。甜以Salille ir戚Uati锄梳e hacheal 帕金森病分子影像学研究进展 蚰ctioIIing dt嬲∞嬲the incid眦e 0f咖tilato卜蹦∞ci alled pI圮mn伽诅 [J].clit ca弛Med,2009;37(1:32.8. 加Maggio陀SM,kIlouche F。Pigeot J,d以PIe唧m∞0f曲datr∽heal 机Icti伽-涮删aI啪I盯dtmecmitnI朋t ilI枷te

相关文档
最新文档