无线电波的传播特性修订版

无线电波的传播特性修订版
无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性

无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。

在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。

英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。

在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。

赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。

1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

验中发现,利用天线可使发射距离增加。经过反复试验、改进,在1895年,马可尼成功地进行了约3公里的无线电通信。几乎与马可尼同时,俄罗斯军官波波夫也研制成功了一台无线电收发报机。

然而,马可尼向意大利政府提出的专利申请却未被获准。1896年,马可尼回到他母亲的故乡英国。他在英国不仅得到了无线电通信发明专利,而且受到学术界的高度重视。1897年,在伦敦设立了马可尼无线电报公司。后来,马可尼利用大型发射天线杆成功地进行了飞越多佛尔海峡的无线电通信实验,建立起英、法两国的无线电联络。1901年12月12日,马可尼又完成了自英国到加拿大,横越大西洋的无线电通信实验,并取得圆满成功。据说,当时马可尼的实验采用的是用风筝悬挂天线的方式。

由于马可尼发明了无线电报装置,实现了人类史上第一次远距离无线电通信,为此,他在1909年荣获诺贝尔物理学奖,与波波夫同被人们誉为“无线电之父”。

无线点播的传播途径分为五类:(1)地波传播:地波传播是指电磁波沿地球表面饶射传播。当天线很低时,电磁波距地面很近,又加之天线很长,很容易被地面吸收导致迅速衰减。这种衰减与地面的性质(导电系数的大小)、电磁波的极化方式和频率有关。因此长波一般用于地波传播。这个波段,我国一般用于电力线载波,在前苏联用于广播。最近,我国在部分山区用于近距离广播。它的频率一般规定为30KHz--400KHz,这个频率称为长波。中波的频率是500--1 600KHz,也是地波传播,我国用于调幅广播。(2)电离层传播:由于太阳和各种宇宙射线的辐射,引起空气分子的电离,而形成了电离层。电离层分三层。D层(距地面高度60--80Km)、E层(100--120Km)、F1层(200K m)、F2层(200-900Km),中波和短波都能借助电离层的反射传播到较远的距离,最常用用于短波通信。短波频率为()。百年前,三声短促而且微弱的讯号,向世界宣布了无线电的诞生。一九○一年,扎营守候在讯号山(Signal Hill 位于加拿大东南角)的意大利科学家马可尼,终于接收到了从英格兰发出的跨过大西洋的无线电讯号,这个实验向世人证明了无线电再也不是仅限于实验室的新奇东西,而是一种实用的通讯媒介。此后短波用作全球性的国际通讯媒介便开始发达起来了。

虽然马可尼的试验结果令人相当振奋,可是当时一般人认为无线电传播方式类似光波,发射之后,绝对沿直线方向进行传播,从英国到加拿大,再怎么说也无法完成直线的无线电通讯(因为地球表面是弧形的)。当时的科学理论更证明,从英国发射后的无线电波一定直驱太空,怎么可能抵达加拿大可是从马可尼用简陋的无线电设备征服长距离通讯的试验记录来看,白天,讯号可以远达七○○英哩,晚间更远达二○○○英哩以上,这些试验数据,使得以往的理论所推断出来的必然结果,开始发生动摇了。

与此同时,及不约而同地分别提出了同样的看法:就是在地球大气层中有电子层的存在,它可以像镜子般,把无线电折射回地球,而不致于沿着直线方向直奔太空,由于这种折射回返的讯号,使得远方的电台可以互相通讯,这种对无线电波有如镜子般作用的电子层称做KENNELLY HEAVISIDE层,但现在一般称之为电离层(lonosphre),而短波远距离广播和通讯之所以如此发达就是受了电离层之益。

从一九二五年开始,许多科学家便开始进行电离层的研究工作,由向电离层发射无线电脉冲讯号,然后从电离层反射的回波(Echo)中,可以了解到电离层的自然现象,所得到的结果就是:地球上空的电离层就像是一把大伞覆盖着地球,而且随着白天或夜晚或季节的变化而变动,同时发现某些频率可以直接穿过电离层,而有些频率则以不同角度折返回地球表面,虽然对电离层已经有了某种程度的了解,而且短波的国际通讯也有了很大的发展,这六十多年来,科学家从不放过任何继续研究电离层的机会,甚至火箭发射、人造卫星试验及最近的太空穿梭机飞行,都要做有某些实验,以期能更进一步了解电离层的变化规律,最近借助超高速计算机,建立了各种假设的电离层分析模型,科学家希望能够像天气预告那样,可以预测未来几天的电离层状况。短波通信曾为弃为无用的频段多年,在1923年美国和法国的业余电台仅使用了几瓦的功率,利用100m波长实现了横越大西洋的通信,业余无线电爱好者的这一发现,为短波广播通信奠定了基础。(3)空间传播:也就是直发射天线和接收天线必须在视距范围内,这时电波由直射波和地面反射波组成相干传播,因此接收点的场强为二者之和。这种传播方式用于超短波和微波通信。频率在30MHz以上的调频广播和电视信号发射都是空间波传播。超短波通信从理论上讲,只能在视距范围内进行。其计算公式为,r0为视距,h1为发射天线的高度,h2为接收天线的高度。但在某些特殊情况下,通过一系列的绕射、折射、散射或反射,其传播距离大大超过视距。(4)对流层的传播:从地面上升到离开地面大约10K m的范围称为对流层。由于对流层中大气温度、压力和湿度的变化,使大气介电系数随高度而改变。当电波通过这些不均匀的大气层时,就会产生反射、折射、和散射。只有超短波才能利用对流层进行远距离传播。(5)外球层传播:离开地面900--1200Km的高度称为外球层。在100MHz以上的频率可以利用外球层进行宇宙通信。卫星通信、卫星电视就是这种传播方式。

序号频段名称频段范围传播方式传播距离可用带宽干扰量利用 4 甚低频(VLF) 3-30kHz 波导数千公里极有限宽扩展世界范围长距离无线电导航 5 低频

(LF) 30-300kHz 地波天波数千公里很有限宽扩展长距离无线电民航战略通信 6 中频

(MF) 300-3000kHz 地波天波几千公里适中宽扩展中等距离点到点广播和水上移动 7 高频

(HF) 3-30MHz 天波几千公里宽有限的长和短距离点到点全球广播,移动 8 甚高频

(VHF) 30-300MHz 空间波对流层散射绕射几百公里以内很宽有限的短和中距离点到点移动,LAN声音和视频广播个人通信 9 特高频

(UHF) 300-3000MHz 空间波对流层散射绕射祝距 100公里以内很宽有限的短和中距离点到点移动,LAN声音和视频广播个人通信卫星通信 10 超高频(SHF) 3-30GHz 视距 30公里左右很宽通常是有限的短和中距离点到点移动L AN声音和视频广播移动/个人通信卫星通信 11 极高频

(EHF) 30-3000GHz 视距 20公里很宽通常是有限的短和中距离点到点移动,LAN个人通信卫星通信国际短波广播米波段表

波段频率范围波段频率范围 (米/公尺) (兆赫/MHz) (米/公尺) (兆赫/MHz) 120 M 25M 90M 21M 75M 19M 60M 16M 49M 13M 41M 11M 31M . .

在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。无线电通信系统若不进行科学的频率指配和严格的系统设计与场强预测,会使系统之间产生严重干扰而不能正常工作。为了保证无线电通信用户的通信质量,确保无线电波发射的业务覆盖服务区和电波传播的可*程度,必须仔细地计算从接收天线到发射天线之间的传播损耗。理论上讲,在自由空间无线电波的传播损耗大小与传播距离的平方及使用频率的平方成正比关系,但是在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,同时还要考虑在传播路径上存在着各种各样的影响,如高空电离层影响,高山、湖泊、海洋、地面建筑、植被以及地球曲面的影响等,因而电波具有反射、绕射、散射和波导传播等传播方式。在研究电波传播特性时,通常以数学表达式来描述这些传播损耗特性,即所谓的数学模型。无线电波传播模型通常是很复杂的,必须对不同的频段使用不同的电波传播模型,以预测电台覆盖和传播场强。下面简要地叙述几种传播方式(详细数学公式略)。

VLF(f< 30kHz)频率低于30kHz的电波,传播损耗近似等于自由空间传播损耗,即相当于电波在理想的、均匀的、各向同性的介质中传播,不发生反射、折射、绕射和吸收现象,只存在因电磁能量扩散引起的传播损耗。在此频段内,电波在电离层与地球之间可以以波导方式沿地球表面进行传播。

LF(30kHz< f< 300kHz) 在这个频段内,有两种重要的传播方式:地波方式及电离层天波方式。天波信号幅度具有明显的昼夜变化,这是由于电离层吸收和变化的缘故。

MF(300kHz< f< 3MHz)在该频段内,传播方式也是地波和天波。当评价地波时,还需要知道大地的电气特性,特别是大地电导率的数据。对150kHz

到频率频段,采用天波传播的预测方法。在MF广播频带内,天波传播只假定发生在夜间。在以上频率,HF传播预测方法才开始有效。超过时,天波对移动通信明显地变得更为重要。

HF(3MHz< f< 30MHz)在该频率范围内,信号的传播一般是通过电离层,主要以天波方式传播,因而表现出较大的变化。电离层的传播特点主要表现为会造成长途传输的多径失真,出现信号干扰甚至中断操作的情况。由于该频段频谱拥挤以及长距离传播应用两方面的原因,人们不得不使用相当复杂的电波传播预测模型。使用电离层特性来预测HF传播时,ITU-R的建议的预测模型可用来在任意路径上根据季节、太阳黑子数等预测基本的和可用的最高可用频率(MUF)、场强、接收功率、信/噪比和可*性等。

VHF和UHF(30MHz< f< 3GHz)该频带内,安排有大量固定和移动业务。该频段除了低端之外,通常不是通过有规则的电离层来进行电波传播的。气候只对超折射和传导有影响,这是由大气折射指数中正常梯度的变化引起的。除了自由空间传播外,对流层散射和绕射也是很重要的。我们可以按照下述各种特定传播环境的传播模型来估算电波的传播损耗。

(1)自由空间传播模型通常把电磁波在真空中的传播称之为“自由空间传播”。在某些环境中,假定有用信号只是由于在自由空间所产生的传播损耗。也就是说,把大气看成为近似真空的均匀介质,电磁波沿直线传播,不发生反射、折射、绕射和散射等现象,这时在大气中的传播就等效于自由空间传播,它只与频率f和距离d有关。

(2)平坦大地的绕射模型适合大于视距的传播范围,对有用信号的预测需要考虑地球的曲率。

(3)粗糙大地上的传播模型适合于世界特定地区和特别粗糙大地上的传播。

(4)OKUMURA-HATA模型以距离和发射机天线的高度为依据。校正这个损耗须要以建筑物在接收位置附近的百分率、路径类型(陆地、海洋、混合)和大地不规则度为依据,主要用于大城市和郊区环境的传播损耗和场强预测。

(5)LONGLEY-RICE(ITS)模型可用来估算地波和对流层散射的传播衰减。这个模型是统计模型,也就是预测中值场强和估计信号随时间与空间的变化。另外,还必须考虑到其他有可能造成干扰的传播机理,包括电离层传播机理,有可能随季节和昼夜时间变化;通过偶尔发生的E层,有可能允许在约70 MHz频率上进行长距离传播。此外还有超折射和大气波导等。

SHF和更高频率(f>3GHz) 如上所述的各传播因素(除天波而外),均适用于更高的频率,但这时必须考虑衰减、散射以及由降雨与其它大气微粒产生的交差极化。当频率大于10GHz时,雨滴所引起的衰减,会使信号质量严重下降,估算衰减概率分布的方法,通常以超过%时间的雨强密度(mm/h)为基础。这个值应以长期降雨观测为基础,大约以一分钟的时间间隔进行取值。20GHz以上,必须考虑大气衰落,包括气体衰落和降水衰落。

频率与波长的关系和转换

如何把波长转换成频率,或做相反的转换呢虽然一个电台以固定的频率广播,但是 "波长"也常被拿来使用。例如,在说明短波传导状况时,使用31米波

段,比使用"9500KHz到9900千赫/KHz"(这是在31米波段内规划用做国际短波广播的频率范围)简单多了。把频率换算波长的的公式是波长(米/公尺)=300,000,000/频率(兆赫/MHz),分子300,000,000米/公尺是无线电波在大气中的传播速度(即光速),所以15兆赫(MHz)的波长是,波长=0/=20米/公尺。当然短波广播规定有许多的频率范围,要记住这些频率与相对的波长是挺麻烦的,但是只要抓住一个要领,便不成问题了。首先记得一个频率与波长的关系,例如15兆赫(MHz)是20米,然后频率增加一倍,波长便减半,相反的

频率减半,波长便加倍。例如15MHz是20米,那么30MHz就是10米,而则是40米,这样就容易多了。

在我们了解了频率与波长之间的关系后,当短波电台报出频率及相对波长时,我们更可较容易地在收音机的刻度表上找到该收听的位置,因为传统型(指针式)短波收音机的刻度表上,都有波长或米波段的标示。

如果上述太复杂,您也可以这样简单地理解:频率是用来表示某电台的精确位置;而波长却是用来表示该电台的大概位置,米波段是用来表示某小段频率范围。

如19米波段表示频率–兆赫范围。(请参考后文的国际广播米波段表)

白天,在广州,您可以在短波19米波段收听到中央人民广播电台第一和第二套节目,准确频率为,,兆赫。

业余无线电通信

业余无线电通信以其独特的魅力,吸引了全世界众多的爱好者参与这项活动。目前全世界的业余电台数量已超过二百万座。业余电台在全球的分布密度与地区的经济发展成正比关系。一些发达国家如日本、美国等,普及程度非常高,有着广泛的群众基础。以日本为例,平均100个人中就有一部业余电台。这是一项技术性较强的运动,它综合了电子、外语、计算机,甚至天文、地理、地区文化等诸多知识,同时又有极强的趣味性,通过参与这项运动,可以得到很多的乐趣,提高生活质量。尤其是对于青少年,可培养他们的动手、动脑能力,确定一个好的人生目标,长大后成为对国家有用的人才。所以参加业余无

线电活动,就能在兴趣、爱好的引导下,既学到了知识,培养了能力,又陶冶了情操,结交了朋友,是一项有益于身心健康的活动。根据国际电信联盟(IT U)规定,业余电台是属于“业余业务”的电台,而“业余业务”ITU所给定义是“经正式核准的,出于个人兴趣,不是出于商业目的,进行自我训练,相互通信和技术研究的无线电通信业务”。如下棋、钓鱼一样,业余无线电是一种爱好。在全世界不分年龄、性别、身份,上至国家元首(前约旦国王候赛因,前印度总统拉、甘地);下至上学的中学生,都可以借助电波作媒介,平等地利用业余无线电进行交流。

因特网(Internet)也称互联网,是当今世界上最大的信息网,也是全人类最大的的知识宝库之一。作为一种通信工具,那么它和业余无线电通信又怎样的区别和联系呢

1、传输的媒介不同:业余无线电通信是借助电波进行交流的;互联网是基于公用的,通信线路来传递信息。

2、使用的群体不同:业余无线电通信的操作者是持有执照的业余无线电爱好者,有较强的专业性和技术性;互联网是一种公众的通信手段和信息资源,使用对象为大多数人,稍加学习就能掌握,所以,互联网的使用群体要比业余无线电的群体大得多。

3、对可*性的要求不一样:因特网式计算机技术和通信技术相结合的结晶,其先进程度走在通信技术的前沿。信息传递的速度快,可*程度非常高(只要不是人为破环,如黑客侵袭)。业余无线电通信是依*电波来传递信息,通信效果要受天气、季节、时间、电磁环境等因素的制约,有较大的不确定性。不过正是这种不确定性才使爱好者们去努力探索,攀登技术高峰,为人类的通信做出重大贡献。这也是激发兴趣的一个重要方面。

4、性质和适用范围不同:在通信技术高度发达的今天,业余无线电通信作为一种业余爱好,其通信的实用意义已很小。就像钓鱼不如买鱼吃便宜一样,只是通过钓鱼去陶冶身心,而不是纯粹为钓鱼而钓鱼。业余无线电通信明文规定,通信内容不能涉及谋取利润和国家机密、个人隐私及宗教等方面;只能用于通信实验、技术研究和结交朋友,即不能带有任何商业色彩。这就界定了它的使用范围和性质。

因特网代表着全球范围内一组无限增长的信息资源,内容涉及科学、政治、军事、经济、文化、娱乐等,几乎涵盖了人类活动的各个方面。作为信息时代的产物,它的实用性和高效性,大大加快了它的普及,为人们带来了巨大的经济效益和社会效益,使得网络的商业化成为必然。网络经济的飞速发展,已对一些传统的产业结构形成挑战。所以就目前的因特网来说,服务对象主要是商务

活动。因特网是继电话、电视、无线通信、计算机等重大发明以后的又一重大发明。它那强大的功能,支持着人类活动的方方面面,同样也影响着业余无线电通信的发展。

因特网对业余无线电通信的积极推动作用

发展到今天的业余无线电通讯,已不仅限于电报(CW)、单边带(SSB)、调频(Fm)等几种通讯方式,许多新的通信方式如:慢扫描电视(SSTV),数字包封通信(PACKET)卫星通信、月面反射通信(EME)等需借助计算机来完成,这就离不开相应的软件支持,这些软件可以方便的在互联网上的一些业余无线电网站下载。喜欢电路实验的朋友对某一电子器件不熟悉,也可以在相关网站查询。1999年5月国内的爱好者在浙江洞头岛的BI5D IOTA(岛屿通信)远征活动取得了圆满的成功。在活动成行之前的几个月里,策划者们建立了一套以INTERNET为基础的信息交流系统,并在互联网上设立开放型的专门讨论组,让爱好者们广泛参与展开讨论,制定了一套全面、周密的活动计划,使得这次地域跨度很大,人员较多的活动能够组织和协调得相当成功。他们还为此次远征建立了专门的网页,向外界提供BI5D活动的最新消息,供爱好者们实时查询。爱好者中,有许多人扮演着网民和火腿(国际上对业余无线电爱好者的爱称)双重角色。

有许多朋友曾经这样问:“现在都有电话和手机,随时随地都能联系,业余电台岂不过时了吗”这反映了一个普遍性的问题——人们对业余无线电活动了解不够。在通信技术最为先进的美国,业余电台数量居世界第二位。美国也是因特网的发源地,但政府对这项活动特别支持。爱好者们为了便于互相辨认,只须交纳1美元的费用就能将自己的车牌号码换成自己的电台呼号。1美元远不足制作牌照的工本费,足见美国政府对业余无线电活动的支持。

追溯业余无线电通信的历史,几乎是伴随着无线电的发展走过了近一个世纪的历程。十九世纪末的1896年6月2日,意大利的马可尼发明了无线电通信,从此揭开了人类通信的新纪元。二十世纪初,无线电通信在航海等领域得到了大量应用。这时就有人从事业余的通信实验。当时人们曾认为电波的波长越长,则通信距离愈远。而把波长短于200米的短波视为无用的频段。1923年,美国的业余无线电爱好者发现这个被认为是废物的短波波段,其实是远距离通信的黄金波段,他们用100米波长的电波和很小的发射功率就成功地完成了越洋通信。这一重大发现是通信史上的一块丰碑,从此奠定了短波通信的基础,也奠定了业余无线电通信的地位。其它的如:单边带通信、外差式接收机、晶体振荡器,八木天线等,都是业余爱好者们的成就。时至今日,这些技术还在大量应用。可以这样说,没有昨天的业余无线电,就没有今天现代通信的辉

煌。他们的技术成就在人类的通信史上写下了光辉的篇章,将被永远地载入史册。

这项活动本身总是为国家和社会源源不断地输送着高素质的技术骨干,国外许多军事、电子、宇航等方面的尖端技术人才都来自于业余无线电爱好者队伍。1 992年4月美国发射的“大西洋号”航天飞机上的5名宇航员,全部是业余无线电爱好者。

业余无线电通信在抢险救灾中的作用不可忽视。当地震、水灾等自然灾害发生时,电力线路,通信线路和其它设施都会遭到破坏,其中通信线路是有线电话和移动通信的“神经”,也是构成互联网的硬件基础,因此,整个通信系统就极有可能陷于瘫痪,此时通信对于抢险救灾又是多么重要!

业余电台由于分布广泛,活动频繁,爱好者们又有良好的技术素质,甘愿奉献的高尚情操,他们会友好地协作起来,利用应急的通信设备,为救灾提供通信服务,这些在国外有许多感人的事例,如危地马拉及原苏联地震、美国的龙卷风和森林大火的救灾工作,业余电台都提供了及时有效的通信服务。

我国的业余无线电通信尚处于起步阶段,从1992年开放个人业余电台至今,仅有3000多人取得了操作证书,开台人数不足2000人,同发达国家相比,不仅人数少,队伍的整体素质也不高。许多群众根本不知道什么是业余无线电,可见远未到达普及的程度。目前国家正在大力提倡和发展业余无线电运动,随着素质教育和科教兴国战略的实施,在北京、上海等地的学校中已把业余无线电作为第二课堂的重要内容来培养青少年的特长、能力,让学生中少一些追星族,多一些科技幼苗。互联网的普及,为业余无线电提供了发展的捷径和机遇,应该借助互联网这一先进工具,来提高和发展我国的业余无线电,并推向一个新的高度,以尽快地与国际水平接轨。

无线电波传播方式与各频段的利用

无线电波传播方式与各频段的利用 无线电通信是利用电磁波在空间传送信息的通信方式。电磁波由发射天线向外辐射出去,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。 (1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式; (2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小; (3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。 (4)空间波方式主要指直射波和反射波。电波在空间按直线传播,称为直射波。当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。 (5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。 (6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。利用对流层散射作用进行无线电波的传播称为对流层散射方式。 (7)视距传播指点到点或地球到卫星之间的电波传播。 附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。

在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。无线电通信系统若不进行科学的频率指配和严格的系统设计与场强预测,会使系统之间产生严重干扰而不能正常工作。为了保证无线电通信用户的通信质量,确保无线电波发射的业务覆盖服务区和电波传播的可靠程度,必须仔细地计算从接收天线到发射天线之间的传播损耗。理论上讲,在自由空间无线电波的传播损耗大小与传播距离的平方及使用频率的平方成正比关系,但是在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,同时还要考虑在传播路径上存在着各种各样的影响,如高空电离层影响,高山、湖泊、海洋、地面建筑、植被以及地球曲面的影响等,因而电波具有反射、绕射、散射和波导传播等传播方式。在研究电波传播特性时,通常以数学表达式来描述这些传播损耗特性,即所谓的数学模型。无线电波传播模型通常是很复杂的,必须对不同的频段使用不同的电波传播模型,以预测电台覆盖和传播场强。下面简要地叙述几种传播方式(详细数学公式略)。 VLF(f< 30kHz) 频率低于30kHz的电波,传播损耗近似等于自由空间传播损耗,即相当于电波在理想的、均匀的、各向同性的介质中传播,不发生反射、折射、绕射和吸收现象,只存在因电磁能量扩散引起的传播损耗。在此频段内,电波在电离层与地球之间可以以波导方式沿地球表面进行传播。 LF(30kHz< f< 300kHz) 在这个频段内,有两种重要的传播方式:地波方式及电离层天波方式。天波信号幅度具有明显的昼夜变化,这是由于电离层吸收和变化

无线信道传播特性分析总结

无线信道传播特性分析总结 班级学号姓名 随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念 要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。 与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。 另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性 信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声

无线电波的传播特性

无线电波的传播特性 1、无线电波的传播特性及信号分析 甚低频VLF 3-30KHz 超长波1KKm-100Km 空间波为主海岸潜艇通信;远距离通信;超远距离导航低频LF 30-300KHz 长波10Km-1Km 地波为主越洋通信;中距离通信;地下岩层通信;远距离导航中频MF 0.3-3MHz 中波1Km-100m 地波与天波船用通信;业余无线电通信;移动通信;中距离导航高频HF 3-30MHz 短波100m-10m 天波与地波远距离短波通信;国际定点通信 甚高频VHF 30-300MHz 米波10m-1m 空间波电离层散射(30-60MHz);流星余迹通信;人造电离层通信(30-144MHz);对空间飞行体通信;移动通信 超高频UHF 0.3-3GHz 分米波1m-0.1m 空间波小容量微波中继通信;(352-420MHz);对流层散射通信(700-10000MHz);中容量微波通信(1700-2400MHz) 特高频SHF 3-30GHz 厘米波10cm-1cm 空间波大容量微波中继通信(3600-4200MHz);大容量微波中继通信(5850-8500MHz);数字通信;卫星通信;国际海事卫星通信(1500-1600MHz) ELF 极低频3~30Hz SLF 超低频30~300Hz ULF 特低频 300~3000Hz VLF 甚低频3~30kHz LF 低频30~300kHz 中波,长波 MF 中频300~3000kHz 100m~1000m 中波 AM广播 HF 高频 3~30MHz 10~100m 短波短波广播 VHF 甚高频 30~300MHz 1~10m 米波FM广播 UHF 特高频 300~3000MHz 0.1~1m 分米波 SHF 超高频3~30GHz 1cm~10cm 厘米波 EHF 极高频30~300GHz 1mm~1cm 毫米波 无线电波按传播途径可分为以下四种:天波—由空间电离层反射而传播;地波—沿地球表面传播;直射波—由发射台到接收台直线传播;地面反射波—经地面反射而传播。无线电波离开天线后,既在媒介质中传播,也沿各种媒介质的交界面(如地面)传播,具有一定的规律性,但对它产生影响的因素却很多。 无线电波在传播中的主要特性如下: (1)直线传播均匀媒介质(如空气)中,电波沿直线传播。 (2)反射与折射电波由一种媒介质传导另一种媒介质时,在两种介质的分界面上,传播方向要发生变化。由第一种介质射向第二中介质,在分界面上出现两种现象。一种是射线返回第一种介质,叫做反射; 另一种现象是射线进入第二种介质,但方向发生了偏折,叫做折射。一般情况下反射和折射是同时发生的。 入射角等于反射角,但不一定等于折射角。反射和折射给测向准确性带来很大的不良影响;反射严重是,测向设备误指反射体,给干扰查找造成极大困难。 (3)绕射电波在传播途中,有力图绕过难以穿透的障碍物的能力。绕射能力的强弱与电波的频率有关,又和障碍物大小有关。频率越低的电波,绕射能力越弱;障碍物越大,绕射越困难。工作于80米(375MHZ)波段的电波,绕射能力是较强的,除陡峭高山(相对高度在200米以上)外,一般丘陵均可逾越。2米波段的电波绕射能力就很差了,一座楼房,或一个小山丘,都可能使信号难以绕过去。 (4)干涉直射波与地面反射波或其它物体的反射波在某处相遇时,测向收到的信号为两个电波合成后的信号,其信号强度有可能增强(两个信号跌叠加)也可能减弱(两个信号相互抵消)。这种现象称为波的干涉。产生干涉的结果,使得测向机在某些接收点收到的信号强,而某些接收点收到的信号弱,甚至收不到信号,给判断干扰信号距离造成错觉。天线发射到空间的电波的能量是一定的,随着传播距离的增大,不仅在传播途中能量要损耗,而且能量的分布也越来越广,单位面积上获得的能量越来越小。反之,

信道特性

恒参信道: 有线电信道(明线,同轴电缆,双绞线电缆),光纤信道,无线电视距中继,卫星中继信道。 ? 由于恒参信道对信号传输的影响是固定不变的或者是变化极为缓慢的,因而可以等效为一个非时变的线性网络。 从理论上讲,只要得到这个网络的传输特性,则利用信号通过线性系统的分析方法, 就可求得已调信号通过恒参信道后的变化规律。 网络的相位-频率特性还经常采用群迟延-频率特性 来衡量,要满足不失真传输条件,等同于要求群迟延-频率特性应是一条水平直线. 随参信道: 短波电离层反射信道,超速波及微波对流层散射信道,超短波电离层散射信道,超短波超视距绕射信道。 属于随参的传输媒质主要以电离层反射、对流层散射等为代表。 ? 随参信道的特性比恒参信道要复杂得多,其根本原因在于它包含一个复杂的传输媒质。 ? 虽然,随参信道中包含着除媒质外的其它转换 器,但是,从对信号传输影响来看,传输媒质的影响是主要的,转换器特性的影响可以忽略不计。在此,仅讨论随参信道的传输媒质所具有的一般特性以及它对信号传输的影响。 随参信道图: 共同特点是:1.对信号的损耗随时间变化而变化,2,传输时延随时间变化而变化,3由发射点出发的电波可能经多条路径到达接收点,也就是所谓的多径传播。 多径传播后的接收信号将是衰减和时延随时间变化的各路径信号的合成。 —— 由第i 条路径的随机相位; ————由第i 条路径到达的接收信号振幅 _______ 由第i 条路径达到的信号的时延; 都是随机变化的 (1) 从波形上看,多径传播的结果使确定的载频信号变成了包络和相位都随机变化的窄带信号,这种信号称为衰落信号; (2)从频谱上看,多径传播引起了频率弥散(色散),即由单个频率变成了一个窄带频谱。 通常将由于电离层浓度变化等因素所引起的信号衰落称为慢衰落;而把由于多径效应引起的信号衰落称为快衰落。 ) ()(0t t i i τω?-=)(t i μ)(t i τ) (),(),(t t t i i i ?τμω ω?ω τd d )()(=

无线电波传播途径

无线电波在均匀介质 (如空气)中,具有直线传播的特点。只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。 一、无线电波的发射与传播 无线电波既看不见,也摸不着,却充满了整个空间。广播、移动通讯、电视等,已经是现代社会生活必不可少的一部分。无线电波属于电磁波中频率较低的一种,它可直接在空间辐射传播。无线电波的频率范围很宽,频段不同,特性也不尽相同。我国目前开展的无线电测向运动涉及三个频段:频率为1.8—2兆赫的中波波段,波长为150—166.6米,称160米波段测向;频率为3.5—3.6兆赫的短波波段,波长为83.3—85.7米,称80米波段测向;频率为144—146兆赫的超短波段,波长为2.08—2.055米,称2米波段测向。 (一)无线电波的发射过程 无线电波是通过天线发射到空间的。当电流在天线中流动时,天线周围的空间不但产生电力线 (即电场),同时还产生磁力线。其相互间的关系,如图2-1-1所示。如果天线中电流改变方向,空间的电力线和磁力线方向随之改变。如果加在天线上的是高频交流电,由于电流的方向变化极快,根据电磁感应的原理,在这些交替变化的电场和磁场的外层空间,又激起新的电磁场,不断地向外扩散,天线中的高频电能以变化的电磁场的形式,传向四面八方,这就是无线电波。从图2-l可知,电力线 (即电场)方向与天线基本平行,磁力线 (磁场)的形状则是以天线为圆心,与天线相垂直的方向随之变化的无数同心圆。 图2-1-1 无线电波的发射 (二)无线电波的特性 l.无线电波的极化 交变电磁场在其附近空间又激起新的电磁场的现象称无线电波的极化。空间传播的无线电波都是极化波。当天线垂直于地平面时,天线辐射的无线电波的电场垂直于地平面称垂直极化波。天线平行于地平面时,天线辐射的无线电波的电

无线电波的传播特性修订版

无线电波的传播特性 Document number:PBGCG-0857-BTDO-0089-PTT1998

无线电波的传播特性 无线电通信就是不用导线,而利用电磁波振荡在空中传递信号,天线就是波源。电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。 在莫尔斯和贝尔先后发明了有线电报和电话之后,很多科学家对电磁现象大量研究。直到1831年,在英国,法拉弟首先发现了电磁感应现象,并且预言:电与磁的传播是和光一样的一种波。 英国科学家麦克斯韦从1850年就开始对法拉弟提出的课题展开研究。他总结了前人的研究成果,用数学方法对法拉弟的电磁场思想做了严格的论证,并在1864年做出“电与磁的交替转化过程,是一种波的传播形式,是一种光波”的论断,他称这种波为电磁波。 在麦克斯韦首先提出电磁理论后,又过了24年,才由德国伟大的物理学家赫兹通过实验证实了麦氏理论的正确。赫兹设计了一个能够接收电火花的装置,结构极简单。把一根导线弯成圆形,使两端之间仅留一微小的间隙,称它为“共振子”。“共振子”为什么也有火花发生呢赫兹认为,这一定是电振荡以电磁波形式通过空间传播过去的。赫兹于1888年公布了自己的实验结果,证实了电磁波的存在。 赫兹的实验成果震惊了世界,许多科学家继续开展对电磁波的研究。1890年,法国物理学家布朗利发现,将金属粉末即紧缩成块,但是它的电阻减小了,使电流容易通过。这种装有金属粉未的玻璃管被称为“布朗利管”,又称“粉末检波器”,它接收电磁波的灵敏度比赫兹的“共振子”要高得多。 1894年,20岁的意大利青年马可尼从杂志上读到悼念赫兹的文章和他生前的感人事迹,受到极大启发:“如果利用赫兹发现的电磁波,不需要导线也可以实现远距离通信了”。马可尼为自己的大胆设想所激动下宏愿,决心开拓无线电通信事业,把赫兹的研究成果付诸实际应用。在家人的支持下,马可尼就在自己家中进行实验,他用赫兹的火花放电器作发射机,用布朗利的金属粉未检波器作接收机经过一个多月的努力,终于完成了电磁波的发送和接收实验,并在实

无线信道传播特性分析总结

无线信道传播特性分析总结 姓名随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30 ?B。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径

传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声(如高斯白噪声)、乘性噪声的污染,因而会出现不同情形的损伤,严重时,会使有用信号难以恢复。无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到由于建筑物、地形等的阻挡而引起信号功率的衰减,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。下面将对无线信道的一些特性来进行分析。 2、1 大尺度衰落通常情况下,当接收机和发射机之间的相对位置在1-lOm的范围内变化时,接收信号功率的平均值基本保持不变。但当它们的相对位置的改变远超过上述范围时,接收信号的平均功率将会有几个数量级的变化。大尺度衰落正是用来描述接收机和发射机之间的距离有大尺度变化时,接收信号平均功率值的变化规律。在自由空间传播条件下,接收机接收的平均功率Pr可由下式给出:

无线电波的传播特性

无线电波的传播特性 传播特性(一) 移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式: 1.表面波传播 表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播. 当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射. 从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播. 2.天波传播 短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波. 电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广. 在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作. 传播特性(二) 1.空间波传播 当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响. 空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右. 空间波除了受地面的影响以外,还受到低空大气层即对流层的影响. 移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.

无线电发射、接收原理

无线电发射、接收原理 无线电发射、接收知识 收音机发展简介 收音机原理

一、无线电发射、接收知识 声音及其传播: 1.声音是由振动产生的:振动体周围产生声波,声波在空气中以340 m/s的速度传送,随着距离的增加,衰减是很快的,传送距离是有限的。音调的高低,就是声音的频率:20Hz--- 20KHz ----叫做“音频” 无论一个人怎样尽力大喊,靠声波都是传不远的。 2.有线传输:

放大器 传输的是音频电流,离不开导线,传输不远 3.无线电波------与声波有着本质的不同 声波---------是机械振动的结果 无线电波---是电磁振荡的产物 电磁波(无线电波)的产生: 导线中流过交变的电流→→产生交变的磁场→→在其周围再产生变化的电场→→又激起变化的磁场→→。。。→形成不可分割的电场和磁场,像水波一样向外传播→→形成电磁波

电磁波的传 播速度是: 3×108m/s ?思考:有线传播为什么不能发出电磁波

4.有线传输中的音频能否产生电磁波传播出去 原因: a.通过天线向外辐射:天线的长度与波长λ相比拟λ/4 λ/2 λ 音频频率:f :20---20kHz λ=c/f λ:15 x 103---15 x 106m b.串台:都是音频频率 (1) 无线电通信系统是通过空间辐射方式传送信号,根 据电磁波理论,对于语音信号来说,相应的辐射天线尺寸要在几十公里以上,实际上这是不可能制造出来的。而调制过程则将信号的频谱搬移到任何所需的较高频率范围,这样就容易以电磁波形式辐射出去。 (2) 如果不进行调制而是把被传送的信号直接辐射出去, 那么各电台所发出的信号频率就会相同,它们混在一起,收信者将无法选择所要接收的信号。而调制作用的实质是把各信号的频谱搬移,使它们互不重叠地占据不同的频率范围,也即信号分别托附于不同频率的载波上,接收机就可以分离出所需频率的信号,不致互相干扰。

无线传输信道的特性

通信工程专业研究方法论无线传输信道的特性 学院:电子信息工程学院 专业:通信工程 班级: 学号: 学生: 指导教师:毕红军 2014年8月

目录 一、引言: (2) 二、无线电波传播频段及途径 (3) 2.1无线电波频段划分 (3) 2.2无线电波的极化方式 (4) 2.3传播途径 (4) 三、无线信号的传播方式 (5) 3.1直线传播及自由空间损耗 (5) 3.2 反射和透射 (6) 3.2.1斯涅尔(Snell)定律 (6) d 功率定律 (7) 3.2.2 4 3.2.3断点模型 (8) 3.3绕射 (9) 3.3.1单屏或楔形绕射 (9) 3.3.2多屏绕射 (10) 3.4散射 (12) 四、窄带信道的统计描述 (14) 4.1不含主导分量的小尺度衰落 (14) 4.2含主导分量的小尺度衰落 (16) 4.3多普勒谱 (16) 4.4大尺度衰落 (17) 五、宽带信道的特性 (18)

5.1多径效应对宽带信道的影响 (18) 5.2多普勒频移对宽带信道的影响 (21) 六、总结 (22) 七、参考文献 (23) 一、引言: 各类无线信号从发射端发送出去以后,在到达接收端之前经历的所有路径统称为信道。如果传输的无线信号,则电磁波所经历的路径,我们称之为无线信道。信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机结合。同时,电波在各种路径的传播过程中,有用信号会受到各种噪声的污染,因而会出现不同情形的损伤,严重时会使信号难以恢复。无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到建筑物、地形等的阻挡而引起信号功率的衰减和相位的失真,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。下面将讨论无线传输信道的主要特性。 二、无线电波传播频段及途径 2.1无线电波频段划分

无线电波的传播方式

无线电波的传播方式 一、无线电波的传播方式 无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。 1)地波,这是沿地球表面传播的无线电波。 2)天波,也即电离层波。地球大气层的高层存在着“电离层”。无线电波进入电离层时其方向会发生改变,出现“折射”。因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。我们把这种经电离层反射而折回地面的无线电波称为“天波”。 3)空间波,由发射天线直接到达接收点的电波,被称为直射波。有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。直射波和反射波合称为空间波。 4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。 在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。 二、电离层与天波传播 1.电离层概况 在业余无线电中,短波波段的远距离通信占据着极重要的位置。短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。 地球表面被厚厚的大气层包围着。大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。在这里,气温除局部外总是随高度上升而下降。人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。 在离地面约10到50公里的大气层是“同温层”。它对电波传播基本上没有影响。 离地面约50到400公里高空的空气很少流动。在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。 离地面50~90公里的称作口层。D层白天存在,晚上消失。D层的密度最小,对电波不易反射。当电波穿过口层时,频率较低的被吸收得较多。 90公里~140公里的是E层。通常情况下E层的密度也较小,只有对中波可以反射。在一些特定条件下,E层有可能反射高频率的无线电波。在盛夏或是隆冬,E层对电波的反射现象总是有规律地出现,你可以清楚地接收到远距离小功率电台发射的信号,而且可以发现可听别的范围是在有规律地变化。所以,爱好者们对这种不稳定的E层总是抱着极大的兴趣在进行观测研究。 高空200~300公里的是F1层,300~400公里是F2层。夏季以及部分春秋季的白天,F1层和F2层同时存在,且F2层的密度最大。到了夜晚,F1和F2合并成一个F2层,高度上升。F2层对电波的反射能力最强,它的存在是短波能够进行远距离通信的主要条件。 电离层示意阁请看图5.1。 2.电离层对电波传播的影响 人们发现,当电波以一定的入射角到达电离层时,它也会象光学中的反射那样以相同的角度离开电离层。显然,电离层越高或电波进入电离层时与电离层的夹角越小,电波从发射点经电离层反射到达地面的跨越距离越大。这就是利用天波可以进行远程通信的根本原出。而且,电波返回地面时又可能被大地反射而再次进入电离层,形成电离层的第二次、第三次反射,如图5.2所示。

无线电波传播模型与覆盖预测

无线电波传播模型 与 覆盖预测 河北全通通信有限责任公司 工程部网络服务组 二0 0二年四月二十日

第一节无线传播理论 1.1 无线传播基本原理 在规划和建设一个移动通信网时,从频段的确定、频率分配、无线电波的覆盖范围、计算通信概率及系统间的电磁干扰,直到最终确定无线设备的参数,都必须依靠对电波传播特性的研究、了解和据此进行的场强预测。它是进行系统工程设计与研究频谱有效利用、电磁兼容性等课题所必须了解和掌握的基本理论。 众所周知,无线电波可通过多种方式从发射天线传播到接收天线:直达波或自由空间波、地波或表面波、对流层反射波、电离层波。如图1-1所示。就电波传播而言,发射机同接收机间最简单的方式是自由空间传播。自由空间指该区域是各向同性(沿各个轴特性一样)且同类(均匀结构)。自由空间波的其他名字有直达波或视距波。如图1-1(a),直达波沿直线传播,所以可用于卫星和外部空间通信。另外,这个定义也可用于陆上视距传播(两个微波塔之间),见图1-1(b)。 第二种方式是地波或表面波。地波传播可看作是三种情况的综合,即直达波、反射波和表面波。表面波沿地球表面传播。从发射天线发出的一些能量直接到达接收机;有些能量经从地球表面反射后到达接收机;有些通过表面波到达接收机。表面波在地表面上传播,由于地面不是理想的,有些能量被地面吸收。当能量进入地面,它建立地面电流。这三种的表面波见图1-1(c)。第三种方式即对流层反射波产生于对流层,对流层是异类介质,由于天气情况而随时间变化。它的反射系数随高度增加而减少。这种缓慢变化的反射系数使电波弯曲。如图1-1(d)所示。对流层方式应用于波长小于10米(即频率大于30MHz)的无线通信中。第四种方式是经电离层反射传播。当电波波长小于1米(频率大于300MHz)时,电离层是反射体。从电离层反射的电波可能有一个或多个跳跃,见图1-1(e)。这种传播用于长距离通信。除了反射,由于折射率的不均匀,电离层可产生电波散射。另外,电离层中的流星也能散射电波。同对流层一样,电离层也具有连续波动的特性,在这种波动上是随机的快速波动。蜂窝系统的无线传播利用了第二种电波传播方式。这一点将在后文中论述。 在设计蜂窝系统时研究传播有两个原因。第一,它对于计算覆盖不同小区的场强提供必要的工具。因为在大多数情况下覆盖区域从几百米到几十公里,地波传播可以在这种情况下应用。第二,它可计算邻信道和同信道干扰。 预测场强有两种方法。第一种纯理论方法,适用于分离的物体,如山和其他固体物体。但这种预测忽略了地球的不规则性。第二种基于在各种环境的测量,包括不规则地形及人为障碍,尤其是在移动通信中普遍存在的较高的频率和较低的移动天线。第三种方法是结合上述两种方法的改进模型,基于测量和使用折射定律考虑山和其他障碍物的影响。在蜂窝系统中,至少有两种传播模型,第一种是FCC建议的模型。第二种设计模型由Okumura提供,覆盖边

无线电波段划分及传播方式

无线电波段划分及传播方式 频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm 到0.1mm左右)频谱范围内的电磁波,称为无线电波。电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播。 无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段。根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别。 光速÷频率=波长 无线电波波段划分波段名称波长范围(m)频段名称频率范围超长波长波中波 短波 1,000,000~10,000 10,000~1,000 1,000~100 100~~10 10~1

0.1~0.01 0.01~0.001 甚低频 低频 中频 高频 甚高频 特高频 超高频 极高频 3~30KHz 30~300KHz 300~3,000KHz 3~30MHz 30~300MHz 300~3,000MHz 3~30GHz 30~300GHz 超短波米波 分米波 厘米波

电波主要传播方式 电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。 任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种: 地表传播 对有些电波来说,地球本身就是一个障碍物。当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。那些走直线的电波就过不去了。只有某些电波能够沿着地球拱起的部分传播出去,这种沿着地球表面传播的电波就叫地波,也叫表面波。地面波传播无线电波沿着地球表面的传播方式,称为地面波传播。其特点是信号比较稳定,但电波频率愈高,地面波随距离的增加衰减愈快。因此,这种传播方式主要适用于长波和中波波段。天波传播声音碰到墙壁或高山就会反射回来形成回声,光线射到镜面上也会反射。无线电波也能够反射。在大气层中,从几十公里至几百公里的高空有几层“电离层”形成了一种天然的反射体,就象一只悬空的金属盖,电波射到“电离层’

无线电信号的特性

无线电信号的特性 无线电信号的特性 在高频电路中, 我们要处理的无线电信号主要有三种: 基带(消息)信号、高频载波信号和已调信号。所谓基带信号, 就是没有进行调制之前的原始信号, 也称调制信号。 1、时间特性 (1)、信号的描述:一个无线电信号, 可以将它表示为电压或电流的时间函数, 通常用时域波形或数学表达式来描述。 (2)、时间特性的概念:无线电信号的时间特性就是信号随时间变化快慢的特性。信号的时间特性要求传输该信号的电路的时间特性(如时间常数)与之相适应。 2、频谱特性 对于较复杂的信号(如话音信号、图像信号等), 用频谱分析法表示较为方便。 信号的频谱特性的概念:信号的频谱特性就是信号中各频率成分的特性。 对于周期性信号, 可以表示为许多离散的频率分量(各分量间成谐频关系), 例如图1 —3即为图1 —2所示信号的频谱图; 对于非周期性信号, 可以用傅里叶变换的方法分解为连续谱, 信号为连续谱的积分。 频谱特性包含幅频特性和相频特性两部分, 它们分别反映信号中各个频率分量的振幅和相位的分布情况。

任何信号都会占据一定的带宽。从频谱特性上看, 带宽就是信号能量主要部分(一般为90%以上)所占据的频率范围或频带宽度。 图1 — 3 频谱图 3、传播特性 传播特性:是指无线电信号的传播方式、传播距离、传播特点等。无线电信号的传播特性主要根据其所处的频段或波段来区分。 电磁波从发射天线辐射出去后, 不仅电波的能量会扩散, 接收机只能收到其中极小的一部分, 而且在传播过程中, 电波的能量会被地面、建筑物或高空的电离层吸收或反射, 或者在大气层中产生折射或散射等现象, 从而造成到达接收机时的强度大大衰减。根据无线电波在传播过程所发生的现象, 电波的传播方式主要有直射(视距)传播、绕射(地波)传播、折射和反射(天波)传播及散射传播等, 如图 1 — 5 所示。决定传播方式和传播特点的关键因素是无线电信号的频率。

无线电波的基本概念、发射与接收原理

无线电波的基本概念、发射与接收原理 19世纪60年代,英国物理学家麦克斯韦总结前人的科学技术,提出了电磁波学说。20多年后,德国科学家赫兹通过实验,证明了电磁波的存在。 什么是电磁波呢?从电工学电磁感应现象知道,在电磁场里,磁场的任何变化会产生电场,电场的任何变化也会产生磁场。交变的电磁场不仅可能存在于电荷、电流或导体的周围,而且能够脱离其产生的波源向远处传播,这种在空间以—定速度传播的交变电磁场,就称为电磁波。无线电技术中使用的这一段电磁波称为无线电波。 无线电波的传播 理论分析和实验都表明无线电波是横波,即电场和磁场的方向都与波的传播方向垂直。而且电场强度与磁场强度的方向也总是相互垂直的。 无线电波在空间传播时,必然要受到大气层的影响,尤其以电离层的影响最为显著。电离层是由于从太阳及其他星体发出的放射性辐射进入大气层,使大气层被电离而形成的。电离层内含有自由电子是影响无线电波的主要因素。 电离层对无线电波的主要影响是使传播方向由电子密度较大区域向密度较小区域弯曲,即发生电波折射。这种影响随波段的不同而不相同。波长越长,折射越显著。30MHz以下的波被折回地面;30MHz以上的波,则穿透电离层。另外,电波受电离层的另—影响是能量被吸收而衰减。电离程度越大,衰减越大;波长越长,衰减亦越大。 无线电波的传播方式,因波长的不同而有不同的传播特性,分为地波、天波和空间波三种形式。 地波――沿地球表面空间向外传播的无线电波。中、长波均利用地波方式传播。 天波――依靠电离层的反射作用传播的无线电波叫做天波。短波多利用这种方式传播。 空间波――沿直线传播的无线电波。它包括由发射点直接到达接收点的直射波和经地面反射到接收点的反射波。超短波的电视和雷达多采用空间波方式传播。 各种波长的传播特性如下 长波(见波段划分表)波长在3000M以上,中波在100—1000M。长波段主要用作发射标准时间信号。而中波主要用作本地无线电广播和海上通信及导航。 短波主要靠天波传播。传送距离较远,甚至可以用作国际无线电广播,远距离无线电话和电报通信等。 超短波是波长在10M—1m的波,只能用空间波传播,其主要以直线传播为主,由于有地球曲率的影响,传播距离较短,不得不靠增加天线高度来增加通信距离。如无线电视等。

无线信道模型

无线信道模型 摘要:本文分析了无线信道模型。针对的是对无线信道的各种效应感兴趣的读者。众所周知,正是这些复杂的效应使得无线信道产生了不确定性,也就是通常所说的统计特性。由于这方面很少有比较全面,容易理解的资料,所以本文的内容是对其他几本书和相关的论文资料的综合。此外的资料不是只讨论了部分问题,就是虽然面面俱到,但缺乏一定的深度。 本文深入探讨了“是什么影响了无线信道的特性?”这一问题。主要阐述了无线信道的两种效应:一种是乘性效应,使信号产生衰落;另一种是加性效应,使接收到的信号产生畸变。信号的衰落不一定总是随机过程,但信号的畸变却总是。对于信道对信号产生的各种效应,找到了较好的数学模型,这些模型可以用来仿真和分析系统的性能。而且,我们简单举例分析了一些数字无线调制信道的特性。 内容 1 介绍 2 无线电信道 2.1路径损耗 2.1.1 天线 2.1.2 自由空间传播 2.1.3 双线模型 2.1.4 经验和半经验模型

2.1.5其他模型和参数 2.2 阴影 2.2.1 阴影模型 2.2.2 测量结果 2.2.3 阴影修正 2.3 衰落 2.3.1 物理基础 2.3.2 数学模型 2.3.3 衰落的时域和频域特性 2.3.4 一维统计特性 2.3.5 二维统计特性 2.3.6 衰落率和持续时间 3 调制信道 3.1 噪声 3.1.1 门限噪声 3.1.2 窄带高斯白噪声 3.1.3 人为噪声 3.1.4 一些结果 3.2 干扰 4 数字信道 4.1 数字信道的结构 4.2 高斯白噪声信道下二进制PAM信号的以SNIR为自变量的函数BER的计算

4.3 瑞利信道下BPSK信号以SNIR为自变量的函数BER的计算4.4 高斯白噪声信道下其他数字调制方案的一些结果 5 结论 第一章 介绍

无线电波的基本知识

三维工程技术培训讲义1无线电波的基本概念 无线电波的传播方向无线电波的极化方式无线电波的传播速度自由空间的传播知识无线电波的衰落特性 三维工程技术培训讲义 2 无线电波的基本概念 三维工程技术培训讲义3无线电波的传播方向三维工程技术培训讲义 4 无线电波的极化方式 无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。无线电波的电场方向称为电波的极化方向。如果电波的电场方向垂直于地面,我们就称它为垂直极化三维工程技术培训讲义5 无线电波的传播速度 无线电波和光波一样,它的传播速度和传播媒质有关。无线电波在真空中的传播速度等于光速。我们用C=300000公里/秒表示。在媒质中的传播速度为:Vε`=C/√ε,式中ε为传播媒质的相对数很接近,略大于1。因此,无线电波在三维工程技术培训讲义 6 无线电波的传播方式 )直射 直射是无线电波在自由空间传播的方式。)反射 当电磁波遇到比波长大得多的物体时,就会发生反射。反射常发

三维工程技术培训讲义7 无线电波的传播方式图示:①直射波②反射波③④绕射(衍射)波 三维工程技术培训讲义 8 无线电波的衰落特性 三维工程技术培训讲义9无线电波的衰落特性 对于移动通信的电波传播,其衰落特性由下列已知公式及图示表征 ---自由空间的传播衰耗: Lbs=32.45+20lgD(km)+20lgf(MHz) (5) ---准平滑地形市区路径传播衰耗中值:三维工程技术培训讲义 10 无线电波的衰落特性 自由空间的传播损耗 自由空间是一个理想的空间,在自由空间中,电波沿直线传播而不被吸收,也不发生反射、折射、绕射和散射等现象。在下图所示的自由空间中,设在原点0有一辐射源,均匀地向各方向辐射,辐射功率为Pt 。经辐射且,能量均匀地分布在以0点为球心,d 为半径的球面上。已知球面的表面积为 4πd2 ,因此,在球面单位面积上的功率应为Pt/4πd2。若接收天线所能接),并将波长λ换算成相对率与传播距离有关。 三维工程技术培训讲义11无线电波的衰落特性 自由空间的传播损耗 ;自由空间损耗与距离的关系 三维工程技术培训讲义 12 准平无线电波的衰落特性

地面无线电波传播特征实验_论文

本科毕业论文 地面无线电波传播特征实验 THE GROUND RADIO WA VES PROPAGATION CHARACTERISTICS EXPERIMENT 学院(部): 专业班级: 学生姓名: 指导教师: 年月日

地面无线电波传播特征实验 摘要 无线电波发展十分迅速,而且应用在生产实践中非常广泛,掌握好无线电波传播特征以及研究更好的无线电波发展方法是非常重要的。 本文主要研究地面无线电波的传播特征实验。本文通过对井下无线电波透视技术在井上进行模拟试验,通过对不同频率在不同情况下的接收强度得到的数据,进行分析成图,得出结论。频率越高衰减速度越快,直至相同。频率越高衰减越稳定,,接收天线离发射天线距离越远,衰减速度减慢直至几乎不变。符合指数公式。另外,垂直与平行方向两个方向获得的场强哪个更稳定更有规律性的问题。 关键词:无线电波,无线电波透视技术,传播特征规律

THE GROUND RADIO WA VES PROPAGATION CHARACTERISTICS EXPERIMENT ABSTRACT In the rapidly growing radio waves is very extensive and applied in production practice, mastering the radio waves propagation characteristic and the development of radio waves research better method is very important. This paper mainly studies the ground radio waves propagation characteristics of the experiment. This article through to the underground radio wave perspective technique to inoue simulation experiment was carried out, based on the received strength of different frequencies in different cases is data, analysis of maps, draw the conclusion. The higher the frequency the faster the attenuation, until the same. The more stable, the higher the frequency attenuation, the further away from the transmitting antenna distance receiving antenna, attenuation slowed until almost the same. In line with the index formula. In addition, the vertical and parallel to the direction of two direction which is more stable field strength from a regular problem. KEYWORDS:radio waves, radio waves, the technical perspective, propagation characteristics of law

相关文档
最新文档