阻容感传感器-哈工大

阻容感传感器-哈工大
阻容感传感器-哈工大

哈工大信号检测与处理课程报告

2017 年秋季季学期研究生课程考核 (读书报告、研究报告) 考核科目:信号检测与处理学生所在院(系):航天学院 学生所在学科:控制科学与工程学生姓名: 学号:17B904012 学生类别:学术型 考核结果 阅卷人

第一部分、信号检测 1.相关函数的基础原理 相关函数定义为两样本积的数学期望,表示随机信号关联程度、变化程度的量度。是任意样本相应的时间平均值,表示两个样本在不同时间上的相关性。相关函数是信号检测理论中的基础,只有弄清相关性的意义,才能了解后面以相关为基础的一系列方法与原理。特别地,自相关函数定义如下(各态历经下表达式可以由概率平均简化为时间平均如最右表达式): ()()()(){}()()()12120 1,,;,lim T xx x T R R t t E x t x t x x p x t x t x t x t dt T τττττ∞ -∞→∞=+=+=+=+??? 公式中的期望是在实际中相当于针对时间取的均值,因此相关函数的定义也看作一种对本身共轭的卷积运算后的平均值:()()()1 xx R x t x t T τ= *-。因此,首先讨论卷积的操作与物理意义。 卷积物理意义是将信号分解成冲激信号之和,借助系统冲激响应求出系统ZS N 对任意激励信号的零状态响应。卷积定义推导如下:将输入信号分解为多个时刻冲激信号的叠加,分别输入并作用于系统如图1。 图1.输入信号的冲激示意图 系统输入与输出的基本关系如下式(1): ()() ()() ()()()() ()()()()()() 1 1 ZS ZS ZS n n ZS k k t N h t t k N h t k f k t k N f k h t k f k t k f t N f k h t k r t δδττττδττττττδττττ--==→→-?→→-???-?→→??-???-?≈→ →??-?≈∑∑(1) 则根据以上线性系统输入输出间对应关系可做出如下推导: ()()()()()()()()()()()() 1 01 01 11n a k n k n k f t f t f k t k t k t k t k f k f k t k τετετετετττ τττδτ-=-=-=??≈=?-?--+??? ??-?--+?=????????? ≈??-?∑∑∑ ()()()10 n k f t f k t k ττδτ-=≈??-?∑,()()()1 n k r t f k h t k τττ-=≈??-?∑ (2) 取极限,n d ττ→∞?→可得()()()()()0t f t f t d f t t τδττδ=-=*?, 即冲激信号与任意输

光纤湿度传感器应用的文献综述

光纤通信原理(论文) 文献综述 学院:电气工程学院 题目:光纤湿度传感器应用

光纤湿度传感器研究进展 文献综述 学院:电气工程学院专业:通信工程 摘要:光纤湿度传感器是传感器的重要组成部分,而光纤湿度传感器的使用敏感材料也很多,原理也各有异同,导致传感器结构不同、检测方式有差异和成本相差较大等问题,引起了研究者的广泛兴趣。本文比较了几种主要光纤湿度传感器的特点,并对光纤湿度传感技术目前存在的问题及发展趋势进行了讨论。 关键词:光纤湿度传感器;湿度;敏感材料 1.引言 光纤湿度传感器具有体积较小,响应速度较快,抗电磁干扰强,适应温度范围大,动态范围较大,灵敏度非常高的特点,在恶劣的环境中能发挥天然的优势。因而在国防科研、石油化工和电力等领域的湿度检测中有着广阔的应用前景[ 1]。 光学湿度传感器主要是利用光学材料在空气相对湿度发生变化后, 材料的物理和化学特性将发生变化,介质感受到相应的变化,从而引起波长光学参数,光波导和反射系数的变化进行的湿度测量[1]。 2.光纤湿度传感器的分类 按照不同的传感原理,光纤湿度传感器可分为两类:一类是光功率检测型[12],即外界湿度变化引起传输光功率的变化,如基于锥形光纤[13-15] [16,17]、塑料包层石英光纤[18,19]等湿度传感器;另一类是波长检测型 [20,21],即外界湿度变化引起涂敷在传感器表面的湿敏材料有效折射率发生变化,进而导致中心波长发生漂移,如基于布拉格光纤光栅[22-25]、长周期光纤光栅[26-29]、光纤Fabry-Perot腔[30-33]等湿度传感器。 1.3.1 2.1光功率检测型 2.1.1光纤传光式湿度传感器 光纤传光式湿度传感器的传感原理为:当湿敏材料薄膜与空气湿度相互接触后,湿敏材料发生化学反应导致其光学参数发生变化。因此,通过测量湿敏材料

加速度传感器和压电式传感器应用

加速度传感器及压电式传感器应用 摘要:加速度传感器是一种惯性传感器,它能感受加速度并转换成可用输出信号,被广泛用于航空航天、武器系统、汽车、消费电子等。通过加速度的测量,本文简单介绍了加速度传感器的种类、原理及相关应用并着重介绍了压电式加速度传感器。 关键词:加速度,传感器,应用 一加速度传感器概况 加速度检测是基于测试仪器检测质量敏感加速度产生惯性力的测量,是一种全自主的惯性测量,加速度检测广泛应用于航天、航空和航海的惯性导航系统及运载武器的制导系统中,在振动试验、地震监测、爆破工程、地基测量、地矿勘测等领域也有广泛的应用。 测量加速度,目前主要是通过加速度传感器(俗称加速度计),并配以适当的检测电路进行的,在(1~64)Hz的设备频率下典型的加速度测量范围为(0.1~10)g。。加速度传感器的种类繁多,依据对加速度计内检测质量所产生的惯性力的检测方式来分,加速度计可分为压电式、压阻式、应变式、电容式、振梁式、磁电感应式、隧道电流式、热电式等;按检测质量的支承方式来分,则可分为悬臂梁式、摆式、折叠梁式、简支承梁式等。多数加速度传感器是根据压电效应的原理来工作的,当输入加速度时,加速度通过质量块形成的惯性力加在压电材料上,压电材料产生的变形和由此产生的电荷与加速度成正比,输出电量经放大后就可检测出加速度大小。下表为部分加速度计的检测方法及其主要性能特点。 型式测量范围灵偏稳定性分辨力特点 压电式(5~)g (~)g(~)g固有频率较高,用于冲击 及振动测量,大地测量及 惯性导航等 应变式± (0.5~200)g 低频响应较好,固有频率低,适用于低频振动测量 压阻式± (20~)g 灵敏度较高,便于集成化,耐冲击,易受温度影响 液浮摆式±(1~15)g (~)g(~)g带力反馈和温控,分辨力 高,成本较高,适用于惯 性导航

检测与信号处理技术模拟题

《检测与信号处理技术》模拟题(补) 一.名词解释 1、容许误差:测量仪器在使用条件下可能产生的最大误差范围,它是衡量仪器的重要指标,测量仪器的准确度、稳定度等指标皆可用容许误差来表征。 2、附加误差:当使用条件偏离规定的标准条件时,除基本误差外还会产生的误差, 3、动态误差:在被测量随时间变化很快的过程中测量所产生的附加误差。 4、精确度:它是准确度与精密度两者的总和,即测量仪表给出接近于被测量真值的能力,准确度高和精密度高是精确度高的必要条件。 5、迟滞:迟滞特性表明仪表在正(输入量增大)反(输入量减小)行程期间输入——输出曲线不重合的程度。 6、静态误差:测量过程中,被测量随时间变化缓慢或基本不变时的测量误差。 7、灵敏度:它表征仪表在稳态下输出增量对输入增量的比值。它是静态特性曲线上相应点的斜率。 8、精密度:对某一稳定的被测量在相同的规定的工作条件下,由同一测量者,用同一仪表在相当短的时间内连续重复测量多次,其测量结果的不一致程度,不一致程度愈小,说明测量仪表越精密,精密度反映测量结果中随机误差的影响程度。 9、灵敏限:当仪表的输入量相当缓慢地从零开始逐渐增加,仪表的示值发生可察觉的极微小变化,此时对应的输入量的最小变化值称为灵敏限,它的单位与被测量单位相同。 10、重复性:表示仪表在输入量按同一方向作全量程连续多次变动时,所有特性曲线不一致的程度。特性曲线一致,重复性好,误差也小。 11、线性度:仪表的静态输入——输出校准(标定)曲线与其理论拟合直线之间的偏差。 二.简答题 1、误差按其出现规律可分为几种,它们与准确度和精密度有什么关系? 答:误差按出现规律可分为三种,即系统误差、随机误差和粗大误差。 (1)系统误差是指误差变化规律服从某一确定规律的误差。系统误差反映测量结果的准确度。系统误差越大,准确度越低,系统误差越小,准确度越高, (2)随机误差是指服从大数统计规律的误差。随机误差表现了测量结果的分散性,通常用精密度表征随机误差的大小。随机误差越大,精密度越低,随机误差越小,精密度越高,即表明测量的重复性越好。

哈工大信号与系统实验电气学院

实验一 常用连续时间信号的实现 1 实验目的 (1) 了解连续时间信号的特点; (2) 掌握连续时间信号表示的方法; (3) 熟悉MATLAB 基本绘图命令的应用。 2 实验原理 (1) 信号的定义:信号是带有信息的随时间变化的物理量或物理现象。 (2) 信号的描述:时域法和频域法。 (3) 信号的分类:信号的分类方法很多,可以从不同角度对信号进行分类。 在信号与系统分析中,根据信号与自变量的特性,信号可分为确定信号与随机信号,周期信号与非周期信号,连续时间信号与离散时间信号,能量信号与功率信号,时限与频限信号,物理可实现信号。 3 涉及的MATLAB 函数 (1) 正弦信号; (2) 指数信号; (3) 单位冲激信号; (4) 单位阶跃信号; (5) 抽样信号。 4 实验内容与方法 参考给出的程序并观察产生的信号,并通过改变相关参数(例如频率,周期,幅值,相位,显示时间段等),进一步熟悉这些工程实际与理论研究中常用信号的特征。 5 实验要求 (1) 在MATLAB 中输入程序,验证实验结果,并将实验结果存入指定存储 区。 (2) 要求通过对验证性实验的练习,自行编制完整的程序,实现以下几种 信号的模拟,并得出实验结果。 (1)()(),010f t t t ε==取~ (2)()(),010f t t t t ε==取~ (3)2()5e 5e ,010t t f t t --=-=取~ (4)()cos100cos 2000,=00.2f t t t t =+取~ (5)0.5()4e cos ,=010t f t t t π-=取~ (3)在实验报告中写出完整的自编程序,并给出实验结果。 6 实验结果 (1)()(),010f t t t ε==取~t=-1:0.01:10; 程序和输出如下 y=heaviside(t); plot(t,y);

传感器电容式湿度传感器的应用重点

题目传感器电容式湿度传感器的应用 姓名 学号 系(院)_电子电气工程学院_ 班级 目录 前言 (3) 1. 绪论 (1) 1.1电容式传感器的工作原理 (1)

1.2电容式传感器的特点 . (4) 2. 系统设计 (6) 2.1硬件电路设计 (6) 2.2 湿敏电容器的特性 (8) 2.3 电容式传感器数据处理 (8) 2.4测试结果 (8) 结论 (10) 参考文献 (11) 淄博职业学院 前言 人类的生存和社会活动与湿度密切相关,随着现代化的实现,很难找出一个与湿度无关的领域来。在电子科学技术日益发达的今天, 人类对自身的生活环境及工作环境要求越来越高。湿度的监测与控制在国民经济各个部门,如国防、科研、煤炭开采和井下监测以及人生活等诸多领域有着非常广泛的应用。众所周知, 湿度的测量较复杂,而对湿度进行控制更不易。人们熟知的毛发湿度计、干湿球湿度计等已不能满足现代工作条件和环境的要求。为此,人们研制了各种湿度传感器,其中电阻和电容型湿度传感器以其测量范围宽, 响应速度快, 测量精度高, 稳定性好, 体积小, 重量轻,制造工艺简单等显示出极大的优越性, 在实际中得到了广泛应用。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同。其性能和技术指标有很大差异,因而价格也相差甚远。湿度是一个重要的物理量,航天航空,计量等许多环境中需要在高温下进行湿度的测量,很多行业中,如发电、纺织食品、医药、仓储、农业等,对温度、湿度参量的要求都非常严格,目前,在低温条件下,(通常是指100℃以下),湿度

测量已经相对成熟,有商品化产品,并广泛应用于各种行业,另外有许多以行业需要在高温环境下测量湿度,如航天航空、机车舰船、发电变电、冶金矿山、计量科研、电厂、陶瓷、工业管道、发酵环境实验箱、高炉等场合,这时,湿度测量结果往往不如低温环境下的测量结果理想,另外,在恶劣的环境下工作,例如气流速度、温度、湿度变化非常剧烈或测量污染严重的工业化气体时,将使精度大大下降。然而,随着科技的进步,人们对湿度的测量设备进行了越来越深层的研究,本文就以电容型湿度传感器进行阐述。 1. 绪论 1.1电容式传感器的工作原理 电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等分含量等检测领域。 这里主要介绍电容式传感器的原理、结构类型、测量电路及其工程应用。当被测量的变化使S 、d 或ε任意一个参数发生变化时,电容量也随之而变,从而完成了由被测量到电容量的转换。当式中的三个参数中两个固定,一个可变,使得电容式传感器有三种基本类型:变极距型电容传感器、变面积型电容传感器和变介电常数型电容传感器。电容式传感器的测量电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。因此,常用的测量电路主要有桥式电路、调频电路、脉冲宽度制电路、运算放大器电路、二极管双T 形交流电桥和环行二极管充放电法等。调频电路实际是把电容式传感器作为振荡器谐振回路的一部分, 当输入量导致电容量发生变化时,振荡器的振荡频率就发生变化。虽然可将频率作为测量系统的输出量,用以判断被测非电量的大小,但此时系统是非线性的,不易校正,因此必须加入鉴频器,将频率的变化转换为电压振幅的变化,经过放大就可以用仪器指示或记录仪记录下来。

压阻式压力传感器

压阻式压力传感器 利用单晶硅材料的压阻效应和集成电路技术制成的传感器。单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制(见加速度计)。 压阻效应当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器的结构这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。 发展状况1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。早期的硅压力传感器是半导体应变计式的。后来在N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。此芯片仍需粘贴在弹性元件上才能敏感压力的变化。采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器(见单片微型计算机)。这种新型传感器的优点是:①频率响应高(例如有的产品固有频率达1.5兆赫以上),适于动态测量;②体积小(例如有的产品外径可达0.25毫米),适于微型化;③精度高,可

哈工大 试验方法数字信号处理 作业二

题目: 根据已知位移曲线,求速度曲线 要求: ? 由数据文件画出位移曲线( Δt=0.0005s ); ? 对位移数据不作处理,算出速度并画出速度曲线; ? 对位移数据进行处理,画出位移曲线,并与原位移曲线对比; ? 画出由处理后的位移数据算出的速度曲线; ? 写出相应的处理过程及分析。 1. 由数据文件画出位移曲线( Δt=0.0005s ); MATLAB 程序: data=importdata('dat2.dat'); x=(0.0005:0.0005:55); y=data'; plot(x,y); xlabel('时间/s'); ylabel('位移/mm'); title('原始位移曲线'); 曲线如图: 图1 原始位移曲线 2. 对位移数据不作处理,算出速度并画出速度曲线; MATLAB 程序: clear; data=importdata('dat2.dat'); t X V ??=

x=(0.0005:0.0005:55); y=data'; dt=0.0005; for i=1:109999 dx=y(i+1)-y(i); v(i)=dx/dt; end v(110000)=0; plot(x,v); 速度曲线: 图2 原始速度曲线 3.对位移数据进行处理,画出位移曲线,并与原位移曲线对比; 先对位移信号进行快速傅里叶变换: MATLAB程序:fft(y) 结果如图: 图3 原始位移曲线FFT变换

可以得知:频率在0附近为有用的位移信号,而频率大于0HZ的信号则为干扰信号,被滤去。 MATLAB程序: data=importdata('dat2.dat'); x=0.0005:0.0005:55; y=data'; wp=1/1000;ws=4/1000; [n,Wn]=buttord(wp,ws,0.7,20); %使用buttord函数求出阶数n,截止频率Wn。 [b,a]=butter(n,Wn); %使用butter函数求出滤波系数。 y2=filter(b,a,y); plot(x,y2); 曲线如图: 图4 滤波后位移曲线 与原位移曲线对比如下图: 图5 滤波后位移曲线与原曲线对比

湿度传感器的应用.

湿度传感器工作原理及应用 人类的生存和社会活动与湿度密切相关。随着现代化的实现,很难找出一个与湿度无关的领域来。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同.其性能和技术指标有很大差异,因而价格也相差甚远。对使用者来说,选择湿度传感器时,首先要搞清楚需要什么样的传感器;自己的财力允许选购什么档次的产品,权衡好“需要与可能”的关系,不致于盲目行事。我们从与用户的来往中,觉得有以下几个问题值得注意。 1.选择测量范围 和测量重量、温度一样,选择湿度传感器首先要确定测量范围。除了气象、科研部门外,搞温、湿度测控的一般不需要全湿程(0-100%RH)测量。在当今的信息时代,传感器技术与计算机技术、自动控制拄术紧密结合着。测量的目的在于控制,测量范围与控制范围合称使用范围。当然,对不需要搞测控系统的应用者来说,直接选择通用型湿度仪就可以了。下面列举一些应用领域对湿度传感器使用温度、湿度的不同要求,供使用者参考(见表1)。用户根据需要向传感器生产厂提出测量范围,生产厂优先保证用户在使用范围内传感器的性能稳定一致,求得合理的性能价格比,对双方来讲是一件相得益彰的事情。2、选择测量精度 和测量范围一样,测量精度同是传感器最重要的指标。每提高—个百分点.对传感器来说就是上一个台阶,甚至是上一个档次。因为要达到不同的精度,其制造成本相差很大,售价也相差甚远。例如进口的1只廉价的湿度传感器只有几美元,而1只供标定用的全湿程湿度传感器要几百美元,相差近百倍。所以使用者一定要量体裁衣,不宜盲目追求“高、精、尖”。 生产厂商往往是分段给出其湿度传感器的精度的。如中、低温段(0一80%RH)为±2%RH,而高湿段(80—100%RH)为±4%RH。而且此精度是在某一指定温度下(如25℃)的值。如在不同温度下使用湿度传感器.其示值还要考虑温度漂移的影响。众所周知,相对湿度是温度的函数,温度严重地影响着指定空间内的相对湿度。温度每变化0.1℃。将产生0.5%RH的湿度变化(误差)。使用场合如果难以做到恒温,则提出过高的测湿精度是不合适的。因为湿度随着温度的变化也漂忽不定的话,奢谈测湿精度将失去实际意义。所以控湿首先要控好温,这就是大量应用的往往是温湿度—体化传感器而不单纯是湿度传感器的缘故。 多数情况下,如果没有精确的控温手段,或者被测空间是非密封的,±5%RH的精度就足够了。对于要求精确控制恒温、恒湿的局部空间,或者需要随时跟踪记录湿度变化的场合,再选用±3% RH 以上精度的湿度传感器。与此相对应的温度传感器.其测温精度须足±0.3℃以上,起码是±0.5℃的。而精度高于±2%RH的要求恐怕连校准传感器的标准湿度发生器也难以做到,更何况传感器自身了。国家标准物质研究中心湿度室的文章认为:“相对湿度测量仪表,即使在20—25℃下,要达到2%RH的准确度仍是很困难的。” 3、考虑时漂和温漂 几乎所有的传感器都存在时漂和温漂。由于湿度传感器必须和大气中的水汽相接触,所以不能密封。这就决定了它的稳定性和寿命是有限的。一般情况下,生产厂商会标明1次标定的有效使用时间为1年或2年,到期负责重新标定。请使用者在选择传感器时考虑好日后重新标定的渠道,不要贪图便宜或迷信洋货而忽略了售后服务问属。 温漂在上1节已经提到。选择湿度传感器要考虑应用场合的温度变化范围,看所选传感器在指定温度下能否正常工作,温漂是否超出设计指标。要提醒使用者注意的是:电容式湿度传感器的温度系数α是个变量,它随使用温度、湿度范围而异。这是因为水和高分子聚合物的介电系数随温度的改变是不同步的,而温度系数α又主要取决于水和感湿材料的介电系数,所以电容式湿敏元件的温度系数并非常数。电容式湿度传感器在常温、中湿段的温度系数最小,5-25℃时,中低湿段的温漂可忽略不计。但在高温高湿区或负温高湿区使用时,就一定要考虑温漂的影响,进行必要的补偿或订正。

电容式湿度传感器的研究

电容式湿度传感器的研究 摘要 湿度是表示大气干湿程度的物理量。空气的湿度与我们的生活、工作、生产都有着直接的联系,为了获得和测量湿度值,就必须对湿度的测量进行研究。 本文介绍了一种采用电容原理制作的电容式的湿度传感器。采用W型结构的电容式湿度传感器。比较了多种感湿介质的特性,最终选择了聚酰亚胺作为感湿介质填充到W型的传感器中。最后,用恒湿盐发生器作为检定标准,校准该电容式湿度传感器。 关键词:湿度、电容式湿度传感器、W型 1 绪论 1.1 课题研究的目的及意义 湿度是表示大气干湿程度的物理量。有绝对湿度、相对湿度、露点等多种表示方式。绝对湿度是单位体积空气中所含水蒸汽的质量。一般用1立方米空气中所含水蒸汽的克数来表示。对于干燥过程的控制热平衡的调整等,都必须了解绝对湿度。相对湿度为空气中实际所含水蒸汽的密度与同温度下饱和水蒸汽密度的百分比,它是一个无量纲的数。在贮存或加工与周围空气处于湿度平衡的材料时,相对湿度有着很大的意义。空气在一定温度时只能吸收一定量的水汽,空气中的水蒸气达到饱和状态时的温度,叫做露点温度。 研究表明:湿润的空气才能保持生机盎然。为防止家具、木质装修、书籍或乐器老化、变形甚至干裂的情况出现,储存以上物品时室内湿度应保持在45%~55%RH之间,而冬季北方家庭室内湿度仅为10%~15%RH,干燥使我们可能带上2000~7000伏的高压静电,由于家用和办公电器的普及,静电更是无处不在。严重的静电会使人心情烦躁、头晕胸闷、喉鼻不适。只有检测出空气湿度后,才能运用相应的方法调节空气湿度,有效消除静电,创造森林、海般的清新空气。可见空气湿度的检测对于我们的身心健康和工作学习的重要性。 温度、湿度监测在人们现实生活生产中应用已日渐广泛,在发电厂、纺织、食品、医药、建筑、仓库、农业大棚等众多的应用场所,对温度、湿度参量的要求都非常严格,因此能否有效对这些领域的温、湿度数据进行实时监测和控制是一个必须解决的重要前提。 本课题即以上述问题为出发点,设计实现了对空气湿度的实时监测系统,该系统能检测出当前空气的湿度。

压阻式加速度传感器

新型压阻式硅微加速度传感器 1.新颖性 压阻式硅微加速度传感器,因其具有响应快、灵敏度高、精度高、易于小型化等优点,尤其是它的低频响应好,并且该传感器在强辐射作用下能正常工作,对它的研究近年来受到重视。在工业自动控制、汽车、地震测量、军事和空间系统、医学及生物工程等领域中有着广泛的应用前景。 在实际生活应用中往往传感器的灵敏度和量程很难做到二者兼优,为了更好地提高压阻式加速度传感器的灵敏度,新型压阻式加速度传感器的量程设计加以改进,利用静电力对其量程进行可调控制。对于一个结构和几何参数确定的悬臂梁式加速度传感器的设计考虑主要在于:其敏感质量块的自由运动范围,制约着它的测量范围。新型压租式硅微加速度传感器采用静电力来抵消部分加速度惯性力,使同样大小的质量块位移量能够代表更大或不同的被测加速度值,从而实现量程可调的目的。 2.传感器工作原理 压阻效应 半导体材料的压阻效应是指半导体材料受应力作用时,其电阻率发生变化的物理现象。原因可以解释为:由应变引起能带变形,从而使能带谷中的载流子数也发生相对变化,导致电阻率变化。由半导体电阻理论可知电阻率ρ的相对变化为επσπρρE L L /d == 式中, L π为沿晶向 L 的压阻系数,单位 /N m 2; σ为沿晶向 L 的应力,单位/N m 2 ;E 为半导体材料的弹性模量,ε为轴向应变。 压阻式加速度传感器工作原理 压阻式加速度传感器的工作原理是:在测量物体加速度时是基于牛顿第二定

律,即物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a =F/m 。当物体以加速度运动时,质量块受到一个与加速度方向相反的惯性力作用,使悬臂梁变形,该变形引起压阻效应,悬臂梁上半导体电阻阻值发生变化致使桥路不平衡,从而输出电压有变化,即可得出加速度a值的大小。 悬臂梁压阻式加速度计的传感原理 悬臂梁压阻式加速度微传感器是通过将加速度产生的作用加到质量块上,并将质量块的移动通过压敏电阻来测量。悬臂梁压阻式加速度微传感器的结构简化图如下所示。 悬臂梁压阻式加速度计结构简化图 1—悬臂梁;2—扩散电阻;3—质量块;4—机座外壳 当加速度作用于悬臂梁自由端质量块时,悬臂梁受到弯矩作用产生的应力而发生变形由于硅的压阻效应,各应变电阻的电阻率发生变化,电桥失去平衡,输出电压发生变化,通过测量输出电压的变化可得到被测量的加速度值。 新型悬臂梁压阻式加速度计量程改进的依据 压阻式加速度计的工作原理是根据作用在弹性元件上的外力致使其发生形变,引起制作在弹性元件上的应变电阻受到应力其阻值改变,从而输出电信号发生变化。在现有的MEMS 技术下,尤其是悬臂梁式加速度传感器,悬臂梁多采用硅材料或石英材料制作,悬臂梁结构比较适合于小量程传感器。然而在实际工程中,往往悬臂梁会受到随时间变化的动载荷,甚至是瞬时冲击较大的载荷作用,虽然可以根据载荷作用前后的能量守恒原则,但是当应力超过材料的强度极限时,结构将发生断裂或屈服失效,特别是脆性材料多晶硅制成的悬臂梁在冲击或振动作用下很容易断裂失效。此外,疲劳也将导致结构断裂,构件在交变应力的作用下,即使其应力小于断裂强度,在经过一定次数的交变应力之后也会发生脆性断裂。为了使悬臂梁不被损坏,同时也为了满足不同荷载作用时加速度的准确

哈工大数字信号处理实验报告

实验一: 用FFT 作谱分析 实验目的: (1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。 (2) 熟悉FFT 算法原理和FFT 子程序的应用。 (3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。 实验原理: DFT 的运算量: 一次完整的DFT 运算总共需要2N 次复数乘法和(1)N N -复数加法运算,因而 直接计算DFT 时,乘法次数和加法次数都和2N 成正比,当N 很大时,运算量很客观的。例如,当N=8时,DFT 运算需64位复数乘法,当N=1024时,DFT 运算需1048576次复数乘法。而N 的取值可能会很大,因而寻找运算量的途径是很必要的。 FFT 算法原理: 大多数减少离散傅里叶变换运算次数的方法都是基于nk N W 的对称性和周期 性。 (1)对称性 ()*()k N n kn kn N N N W W W --==

(2)周期性 ()(mod`)()()kn N kn n N k n k N N N N N W W W W ++=== 由此可得 ()()/2 (/2)1 n N k N n k nk N N N N N k N k N N W W W W W W ---+?==?=-??=-? 这样: 1.利用第三个方程的这些特性,DFT 运算中有些项可以合并; 2.利用nk N W 的对称性和周期性,可以将长序列的DFT 分解为短序列的DFT 。 前面已经说过,DFT 的运算量是与2N 成正比的,所以N 越小对计算越有利, 因而小点数序列的DFT 比大点数序列的DFT 运算量要小。 快速傅里叶变换算法正是基于这样的基本思路而发展起来的,她的算法基本 上可分成两大类,即按时间抽取法和按频率抽取法。 我们最常用的是2M N =的情况,该情况下的变换成为基2快速傅里叶变换。 完成一次完整的FFT 计算总共需要 2log 2 N N 次复数乘法运算和2log N N 次复数加法运算。很明显,N 越大,FFT 的优点就越突出。 实验步骤 (1) 复习DFT 的定义、 性质和用DFT 作谱分析的有关内容。 (2) 复习FFT 算法原理与编程思想, 并对照DIT-FFT 运算流图和程序框图, 读懂本实验提供的FFT 子程序。 (3) 编制信号产生子程序, 产生以下典型信号供谱分析用:

哈尔滨工程大学信号与系统试卷与答案

第2页 共 4页 y 1(t); 4. 写出描述该系统的系统方程。 四、(12分) 设一因果连续时间LTI 系统输入x (t)和输出y (t)关系为: y ''(t)+3y '(t)+2y (t)=x (t) 1. 求该系统的系统函数H (s),画出其零极点图,并判别系统的稳定性; 2. 确定此系统的冲激响应h (t); 3. 求系统的幅频特性与相频特性表达式。 五、(8分) 一个离散LTI 系统的单位样值响应为:h (n )=αn u (n ) 1. 试用时域卷积方法求该系统的单位阶跃响应g(n ); 2. 确定该系统的系统方程。 六、(24分) 已知函数x (t)和y (t)分别为: ∑∞ -∞ =-= n n t t x )4()(δ ,t t t y 6sin 4cos )(+= 1. 求y (t)的指数傅立叶级数表示,说明其频带宽度; 2. 求x (t)的傅立叶级数展开表达式,简略画出其幅度谱线图; 3. 求x (t)的傅立叶变换表达式X (j ω),简略画出X (j ω); 4. 求y (t)的傅立叶变换表达式Y (j ω),简略画出Y (j ω); 5. 确定信号y (t)的奈奎斯特频率与奈奎斯特间隔。 6. 确定信号s (t)=x (t)y (t)的频谱。 七、(16分) 一个因果的离散时间LTI 系统描述如下: )()2(2 1 )1(43)(n x n y n y n y =-+-- 其中x (n)为输入,y (n)为输出。 1. 试求该系统的系统函数H (z),画出H (z)的零、极点图; 2. 求系统的单位样值响应h (n),并说明系统的稳定性; 3. 用求和器、数乘器和延时器画出其结构框图; 4. 如)(31)(,1)2(,2)1(n u n x y y n ?? ? ??==-=-,求y (n)。

湿度传感器原理及其应用

湿度传感器的原理及其应用 随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。 一、湿度传感器的分类及感湿特点 湿度传感器,分为电阻式和电容式两种,产品的基本形式都为在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。 国内外各厂家的湿度传感器产品水平不一,质量价格都相差较大,用户如何选择性能价格比最优的理想产品确有一定难度,需要在这方面作深入的了解。湿度传感器具有如下特点: 1、精度和长期稳定性 湿度传感器的精度应达到±2%~±5%RH,达不到这个水平很难作为计量器具使用,湿度传感器要达到±2%~±3%RH的精度是比较困难的,通常产品资料中给出的特性是在常温(20℃±10℃)和洁净的气体中测量的。在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳定性去判断,一般说来,长期稳定性和使用寿命是影响湿度传感器质量的头等问题,年漂移量控制在1%RH水平的产品很少,一般都在±2%左右,甚至更高。 2、湿度传感器的温度系数 湿敏元件除对环境湿度敏感外,对温度亦十分敏感,其温度系数一般 0.2~0.8%RH/℃范围内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别。温漂非线性,这需要在电路上加温度补偿式。采用单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范围的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的效果,非线性的温漂往往补偿不出较好的效果,只有采用硬件温度跟随性补偿才会获得真实的补偿效果。湿度传感器工作的温度范围也是重要参数。多数湿敏元件难以在40℃以上正常工作。 3、湿度传感器的供电 金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的交流电压。必须是交流电供电。 4、互换性 目前,湿度传感器普遍存在着互换性差的现象,同一型号的传感器不能互换,严重影响了使用效果,给维修、调试增加了困难,有些厂家在这方面作出了种种努力,(但互换性仍很差)取得了较好效果。 5、湿度校正 校正湿度要比校正温度困难得多。温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件非常严格,一般情况,(最好在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简单的饱和盐溶液检定法,并测量其温度。 二、对湿度传感器性能作初步判断的几种方法 在湿度传感器实际标定困难的情况下,可以通过一些简便的方法进行湿度传感器性能判断与检查。

湿度传感器原理与应用知识

湿度传感器原理与应用知识 随着时代的发展,科研、农业、暖通、纺织、机房、航空航天、电力等工业部门,越来越需要采用湿度传感器,对产品质量的要求越业越高,对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一。湿度传感器产品及湿度测量属于90年代兴起的行业。如何使用好湿度传感器,如何判断湿度传感器的性能,这对一般用户来讲,仍是一件较为复杂的技术问题。 一、湿度传感器的分类 湿度传感器,基本形式都为利用湿敏材料对水分子的吸附能力或对水分子产生物理效应的方法测量湿度。有关湿度测量,早在16世纪就有记载。许多古老的测量方法,如干湿球温度计、毛发湿度计和露点计等至今仍被广泛采用。现代工业技术要求高精度、高可靠和连续地测量湿度,因而陆续出现了种类繁多的湿敏元件。 湿敏元件主要分为二大类:水分子亲和力型湿敏元件和非水分子亲和力型湿敏元件。利用水分子有较大的偶极矩,易于附着并渗透入固体表面的特性制成的湿敏元件称为水分子亲和力型湿敏元件。例如,利用水分子附着或浸入某些物质后,其电气性能(电阻值、介电常数等)发生变化的特性可制成电阻式湿敏元件、电容式湿敏元件;利用水分子附着后引起材料长度变化,可制成尺寸变化式湿敏元件,如毛发湿度计。金属氧化物是离子型结合物质,有较强的吸水性能,不仅有物理吸附,而且有化学吸附,可制成金属氧化物湿敏元件。这类元件在应用时附着或浸入被测的水蒸气分子,与材料发生化学反应生成氢氧化物,或一经浸入就有一部分残留在元件上而难以全部脱出,使重复使用时元件的特性不稳定,测量时有较大的滞后误差和较慢的反应速度。目前应用较多的均属于这类湿敏元件。另一类非亲和力型湿敏元件利用其与水分子接触产生的物理效应来测量湿度。例如,利用热力学方法测量的热敏电阻式湿度传感器,利用水蒸气能吸收某波长段的红外线的特性制成的红外线吸收式湿度传感器等。 1、电解质湿敏元件 利用潮解性盐类受潮后电阻发生变化制成的湿敏元件。最常用的是电解质氯化锂(LiCl)。从1938年顿蒙发明这种元件以来,在较长的使用实践

湿度传感器HS1101

湿度传感器HS1101 1引言 湿度传感器是根据某种物质从其周围空气中吸收水分后引起的物理或化学性质的变化,从而获得该物质的吸水量和周围空气的湿度。 湿度传感器分为电阻式和电容式两种,产品的基本形式都是在基片涂覆感湿材料形成感湿膜。空气中的水蒸汽吸附于感湿材料后,元件的阻抗、介质常数发生很大的变化,从而制成湿敏元件。湿敏电容一般是用高分子薄膜电容制成的,由于它具有灵敏度高、产品互换性好、响应速度快、湿度的滞后量小、便于制造、容易实现小型化和集成化,其精度一般比湿敏电阻要低一些。但电阻对温度的敏感因而限制了器件在较大温度范围内的应用,因而电容湿度传感器越来越受到重视。 2 湿敏元件及变送器芯片特性 目前,生产湿敏电容的主要厂家是法国Humirel 公司。它生产的HS1101 测 量范围是0%,100%RH,电容量由162PF 变到200PF,其误差不大于?2%RH;响应时间小于5S;湿度系数为0.34PF/?;年漂移量0.5%RH/年,长期稳定。图1 为HS1101 湿敏电容的湿度-电容响应曲线。 湿度变送器采用了美国 BB 公司生产的XTR105芯片,该变送器具有以下特点: a 工作范围宽; b 测量精度高; c 电路简单; d 可靠性好,使用寿命长; e 抗干扰能力强; f 工作温度范围宽(-40,+85?)

3 湿度测量电路 HS1101在电路中相当于一个电容器件,它的电容量随着所测空气湿度的增加而增大,为了能将电容的变化转换成电压的变化,我们设计了振荡电路、消除零点电容影响电路、整流电路、积分电路、电压—电流转换电路、放大电路等,其工作原理简图如图2 所示。 3.1 振荡电路 振荡电路的作用是将电容的变化量转化为频率可变的方波。由图3 可知,这是一个非对称多谐振荡器。或非门G1 工作在电压传输特性的转折区,把它的输出电压直接连接到或非门G2 的输入端。G2即可得到一个介于高低电平之间的静态偏置电压,从而使G2 的静 态工作点也处于电压传输特性转折区上。反馈环路中电容使电路在两个暂稳态之间往复振荡。

压阻式加速度传感器对ADC的要求

压阻式加速度传感器对ADC的要求 为具体应用选择适当的压阻式加速度传感器取决于待测温度范围和所需的精度。系统精度取决于压阻式加速度传感器的精度和对传感器的输出数字化的模数转换器(ADC)的性能。多数情况下,由于传感器信号非常微弱,因此需要高分辨率ADC。ΣΔADC具有高分辨率,并且这种ADC通常包含温度测量系统所需的内置电路,例如激励电流源。本文主要介绍可以利用的温度传感器[热电偶、电阻温度检测器(RTD)、热敏电阻器与热敏二极管]和连接传感器与ADC所需的电路,以及对ADC的性能要求。 热电偶 热电偶由两种不同类型的金属组成。当温度高于零摄氏度时,在两种金属的连接处会产生温差电压,电压大小取决于温度相对于零摄氏度的偏差。热电偶具有体积小、工作温度范围宽等优点,非常适合恶劣环境中的极高温度(高达2300℃)测量。但是,热电偶的输出为mV级,因此需要经过精密放大才能作进一步处理。不同类型热电偶的灵敏度也不一样,一般仅为每摄氏度几mV,因此需要高分辨率、低噪声ADC。 图1给出利用3通道、16/24位AD7792/AD7793ΣΔADC的热电偶系统。其片内仪表放大器首先对热电偶电压进行放大,然后通过ADC对放 大的电压信号进行模数转换。热电偶产生的电压偏置在地电平附近。片内激励电压源将其偏置到放大器线性范围以内,因此系统能够利用单电源工作。这种

低噪声、低漂移、片内带隙基准电压源,能够确保模数转换的精度,从而保证整个温度测量系统的精度。 电阻温度探测器 电阻温度探测器的电阻随着温度变化而变化。电阻温度探测器的常用材料是镍、铜、铂,其中电阻在100Ω~1000Ω之间的铂电阻温度探测器是最常见的。电阻温度探测器适用于在-200℃~+800℃的整个温度范围内具有接近线性响应的温度测量。一只电阻温度探测器包括3根或4根导线。 热敏电阻器 热敏电阻器的电阻也随着温度的变化而变化,但是其精度不如电阻温度探测器。热敏电阻通常使用单电流电源。同使用电阻温度探测器一样,一个精密电阻器用于基准电压源,一个电流源驱动该精密基准电阻器和热敏电阻器,这意味着可以实现一种比率配置。这也说明电流源的精度并不重要,因为电流源温漂既影响热敏电阻器,同时也影响基准电阻器,因此抵消了漂移影响。在热电偶应用中,通常利用热敏电阻器进行冷接点补偿。热敏电阻器的标称电阻值通常为1000Ω或更高。 热敏二极管 也可以用热敏二极管进行温度测量:通过测量二极管(一般为晶体管的基极到发射极)的电压计算温度。采用两种不同的电流分别通过热敏二极管,测量在两种情况下从基极到发射极的电压。由于知道电流的比率,因此可以通过测量从基极到发射极电压在两种不同电流情况下的差,从而准确计算温度。例如,我们将AD7792/AD7793的激励电流源设置为10mA与210mA(也可以选择其它值)。首先,让210mA的激励电流通过二极管,利用ADC测量从基极到发射极的电压。然后,利用10mA激励电流重复上述测量。这意味着电流降低到原来的1/21。在测量中电流绝对值并不重要,但是要求电流比率固定。 压阻式加速度传感器对ADC的要求 温度测量系统通常是低速(每秒采样最多100次)的,因此窄带ADC比较适合;但是,ADC必须具有高分辨率。窄带与高分辨率的要求,使得ΣΔADC成为这种应用的理想选择。在这种结构下,开关电容器前端模拟输入连续采样,采样频率明显高于有用带宽。 ΣΔ调节器将采样的输入信号转换为数字脉冲串,其“1”的密度包括数字量信息。ΣΔ调节其还能进行噪声整形。通过噪声整形,有用带宽内的噪声被移到有用带宽以外,到达无用的频率范围。调节器的阶数越高,在有用带宽内对噪声整形的作用就越明显。但是,较高阶调节器容易不稳定。因此,必须在调节器

相关文档
最新文档