分子遗传学复习题

分子遗传学复习题
分子遗传学复习题

分子遗传学复习题

名词解释:

DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。

ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE 计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段( a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。

gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。

GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。

miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码 RNA,它们主要参与基因转录后水平的调控。

RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。

RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。

RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。

密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。

比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。

表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。

超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。

沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。

代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。

端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

反向遗传学(reverse genetics):是从改变某个感兴趣的基因或蛋白质入手,然后去寻找相关的表型变化。

反转座子(retroposon)或“反转录转座子(retrotransposon)”:先转录为RNA再反转录成DNA 而进行转座的遗传元件。

核酶(ribozyme):具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。

核心启动子(core promoter):是指在体外测定到的由RNA polⅡ进行精确转录起始所要求的最低限度的一套DNA序列元件。

化学基因组学(chemogenomics):它是作为后基因组时代的新技术,是联系基因组和新药研究的桥梁和纽带。它指的是使用对确定的靶标蛋白高度专一的小分子

化合物来进行基因功能分析和发现新的药物先导化合物。

基因组印迹(genomic imprinting) :也称作基因印迹(gene impringting),是一种新发现的非孟德尔遗传现象,指来自双亲的某些等位基因在子代中呈现差异性表达的现象。

程序性细胞死亡/凋亡(programmed cell death/apoptosis):细胞应答一类刺激剂,引起一连串特征性的反应,从而启动导致细胞死亡的途经。

焦磷酸化编辑(pyrophosphorolytic editing):RNA聚合酶通过PPi的掺入(聚合反应的逆反应)去除错误加入的核苷酸,然后加入正常的核苷酸,虽然这种编辑不能区分正常和错误的核苷酸,但由于转录在错误加入核苷酸后停留时间过长,而对其有优先校正功能。

酵母双杂交(yeast two-hybrid):利用杂交基因通过激活报道基因的表达探测蛋白质与蛋白质间的相互作用。

亮氨酸拉链(leucine zipper):是由伸展的氨基酸组成,每7个氨基酸中的第7个氨基酸是亮氨酸,亮氨酸是疏水性氨基酸,排列在α-螺旋的一侧,所有带电荷的氨基酸残基排在另一侧。当2个蛋白质分子平行排列时,亮氨酸之间相互作用形成二聚体,形成“拉链”。

密码子使用的偏好(relative synonymous codon usage,RSCU):编码同一氨基酸的各个密码子的使用频率在不同生物中并不相同,也不与该氨基酸在整个蛋白质中的频率成正比,这也就是密码子使用的偏好现象,该现象可影响基因表达的效率。

母系印迹(maternal imprinting) :来自母本的等位基因(母源等位基因)不表达,而父源等位基因表达的现象。

母性基因(maternal gene):母体卵子发生时所表达的基因,母性体细胞基因是在母性体细胞中表达,而母性胚系基因则在生殖细胞中表达(如卵母细胞)。

染色质重塑(chromatin remodeling) :是表观遗传修饰中一种常见的方式,是指导致整个细胞分裂周期中染色质结构和位置改变的过程。

染色质重塑因子(chromatin remodeling factor): 依靠水解ATP提供能量来完成染色质结构的改变。染色质重塑因子在组成及功能上不同,但都包含类Snf2超家族的ATP酶亚基

增强子(enhancer):该DNA序列可增加与其连锁基因转录的频率。增强子多位于基因的5’端,但也可位于基因的3’端,甚至基因的内含子中。无位置及方向性,但可能有组织细胞特异性,一般能使基因转录频率增加10~200倍,有的甚至可以高达上千倍。甚至远离靶基因达几千kb也仍有增强作用。

转座子沉默(transposon silencing):宿主积累了转座子的多个拷贝,从而阻遏转座发生。

组成型剪接(constitutive splicing):编码蛋白质的不连续基因通过RNA剪接将内含子从mRNA的前体中依次去除,然后规范地将外显子剪接成成熟的mRNA,这种剪接方式是一个基因只产生一种成熟的mRNA,一般也只产生一种蛋白质产物。

组蛋白密码(histone code):组蛋白氨基端的各种修饰(甲基化、乙酰化、磷酸化、泛素化等)及组合通过改变染色质的结构或产生效应蛋白质的结合位点而影响基因的表达活性,从而调控下游的细胞学过程。

组蛋白修饰(histone modification) :是指染色质上的组蛋白被甲基化、乙酰化或磷酸化的过程。

中心法则(central dogma)于1958年提出的阐明遗传信息传递方向的法则,指出遗传信息从DNA传递至RNA,再传递至多肽。DNA与RNA之间遗传信息的传递是双向的,而遗传信息只是单向地从核酸流向蛋白质。

简答题:

1.核小体与核小体定位在基因表达及其调控中有何作用

答:核小体的形成及其在染色质上的精确定位导致染色质结构不均匀,表现为某些区域核小体占据率高、某些区域核小体缺乏。由于核心DNA 被包装进核小体中,阻断了转录因子等与DNA 的接触机会,核小体起基因转录抑制子的作用;而核小体之间的自由区域更有利于这些蛋白因子与其识别位点的结合;此外,核小体定位在染色质重塑过程中发生变化,从而明显地影响基因的表达水平。

2.原核生物与真核生物的启动子结构有什么差别

答:

原核生物的启动子特点:

①Pribnow框:TATAAT,位于-10左右,是 RNA聚合酶的牢固结合位点

②Sextama框:TTGACA,位于-35附近,是 RNA聚合酶的初始结合位点

③上述二者及之间的距离决定转录效率,一般距离17bp左右

④CAP位点是cAMP-受体蛋白复合物在启动子上的的结合位点

真核生物有三类RNA聚合酶,与此对应,有三类不同的启动子:

①RNA聚合酶Ⅰ识别的启动子,由起始位点的核心启动子和其上游控制元件两部分组成。核心启动子包括

-45到+20,负责转录的启始;上游控制元件从-200到-150,它们之间的序列长度对转录效率影响很大。

②RNA聚合酶Ⅲ启动子可分为两种类型。

一种是启动子位于转录起始点下游,分为两个亚型,Ⅰ型和Ⅱ型,Ⅰ型内部启动子有两个分开的序列boxA,和boxC,而它们之间的距离比较固定,为中间元件(internal element IE),这是5SrRNA基因的典型结构;Ⅱ型启动子内部启动子由boxA和boxB组成,两者之间距离较大,且不固定,是tRNA基因启动子的典型结构。

另一种启动子是与常见的启动子相似,又称上游启动子(upstream promoter)。上游启动子包括三部分元件,即TATA框,近侧序列元件(proximal sequence element, PSE),和远侧序列元件(distal sequence element, DSE),这是部分snRNA基因启动子的典型结构。

③RNA聚合酶Ⅱ启动子由四部分元件组成,即转录起始点、TATA盒、上游元件和远上游元件。

转录起始点(initiators)位于-3—+5,常和TATA盒组成核心启动子起始基础转录。

绝大多数Ⅱ型转录酶启动子均含有TATA盒,一致性序列为TATAAAA,常在起始点上游-25bp —-30bp 区,TATA盒对有些Ⅱ型转录酶启动子的功能是十分重要。

上游元件(upstream element,UE)位于TATA盒上游的元件种类较多,常见的有GC盒、CAAT盒、八聚体元件、另外有些启动子还可见到KB、ATFu等。GC盒:位于TATA上游特定位置上(-90bp),一个或几个含有高GC序列的元件,有位置依赖性,但无方向依赖性,它与SP1蛋白结合后可以促进转录的效率。

CAAT盒一般位于起始点上游-80到-75左右。可极大的提高转录的效率,但对其起点、特异性等无影响。

远上游元件或远端调控区,比较常见的有增强子、沉默子、上游激活序列、边际序列、绝缘子等。

3.常见的反式作用因子有哪些其结构特点是什么

答:转录因子有数千种之多,从其结构特点来看,主要有两大功能区,①DNA结合域,②活性域。对于DNA 结合域,根据其氨基酸结构域的特点,又可分为:螺旋-转角-螺旋(helix-turn-helix,HTH),锌指(zinc finger),螺旋-环-螺旋(helix-loop-helix,HLH),亮氨酸拉链(leucine zipper,ZIP),同源异型域(homeodomain,HD),激素受体类(类固醇等)或核受体类,β桶(β-barrels)结构等。大量的实验证明这两大功能域是分开的,但不同转录因子的活性域其激活方式可能不同。

⑴锌指蛋白,锌指结构域是由蛋白质上保守的半胱氨酸及/或组氨酸与锌原子结合形成一个手指状的结构。

典型的锌指蛋白往往有多个锌指结构域,两个锌指之间由7?8个氨基酸相连。从每个锌指的三级结构来看,其N端形成β折叠,C端形成α螺旋。反向平行的β折叠区含有2个半胱氨酸,与其后α螺旋中的2个组氨酸一起与锌原子结合,而由锌原子稳定了整个锌指结构。

⑵同源异型域蛋白,同源异型域(homeodomains,HD)蛋白含有60个氨基酸保守序列的DNA结合蛋白,属

于HTH蛋白,可形成三个螺旋区,其中螺旋2、螺旋3形成典型的HTH域,螺旋3识别螺旋与DNA大沟结合,其N末端臂参与DNA小沟的结合

⑶β-barrels结构域,由多个反向平行的β折叠构成的β-桶(β-barrels)结构,每个亚基上的α-螺

旋则与DNA大沟相结合,两个相邻的大沟被识别螺旋结合后可导致DNA分子发生45°的弯曲。

⑷螺旋-环-螺旋结构域,长40~50个氨基酸,有两个长15~16个氨基酸的亲水、亲脂的α螺旋,长

度不同的环(连接区)将其分开。多数HLH附近有一强碱性的氨基酸区是DNA的识别和结合所必需的

⑸亮氨酸拉链的结构域,亮氨酸拉链(leucine zipper,ZIP)的双亲α螺旋其疏水面亮氨酸突出,并与

另一个平行的亮氨酸拉链蛋白的亮氨酸突出交错排列,盘绕成卷,两个右手螺旋互相缠绕,每圈个氨基

酸,每7个残基构成一个完整的重复单位,因此亮氨酸在拉链区每隔6个氨基酸残基重复出现一次,两

个蛋白形成同源二聚体或异源二聚体。在每个拉链蛋白质中与亮氨酸重复序列邻近的区域是高度碱性

的,可作为一个DNA的结合位点。整个二聚体呈Y型结构。

4.原核生物与真核生物基因表达调节机制的主要差别是什么

①在原核生物中,基因表达的调控以转录水平调控为主,在调节基因的作用下,主要以操纵子为单位,转录

出一条多顺反子mRNA,并指导蛋白质合成;而且转录和翻译是偶联的,很少发生mRNA的加工、修饰。但也存在转录后水平的调控,例如反义RNA的调控,翻译的调控,RNA开关等。

②在真核生物中,基因表达的调控十分复杂,可发生在多个层次、多个水平,包括从染色体和染色质的表观

遗传学控制,DNA的复制、RNA的转录、加工与拼接、蛋白质翻译及翻译后加工、修饰等等。对于真核生物基因的转录调控,主要是顺式作用元件(cis-acting element)与反式作用因子(trans-acting factor)的相互作用。

③另外,DNA的重排和RNA的交替剪接也是真核生物基因表达多样性的重要机制;近年发现的小分子RNA通过

RNA干扰途径也可调节基因的表达,介导DNA的甲基化、mRNA的降解及翻译起始的抑制等。

5.转座子的遗传学效应与应用

答:①改变染色体结构,引起的染色体DNA缺失或倒位;

②诱发基因突变;

③调节基因表达,很多转座子带有增强子,有的还含有启动子,能促进基因的转录活性;转座子插入

某个基因的内含子或外显子中而影响该基因表达;

④产生新的变异;

⑤应用转座子标记技术,克隆目的基因;

⑥以转座因子作为基因工程载体,进行转基因等遗传操作。

6.简述染色质重塑的基本过程及其生物学功能。

答:染色质重塑是指导致整个细胞分裂周期中染色质结构和位置改变的过程。此过程由两种蛋白复合体所介导,即ATP依赖型核小体重构复合体和组蛋白修饰复合体。

染色质的重塑因子通过利用ATP水解释放的能量,引起特定核小体位置的改变(滑动),或核小体三维结构的改变, 或二者兼有,将核小体重新排布,从高度致密的染色质上解开,从而使启动子区中的顺式作用元件得以暴露, 为反式作用因子(转录因子)与之结合提供了空间接触的可能。

组蛋白修饰因子并不改变核小体的位置,而是在DNA上作标记,以招募其他的活性成分(组蛋白密码),对核心组蛋白N端尾部进行共价修饰,从而改变染色质结构。

染色质重塑是DNA修复和基因表达调控过程中的一个重要环节。细胞基因组中的DNA通常并非处于裸露状态,而是与组蛋白一起构成结构致密的染色质,故染色质结构状态的改变会影响基因的表达。细胞中存在着各种不同的染色质重塑因子复合物激活或者沉默基因的表达。

染色质重塑在个体发育,人类疾病及基因剂量补偿中具有重要作用

论述题

1.有哪些方法可用于功能基因组学的研究现在有何进展

答:随着多种生物全基因组序列的获得,基因组研究正在从结构基因组学转向功能基因组学的整体研究。在功能基因组学的研究中通常运用高通量技术(high-throuput techniques),如DNA微阵列(DNA microarrays),反向遗传学(reverse genetics)技术如基因打靶,转基因以及反义mRNA和RNA干扰等技术来系统地分析基因功能及基因间相互作用,基因组的时空表达以及发现和寻找新基因等。

(1)DNA微阵列技术又称DNA芯片(DNA chips)或基因芯片技术(gene chips),它通过将对应于不同基因或cDNA的DNA片段或寡聚核苷酸点样于微芯片上形成高密度的矩阵,与荧光标记的总mRNA进行杂交,然后通过激光共聚焦扫描检测并运用计算机软件对杂交信号进行自动化定性定量分析,具有高通量、实时、灵敏、准确等特点。

(2)基因打靶是指通过转染的DNA序列与细胞内同源的基因组序列(靶序列)之间进行同源重组,以改变靶序列来研究其结构和功能或进行基因治疗的技术。基因打靶技术包括基因敲除(knock-out)和基因敲入(knock-in),前者是用无功能的DNA序列与靶序列重组,破坏原基因组的遗传功能,后者是用有功能的DNA序列与受到破坏的靶序列重组使其恢复遗传功能。基因打靶技术是一种从基因到表型的新研究方法,属于反求遗传学范畴。

(3)反义mRNA技术通过向细胞导入一段与特定编码mRNA互补的非编码RNA链,使其与该段mRNA特异性结合而定向阻抑靶基因表达的技术。这一技术的成熟,为功能基因组学的研究和基因治疗提供了新的思路。在反义mRNA技术的研究过程中,科学家们意外发现导入正义mRNA(sense RNA)与导入反义mRNA具有等效的阻抑效应。而更令人吃惊的是如果导入相应双链RNA(dsRNA),其阻抑效应比导入任一单链RNA强十倍以上,dsRNA若经纯化则阻抑效应更强。这种双链RNA特异性地作用于与其序列配对的基因而抑制其表达的现象叫做RNA干涉。RNA干涉技术作为一种新的定点敲除knockdown技术,赋与了功能基因组学、基因治疗等全新的思路,堪称生命科学近年来的革命性的突破。因而发现RNA干扰机制的两位美国科学家Fire和Mello荣获2006年诺贝尔生理学或医学奖。可见该项成果的重大科学意义。

2.目前最常用的突变体创制方法有哪些如何利用突变体进行功能基因组学研究

答:1.化学诱变,化学诱变剂主要有烷化剂、碱基类似物、亚硝基化合物、叠氮化物等,多用烷化剂,如EMS和MNU等。EMS诱发的特点是突变均匀分布于整个基因组中而不呈现明显的“热点”。我们不仅

仅可以通过EMS造成转录提前终止的功能缺失突变体来研究基因的功能,也可以通过错义突变引起的

一些表型较弱、中间类型的突变体来研究功能蛋白中某个特定氨基酸残基的功能。

2.物理诱变,诱变剂主要有紫外线,X-射线,γ-射线,快中子,激光,微波,离子束等;电离辐

射广泛用于植物、动物和微生物的诱变育种,由于快中子具有能量高、辐射处理的剂量容易控制和操作简便等特点,在生物诱变上具有独到的优点:如对子粒较大的玉米、大豆等的诱变效率较高,诱变的剂量(强度和时间)容易控制,在一个基因组上可以存在多个突变位点,同时诱变后生物材料仍保持较高的活性

3.生物技术,转基因,基因打靶,激活标签法, G atew ay 全长cDNA 过量表达技术和RNA干涉技术等。

T-DNA标签技术是以农杆菌介导的遗传转化为基础的一种插入突变研究方法,在获得稳定的突变表型后,可用报告基因为探针在突变体文库中克隆相应的功能基因。还可通过质粒挽救的方法克隆插入序列两翼的基因片段。T-DNA标签突变体库除了通过基因敲除来研究基因功能以外,还可通过对T-DNA标签的改造建立了激活标签(activation tagging)突变体库,和捕获标签(entrapment tagging)突变体库。

转座子标签技术:广泛应用于病毒、细菌、酵母、果蝇、拟南芥菜、水稻等物种的突变体创制与基因功能研究。尤其是在高等植物上取得了突破性进展,如玉米激活子(activator,Ac)、解离子(dissociation,Ds)、增变子 (mutator,Mu)、金鱼草Tam、矮牵牛dTphl以及水稻的Tos17。

构建突变体库是功能基因组学研究的重要手段。

1.重要性状基因的克隆与鉴定:通过 TILLING、PCR-walking 或图位克隆技术,可以获得某些突变性

状所对应的突变基因,确定基因与性状的对应关系。只要拥有饱和的突变体库,理论上可以获得所有基因的突变体。

2.创制中间材料,研究生物生长发育和代谢途径

3.RNAi通过哪些机制控制基因的表达实践中有何应用

答:RNA 干涉( RNA interference, RNAi) 通过双链RNA( double-stranded RNA, dsRNA) 介导的转录后基因沉默。它可以快速分析靶基因的功能,成为反向遗传学研究的重要工具之一。

1)胞质中的核酸内切酶Dicer将dsRNA切割成多个具有特定长度和结构的小片段RNA(约21~23 bp),即

siRNA。siRNA在细胞内RNA解旋酶的作用下解链成正义链和反义链,继之由反义siRNA再与体内一些酶(包括内切酶、外切酶、解旋酶等)结合形成RNA诱导的沉默复合物(RNA-induced silencing complex,RISC)。

RISC与外源性基因表达的mRNA的同源区进行特异性结合,RISC具有核酸酶的功能,在结合部位切割mRNA,切割位点即是与siRNA中反义链互补结合的两端。被切割后的断裂mRNA随即降解,从而诱发宿主细胞针对这些mRNA的降解反应。siRNA不仅能引导RISC切割同源单链mRNA,而且可作为引物与靶RNA结合并在RNA 聚合酶(RNA-dependent RNA polymerase,RdRP)作用下合成更多新的dsRNA,新合成的dsRNA再由Dicer 切割产生大量的次级siRNA,从而使RNAi的作用进一步放大,最终将靶mRNA完全降解,使基因沉默

2)线虫的lin4和let7,通过和靶基因mMT 的3’末端非翻译区结合而阻断相应蛋白质的翻译

3)RNAi 对基因表达的静默作用可能通过染色质浓缩实现,dsRNA可结合到植物启动子区域,能通过一种使

DNA甲基化的作用导致基因沉默。

4)siRNA可能参与纤毛虫,四膜虫虫体间结合时的基因重组。在虫体之间结合过程中,结合到重组序列的

siRNA介导 DNA缺失和染色体断裂。

5)转座子沉默与 siRNA 有关,蠕虫 mut-7 基因参与 RNAi 和转位抑制,从裂殖酵母的中心粒区分离出

siRNA,并检测到这些 siRNA 介导此区内组蛋白甲基化。

应用:

1)RNAi在探索基因功能中的应用

在RNAi技术出现以前,基因敲除(gene knockout)是主要的反向遗传学(reverse genetics)研究手段,但其技术难度较高、操作复杂、周期长。由于RNAi技术可以利用siRNA或siRNA表达载体快速、经济、简便的以序列特异方式剔除目的基因表达,所以现在已经成为探索基因功能的重要研究手段。同时siRNA表达文库构建方法的建立,使得利用RNAi技术进行高通量筛选成为可能,对阐明信号转导通路、发现新的药物作用靶点有重要意义。

2)RNAi在基因治疗领域中的应用

RNAi的作用具有高效率和高特异性的特点,它能使目标蛋白的mRNA发生特异性降解。因此RNAi 是基因沉默疗法的理想工具。目前,人们已经证明在培养的哺乳动物细胞中,可用于抗病毒和抗肿瘤等的基因治疗;

3)其他

a)RNAi在新药物的研究与开发中的应用可以作为高通量药物靶标靶标识别和确认的工具;

b)由于能高效特异的阻断基因的表达,可使其成为研究信号传导通路的良好工具;

c)RNAi 技术已被用于改良植物品质、改善植物营养价值等方面的研究,取得了客观的经济效益。

4.DNA甲基化是如何在转录水平上抑制基因表达的

①直接干扰特异转录因子与各自启动子结合的识别位置 DNA的大沟是许多蛋白因子与DNA结合的部位,胞嘧

啶的甲基化干扰转录因子与DNA的结合。许多转录因子,如AP-2和E2F等能识别含CpG的序列,且对其甲基化程度非常敏感,当CpG上的C被甲基化后,转录即被抑制。

②转录抑制复合物干扰基因转录甲基化DNA结合蛋白与启动子区内的甲基化CpG岛结合,再与其它一些蛋

白共同形成转录抑制复合物(transcriptional repression complex, TRC),阻止转录因子与启动子区靶序列的结合,从而影响基因的转录。已经鉴定了甲基化胞嘧啶结合蛋白1和2(MeCP1和MeCP2)及甲基化DNA 结合蛋白(MBD)等转录抑制复合物。MeCP1的抑制作用比较弱,需要与含12个甲基化CpG的位点结合,缺乏MeCP1的细胞其基因组内甲基化基因的抑制作用减弱。MeCP2在细胞中比MeCPl丰富,转录抑制作用比较强,可与单个甲基化的CpG碱基对结合。

③通过改变染色质结构而抑制基因表达 DNA甲基化与组蛋白去乙酰化正相关,而乙酰化修饰正是调节基因表

达的另一重要方式。染色质构型的变化伴随着组氨酸的乙酰化和去乙酰化,许多乙酰化和去乙酰化酶本身就分别是转录增强子蛋白和转录阻遏物蛋白。DNA失活的区域处于高度甲基化状态,同时又富含低乙酰化组氨酸。CpG二聚体中胞嘧啶甲基化是高等真核生物基因组的主要特征。一般来说,在基因启动子区的DNA甲基化伴随着基因沉默。

5.真核生物CG岛的甲基化状态与基因的表达活性的关系如何

①CpG岛经常出现在真核生物的house-keeping基因的5’端调控区域调控区,在其它地方出现时会由于CpG

中的C易被甲基化而形成5'-甲基胞嘧啶,脱氨基后形成胸腺嘧啶,由于T本身就会存在于DNA中,因此不易被修复,所以被淘汰。故CpG在基因组中是以岛的形式分布的。

②除定位于失活X染色体上的基因和印迹基因外,正常细胞的CpG岛由于被保护而处于非甲基化状态。启动

子区域的CpG岛的非甲基化状态对相关基因的转录是必须的,而甲基化一般与基因沉默相关联,去甲基化往往与一个沉默基因的重新激活相关联。

③目前认为基因调控元件(如启动子)的CpG岛中发生5mC修饰会在空间上阻碍转录因子复合物与DNA的结

合,而直接抑制基因表达;通过转录抑制复合物或改变染色质结构,间接影响基因表达

④全基因组低甲基化,维持甲基化模式酶的调节失控和正常非甲基化CpG岛的高甲基化是人类肿瘤中普遍存

在的现象。以往的研究证明启动子区的高甲基化导致抑癌基因失活是人类肿瘤所具有的共同特征之一,而且这种高甲基化是导致抑癌基因失活的又一个机制。

6.端粒及其生物学意义

端粒是由许多简单重复序列和相关蛋白组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。端粒酶是一种逆转录酶,由RNA和蛋白质组成,是以自身RNA为模板,合成端粒重复序列,加到新合成DNA链末端。

①端粒与衰老: 大量实验说明端粒、端粒酶活性与细胞衰老有着一定的联系, 对于正常细胞来说,当进行了

一定次数的分裂后,端粒长度缩短到一定程度,会使细胞停止分裂,导致衰老与死亡;有很多与老年相关的疾病以及早衰综合症都与端粒加快缩短相关;此外,端粒酶基因的突变体还会引起很多人类的一些综合症,如再生障碍性贫血。

②端粒与癌症:90%以上的癌细胞都通过端粒酶途径来维持端粒长度,通过抑制端粒酶的活性来阻止癌细胞生

长一直是人们治疗癌症的一个策略。

③端粒与干细胞端粒的长度能调节细胞自我更新的能力和肿瘤的抑制的平衡状态。

但是许多问题用端粒学说还不能解释。研究发现有些细胞的端粒长度长期维持在一个较高的水平,而端粒酶却不表达。另外,Kippling发现,鼠的端粒比人类长近5-10倍,寿命却比人类短的多。这些都提示体细胞端粒长度与个体的寿命及不同组织器官的预期寿命并非一致。生殖细胞的端粒酶活性长期维持较高的水平却不会象肿瘤那样无限制分裂繁殖;生殖细胞内端粒酶活性较高,体细胞中为什么没有较高的端粒酶活性。看来端粒的长度缩短是衰老的原因还是结果尚需进一步研究。

7.组蛋白修饰与基因表达调控

组蛋白H2A、H2B、H3和H4是核心组蛋白,只有当DNA存在时它们才能组装成一种有序的结构。组蛋白N端尾的修饰也可以改变染色质的易接近性而影响基因的转录活性。组蛋白N端尾部可被多种酶修饰,不同组蛋白末端修饰的方式不同,这些修饰包括:乙酰化、磷酸化、甲基化、泛素化、ADP糖基化等。不同修饰的组合与基因的表达状况密切相关,又称组蛋白密码。这主要是因为修饰的核小体蛋白改变了与其DNA的结合状态,使有些位点暴露,或可与其它基因表达调控蛋白结合,改变基因表达状态。

核心组蛋白都可以被乙酰化,主要的乙酰化位点在组蛋白H3、H4的N端尾部的赖氨酸。乙酰化在DNA 复制和转录时发生。在复制时,组蛋白的乙酰化很有必要,这使得它们更容易被整合到新的核心;在转录中,乙酰化对于相关结构上的变化也很有必要,甚至可能允许组蛋白核心从DNA上去除,或者可能产生转录必需的其他蛋白的结合位点。在进行有丝分裂的染色体中,经常可以观察到高度压缩的染色质上组蛋白H3 N端尾部被磷酸化。据推测,这些修饰可能被参与基因表达和其他DNA行为的蛋白质所识别。组蛋白N端的修饰改变了染色质的功能,从而影响到基因的表达和调控。

8.论述基因编辑技术,重点说crisper。

基因编辑是近年来发展起来的可以对基因组完成精确修饰的一种技术,可完成基因定点InDel突变、敲入、多位点同时突变和小片段的删失等,可在基因组水平上进行精确的基因编辑。在科研领域,该技术可以快速构建模式动物,节约大量科研时间和经费;在农业领域,该技术可以人为改造基因序列,使之符合人们的要求,如改良水稻等粮食作物;在医辽领域,基因编辑技术可以更加准确、深入地了解疾病发病机理和探究基因功能,可以改造人的基因,达到基因治疗的目的等。因此,基因组编辑具有极其广泛的发展前景和应用价值。?

ZFN、TALEN和CRISPR/Cas9是三大基因编辑技术

1)ZFN?的基因打靶效率能够达到?30%左右,已经可以做到针对某些特定的序列来设计ZFN实现靶基因的修饰,但也有其发展的局限性,ZFN?的识别结构域中存在上下文依赖效应,使得?ZFN设计和筛选效率大大降低,也无法实现在每一个基因或其他功能性染色体区段都能够顺利找到适合的?ZFN作用位点。另外,由于?ZFN的脱靶切割会导致细胞毒性,使得其在基因治疗领域的应用出现了一定的局限性。?

2)相比?ZFN技术,TALEN?使用了?TALE?分子代替?ZF?作为人工核酸酶的识别结构域,极好地解决了ZFN对于?DNA?序列识别特异性低的问题。TALE蛋白与?DNA?碱基是一一对应的,并且对碱基的识别只由?2?个氨基酸残基决定,这相对于ZFN的设计要简单得多。但是在构建过程中,TALE?分子的模块组装和筛选过程比较繁杂,需要大量的测序工作,对于普通实验室的可操作性较低,而商业化公司构建也需要花费上千美元,使用成本较高;?

3)相较于?ZFn?和?TALEN?两种人工核酸酶技术,CRISPR/Cas9?系统是一个天然存在的原核生物?RNA 干扰系统,其介导的基因组编辑是由?crRNA?指导的,对靶序列的识别是?RNA?与?DNA?的碱基配对过程,相比蛋白质对?DNA?序列的识别要精确更多,降低了脱靶切割的几率,减低了细胞毒性。而

且?CRISPR/Cas9?的构建仅仅需要设计与靶序列互补的?RNA?即可,过程相对于?TALEN?更为简单和廉价,普通的实验室也可以自行完成构建,这大大提高了基因操作的效率及简便性。但是,CRISPR/Cas9?

系统也存在着一些不足。首先,Cas9?蛋白对于目标序列的切割不仅仅依靠?crRNA?序列的匹配,在目标序列附近必须存在一些小的前间区序列邻近基序?(PAM),如果目标序列周围不存在?PAM或者无法严格配对,则?Cas9?蛋白不能对任意序列进行切割。最后,和?ZFN?及?TALEN?技术一样,CRISPR/Cas9?

也面临着如何控制双链断裂之后的非同源末端连接修复可能随机产生细胞毒性的问题。

9.测序技术的发展及应用

9.测序技术的发展及应用

早期测序技术:1954年,Whitfeld等用化学降解的方法测定多聚核糖核苷酸序列。

第一代测序技术:1977年,Sanger等发明双脱氧核苷酸末端终止法和Gilbert等发明化学降解法,标志着第一代测序技术的诞生。第一代测序技术完成了从噬菌体基因组到人类基因组草图等大量的测序工作,但存在成本高、速度慢等方面的不足。

第二代测序技术:21世纪后,以Roche公司的Solexa技术和ABI公司的SOLiD技术为标志的第二代测序技术诞生。第二代测序技术较第一代测序技术有采用矩阵分析技术,实现了大规模并行化,使得矩阵上的 DNA 样本可以被同时并行分析;边测序边合成,测序速度大大提高;测序仪微型化,测序成

本大大降低的特点。缺点:产生的测序结果长度比较短,适用于对已知序列的基因组进行重新测序,且对全新的基因组进行测序时还需结合第一代测序技术。第二代测序技术原理是建立在 PCR 的基础上,但是扩增后得到的 DNA 分子片段的数目和扩增前 DNA 分子片段的数目比例有相对偏差,在分析基因表达方面存在较大的弊端。(简而言之,缺点是序列读长较短和需要模板扩增步骤)

第三代测序技术:技术标志是单分子测序和长读长。第三代测序技术通过在单一 DNA 分子组成的阵列上进行合成测序。在一个表面积限定的介质上使用单个分子,可以增加独立分析的 DNA 片段的数量,也意味着不再进行昂贵的 DNA 扩增步骤了,因此,可以使数据产出量更高,并且将进一步降低测序的成本。主要问题:集中在单分子水平光学信号的检测方面,准确性降低。

第四代测序技术:代表为纳米孔测序,它不需要对 DNA 样品进行任何生物或化学方面的处理,而采用物理方法直接读出其碱基序列。原理为:单个碱基通过纳米孔通道时,就会引起通道电学性质的变化,并且由于 ATGC 这4 种不同的碱基存在电学性质差异,使得它们穿越纳米孔时所引起的电学参数的变化量也不同。因此,不同的电学参数变化量就对应通过纳米孔的相应碱基。(参见新一代测序技术的发展和应用. 田李等)

名词解释十选八

论述2个

简答3-4个,重点看下第3、5个

最新分子遗传学考试复习题

分子遗传学考试复习 题

《分子遗传学》考试复习题 一、选择题 1、DNA分子超螺旋盘绕组蛋白八聚体( A )圈 A、1.75 B、2 C、2.75 D、3 2、在真核生物基因表达调控中,( B )调控元件能促进转录的速率。 A、衰减子 B、增强子 C、repressor D、TATA box 3、原核生物RNA聚合酶识别的启动子位于(A ) A、转录起始点上游 B、转录起始点下游 C、转录终点下游 D、无一定位置 4、植物雄性不育与下列( B )有关 A、叶绿体 B、线粒体 C、核糖体 D、高尔基体 5、染色体的某一部位增加了自身的某一区段的染色体结构变异称为( D )。 A、缺失 B、易位 C、倒位 D、重复 6、合成多肽链的第一个氨基酸是由起始密码子决定的。细菌的起始密码子一般 为(B)。 A、 ATG B、AUG C、UAA D、UGA 7、真核生物蛋白质合成的的起始密码子是( D )。 A、 ATG B、UGA C、UAA D、AUG 8、下列哪些密码子不是终止密码子( A ) A、 AUG B、UAA C、UAG D、UGA 9、人的ABO血型受一组复等位基因IA、IB、i控制,IA和IB对i都是显性,IA与IB为共显性。一对夫妻血型均为AB型,则其所生子女的血型不可能是( A )。√ A. O型 B. A型 C. B型 D. AB型 10、通常把一个二倍体生物配子所具有的染色体称为该物种的( B )。√ A. 一个同源组 B. 一个染色体组 C. 一对同源染色体 D. 一个单价体 11、某双链DNA分子中,A占15%,那么C的含量为(C) A、15% B、25% C、35% D、45%

中国科学院遗传与发育生物学研究所博士研究生遗传学入学试题

博士研究生入学考试试题 一九九六年分子遗传学 一、请说明高等动植物的基因工程与大肠杆菌基因工程的异同。什么是当前真核生物基因工 程的前沿?你认为目前动植物基因工程进一步发展的瓶颈是什么?(20分) 二、在遗传学的发展中模式生物的应用起了重要的作用,请用一种你最熟悉的模式生物,较 为系统地阐述应用该模式生物进行研究对分子遗传学的贡献。(15分) 三、从突变产生的机制看能否实现定向突变?试从离体和活体两种情况予以说明。(15分) 四、什么是基因组大小与C值的矛盾?造成这种矛盾的因素有哪些?如何估计真核生物基因 组的基因数目?在进化过程中自然选择是否作用于基因组的大小,请阐述你的观点。(15分) 五、水稻黄矮病毒含有负链RNA基因组,在完成对该病毒核衣壳蛋白基因(N)序列测定的 基础上,将N的编码序列置于水稻Actl基因(是一种组成性表达的基因)的启动子下游,通过基因枪方法导入一个水稻的粳稻品种,研究结果表明转基因的水稻植株在攻毒试验中表现出对黄矮病毒的抗性。请你进一步设计实验,证明以下两点: 1.转基因水稻的抗性确实是由于N基因导入水稻基因组表达的结果,而不是在转化过程中由于突变造成的; 2.转基因水稻的抗性是由于N基因的转录产物造成的,而不是该基因的翻译产物造成的。(20分) 六、限制性核酸内切酶在分子遗传学中广泛地用于各类研究,请具体地说明限制性内切酶在 研究工作中的应用范围。 (15分)

1997年博士研究生入学试题 分子遗传学(A卷) 一、在通过测序获得一个基因组克隆的DNA序列后,怎样才能了解该序列可能具有的基因功能,请提出你的研究方案。(20分) 二、请简单介绍你的硕士论文研究(或相当于硕士论文研究)的工作。如果这些工作涉及分子遗传学,请提出你深入研究的设想;如果你以前的工作与分子遗传学无关,也请你提出深入到分子水平的设想。(20分) 三、请指出目前阶段基因工程技术的局限性,并分析这些局限性的原因(你可以在人类基因冶疗,动物基因工程和植物基因工程三个方面任选一个来回答,也可以都回答)。(20分) 四、请说明基因组计划与生物技术的关系。(20分) 五、请说明真核生物染色体的结构和组成在分子水平上的特征。(20分)

分子生物学复习资料终结版

1 绪论 1.1 分子生物学的基本概念 ①分子生物学---广义:在分子水平上研究生命现象,或用分子的术语描述生物现象的学科。 狭义:核酸与蛋白质水平上研究基因的复制,基因的表达(包括RNA转录、蛋白质翻译),基因表达的调控以及基因的突变与交换的分子机 制。 ②序列假说:核酸片段的特异性,完全由其碱基序列决定,而且这种序列是一种蛋白质氨 基酸的密码 ③中心法则:DNA的遗传信息经RNA一旦进入蛋白质,也就不可能再行输出。 ④三大原则:Ⅰ、构成生物大分子的单体是相同的; Ⅱ、生物大分子单体的排列决定了不同生物性状的差异和个体特征; Ⅲ、所有生物遗传信息表达的中心法则是相同的 ⑤分子生物学是研究细胞内大分子的结构、功能和相互作用特点和规律,并通过这些规律认识生命现象的一门科学。 1.2 分子生物学的发展简史 ①细胞学说: (1)以下3点是必修一上的内容: a细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所组成。 b细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。 c新细胞可以从老细胞中产生。 (2)以下7点是百度到的内容: a.细胞是有机体,一切动植物都是由单细胞发育而来,并由细胞和细胞产物所构成; b.所有细胞在结构和组成上基本相似; c.新细胞是由已存在的细胞分裂而来; d. 生物的疾病是因为其细胞机能失常; e. 细胞是生物体结构和功能的基本单位; f 生物体是通过细胞的活动来反映其功能的; g. 细胞是一个相对独立的单位,既有他自己的生命,又对于其他细胞共同组成的整体的生命起作用。 ②正向遗传学:在不知道基因化学本质的前提下,仅依靠表型突变体在世代间的传递规律来研究基因的特征和染色体上的位置,描述基因突变和染色体的改变,分析它们对生物形态和生理特征所产生的效应。 ③反向遗传学:通过转基因办法来确定某一基因的功能。 ④George Beadle和Edward Tatum提出“一个基因一个酶”假说 Avery围绕肺炎链球菌的成就第一个动摇了“基因是蛋白质”的理念,为“DNA是遗传物质”的理论建立奠定了基础 Chargaff 法则:A+C=T+G Nirenberg在一周内破解了第一个遗传密码:UUU——苯丙氨酸 Jacob和Monod发现乳糖操纵子模型 Pardee,Jacob,Monod命名的“Pa-Ja-Mo”实验结果证明:基因通过一种RNA严格地控制着蛋白质的合成。这种RNA被命名为“信使RNA”

南农博士生化真题教学内容

2009动物生物化学试题 一、简单题 (一)以下试剂或技术常见于蛋白质研究,请简要说明其用途。 1.Trypsin 2.6mol/HCl 3.MALDI-TOF 4.?-Mercaptoethanol:?-巯基乙醇,可作为保护剂加入到蛋白质的抽提液中, 可防止或延缓巯基氧化作用发生。另外,在SDS-PAGE电泳中,加入巯基乙 醇进行热变性可以使蛋白质分子中的二硫键还原. 5.Coomassie blue:一种染料, (二)解释以下酶学动力学的概念 6.K cat:催化常数,在单底物反应中,且反应过程只产生一个活性中间产物时, 单位时间内每个酶分子或每一活性部位催化的反应次数。 7.K m:米氏常数,物理含义是指ES复合物消失速度与形成速度之比,其数值 为酶促反应达到最大反应速度一半时的底物浓度,即当V=1/2Vmax时,【S】 =Km 8.V o:酶促反应初速度,指在反应初始阶段,底物浓度基本维持不变时的反 应速度。 9.K i: 10.Optimum pH:最适pH (三)以下试剂或技术常见于核酸和基因分析,请简要说明其用途 11.DNA chips:DNA芯片 12.Northern blotting:RNA杂交 13.Restriction endonuclease:限制性内切酶,一类能识别双链DNA分子中特定 核苷酸序列,限于切割其序列之间的键的核酸内切酶。 14.EB:溴化乙啶 15.GMSA 二、问答题 1.研究人员观察到,肌肉中70kD的原肌球蛋白(Tropomyosin)的离心沉降速度反而 比65kD的血红蛋白(Hemoglobin)慢,它们的沉降系数分别是2.6s和4.31s。请给 出你对此现象的解释。 沉降系数:单位离心力的作用下颗粒沉降的速度,以Svedberg表示,简称S,单位为秒(s),1S单位等于1x10-13s。沉降速度基本上由分子大小和形状决定。血红 蛋白分子是由四个亚基构成四聚体, 2.你不会不知道Meselson和Stahl关于DNA半保留复制的经典实验吧?如果复制时全 保留的,那么实验结果会是怎样呢?(图) 实验:大肠杆菌在以15NH4Cl为唯一氮源的培养基中生长,经过连续培养使所有DNA分子上都标记15N。15N-DNA比普通的14N-DNA的密度大,在氯化铯密度梯 度离心时,这两种DNA分子将形成位置不同的区带。如果将15N标记的大肠杆菌转 移到普通培养基(14N的氮源)培养,经过一代后,所有DNA的密度介于 15N-DNA,14N-DNA之间,形成了一半含14N,一半含15N杂合子。两代后,14N和14N-15N 杂合分子等量出现。在继续培养可以看到14N-DNA分子增多,证明了DNA分子复制 时原来的DNA分子均可被分成两个单位,分别构成子代分子的一半,从而证明了

中科院植物学考研大纲

中科院研究生院硕士研究生入学考试 植物学考试大纲 本《植物学》考试大纲适用于中国科学院研究生院生态学、植物学和植物生理学等专业的硕士研究生入学考试。主要内容包括植物的细胞与组织、植物体的形态结构与发育、植物的繁殖以及植物分类与系统发育四大部分。要求考生能熟练掌握有关基本概念,掌握植物形态解剖特征,系统掌握植物分类与系统发育知识,并具有综合运用所学知识分析问题和解决问题的能力。 一、考试内容 (一)植物的细胞与组织 1.植物细胞的发现、基本形状、结构与功能;原核细胞与真核细胞的区 别。 2.植物细胞分裂的方式;植物细胞的生长与分化。 3.植物的组织类型及其作用;植物的组织系统。 (二)植物体的形态、结构和发育 1.种子的结构与类型;种子萌发的条件、过程与幼苗的形成过程。 2.根与根系类型;根的初生生长与初生结构;根的次生生长与次生结构。 3.茎的形态特征和功能;芽的概念与类型;茎的生长习性与分枝类型; 茎的初生结构与次生结构。 4.叶的形态、结构、功能与生态类型;叶的发育、脱落及其原因。 5.营养器官间的相互联系。 6.营养器官的变态。 (三)植物的繁殖 1.植物繁殖的类型。 2.花的组成与演化;无限花序与有限花序。 3.花的形成和发育。 4.花药的发育和花粉粒的形成。 5.胚珠的发育和胚囊的形成。 6.自花传粉和异花传粉;风媒花和虫媒花。 7.被子植物的双受精及其生物学意义;无融合生殖和多胚现象。 8.胚与胚乳的发育;果实的形成与类型。 9.植物的生活史与世代交替。 (四)植物的分类与系统发育 1.植物分类的阶层系统与命名。

2.植物界所包括的主要门类及主要演化趋势。 3.藻类植物的分类和生活史。 4.苔藓植物的形态特征、分类和演化。 5.蕨类植物的形态特征、分类和演化。 6.裸子植物的一般特征;松柏纲植物的生活史。 7.被子植物的一般特征和分类原则。 8.被子植物的分类系统;常见重要科属植物的分类特征。 9.植物物种和物种的形成。 10.植物的起源与演化;维管植物营养体的演化趋势;有性生殖的进化趋 势;植物对陆地生活的适应;生活史类型及其演化;个体发育与系统 发育。 11.被子植物的起源与系统演化。 二、考试要求 (一)植物的细胞与组织 1.掌握植物细胞的结构组成;熟练掌握细胞器的种类和功能;理解并掌 握真核细胞与原核细胞的异同。 2.了解植物细胞的生长与分化;理解并熟练掌握细胞的有丝分裂和减数 分裂。 3.熟练掌握植物组织的分类及其结构与功能;掌握组织系统的概念和维 管植物的组织系统。 (二)植物体的形态、结构和发育 1.熟悉种子萌发成幼苗的过程;掌握种子的结构与萌发的外界条件;掌 握种子休眠的概念及其原因;熟练掌握种子与幼苗的类型。 2.了解根和根系的类型;掌握根尖的结构与发展;熟练掌握根的初生结 构;理解并掌握根的次生结构及次生生长。 3.了解茎的形态特征与生长习性;熟悉芽的概念与分类;掌握分枝的类 型;熟练掌握单子叶植物、双子叶植物和裸子植物茎的初生结构与次 生结构的异同;理解并掌握茎的次生生长。 4.熟悉叶片的形态;掌握叶的组成;理解并掌握单叶、复叶、叶序和叶 镶嵌的概念;熟练掌握被子植物叶的一般结构及功能;掌握禾本科植 物的叶的特点;理解并熟练掌握叶的生态类型及特点。 5.了解茎与叶、茎与根间的维管组织的联系;理解并掌握营养器官在植 物生长中的相互影响。 6.掌握根、茎、叶的主要变态类型。

中科院遗传所考博遗传学2003-0712

中国科学院遗传与发育生物学研究所 博士研究生遗传学入学试题 2003年 一、今年是DNA双螺旋模型发表五十周年。请回答以下问题(20分): 1、在双链DNA分子中A+T/G+C是否等于A+C/G+T ?(4分) 2、DNA双链的两条链中是否含有相同的遗传信息?为什么?(4分) 3、大肠杆菌的基因组DNA的长度约为1100微米。请根据DNA模型估计其基因组的碱基对数目。(4分) 4、如果两种生物基因组DNA在四种碱基的比率上有显著差异,那么预期在它们编码的tRNA、rRNA和mRNA上是否也会在四种碱基的比率上呈现同样的差异?(8分) 二、在一牛群中,外观正常的双亲产生一头矮生的雄犊。请你提出可能导致这种矮生的各种原因,并根据每种原因提出相应的调查研究的提纲(注意整个调查研究工作必须在两个月内完成)。(20分) 三、请给出以下6种分子标记的中文全称、定义、检测方法及其在遗传分析中的特征。(20分) RFLP , microsatellite , STR , SSLP , SNP , InDeL . 四、在普通遗传学中,非等位基因间的相互作用有哪几种?请举例说明其中的两种相互作用?请从分子遗传学和分子生物学的角度对非等位基因间的相互作用的分子机制进行阐述,并举例说明。(20分) 五、有哪些诱变剂可以诱发基因突变?基于突变被辨认的方法,可以将突变分为哪几种类型?哪些类型的突变对功能基因组的研究最有意义?为什么?对一个已完成基因组测序的真核生物,如何构建一个突变体库,以揭示基因组中预测基因的功能?(20分)

中国科学院遗传与发育生物学研究所 博士研究生遗传学入学试题 (2004年) 注意:(1)答题必须简明扼要。如有必要,可以图示辅助说明; (2)答题时可以不必抄题,但需注明题目序号; (3)所有答题不要写在试卷上,请全部书写在答题纸上; (4)第一题为选答题,第二至五题为必答题。 一、选答题:请在第1与第2题间选答一题。若两题均答,只按其中得分最低的一题记入总分。(每题20分) 1. 列举动物遗传研究中常见的两种模式实验动物,它们各有哪些特点?对遗传学的发展有哪些主要贡献? 2. 在植物遗传研究中,经典遗传学实验材料常采用豌豆和玉米,而现代遗传研究则更趋向利用拟南芥菜和水稻,试述发生这种转变的主要原因,以及它们在植物遗传学发展史上的主要贡献。 二、对于突变体的诱导有许多种方法,请分别列举一种化学的、物理的以及生物的突变体诱变方法。对于表型相同的一组突变体,请设计一遗传试验,验证这些突变属于相同位点(alleles)突变还是不同位点(non-alleles)的突变。(20分) 三、转座(transposition)与易位(translocation)有什么不同?它们各自有哪些类型?对于基因组的进化各有哪些意义?(20分) 四、简述你所从事过的一项最主要研究工作。如果给你以足够的研究条件,以及3-4年的时间,你将如何进一步深化你的研究工作?(20分) 五、负调控在生命活动中有重要的意义,除经典的操纵子模型以外,近年来还发现有泛素(ubiquitin)介导的蛋白质降解机制和micro RNA(miRNA)介导的转录和翻译抑制机制,请从后两者中任选一种举例说明其作用机制与生物学意义。(20分) 中国科学院遗传与发育生物学研究所 博士研究生遗传学入学试题 (2005年) 注意:(1)答题必须简明扼要。如有必要,可以图示辅助说明; (2)答题时可以不必抄题,但需注明题目序号; (3)所有答题不要写在试卷上,请全部书写在答题纸上。 (4)每题20 分。 一、试述有丝分裂和减数分裂对于保持物种稳定以及遗传多样性的意义。 二、基因组学研究是近年来生命科学领域的热点之一。简述结构基因组学与功能基因组 学的概念,以及利用模式物种进行基因组学研究的意义。 三、已知某物种的两个连锁群如下图所示: cM cM 图中的数字为相应遗传学位点的遗传距离(cM)。 试回答: (1)杂合体AaBbCc 可能产生的配子类型和比例; (2)设计一个实验验证另一基因X 是否位于图示中的两个连锁群上。 四、转录因子包括什么主要的功能结构域?其主要的结构特点与功能是什么? 五、下述是一个虚拟的分子遗传学问题。 表皮毛具有重要的生物学意义。典型的表皮毛结构包括一根主干(main stem) 以及

分子遗传学复习题

分子遗传学复习题 名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE 计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段( a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码 RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。 反向遗传学(reverse genetics):是从改变某个感兴趣的基因或蛋白质入手,然后去寻找相关的表型变化。 反转座子(retroposon)或“反转录转座子(retrotransposon)”:先转录为RNA再反转录成DNA 而进行转座的遗传元件。 核酶(ribozyme):具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。 核心启动子(core promoter):是指在体外测定到的由RNA polⅡ进行精确转录起始所要求的最低限度的一套DNA序列元件。 化学基因组学(chemogenomics):它是作为后基因组时代的新技术,是联系基因组和新药研究的桥梁和纽带。它指的是使用对确定的靶标蛋白高度专一的小分子

2013南农生化真题回忆版

南京农业大学2013年生物化学考研试题 一、名词解释32’ 1蛋白质四级结构 2 tRNA 3反竞争抑制 4尿素循环 5 Co Q 6泛素化 7柠檬酸穿梭 8生物氧化 二、酶促反应结构式16’ 1、6-磷酸葡萄糖脱氢酶 2 异柠檬酸脱氢酶 3 烯醇化酶 4脂酰Co A合成酶 三、简答题58’ 1DNA复制所需蛋白质因子(酶)有哪些?其功能作用是什么14’ 2新生肽链转运的两条途径名称是什么,过程?10’ 3转氨基在生物体的作用及辅酶是什么?10’ 4试举出蛋白质脱盐的两种方法及其原理?在用硫酸铵进行蛋白质盐析时注意事项10’ 5葡萄糖最终氧化生成H2O和CO2过程中有几次脱羧,是否来自葡萄糖中,如果是来自几号碳原子,为什么,如果不是,为什么?14’ 四、计算题10’ 有一无蛋白质的DNA和RNA混合样品180ug,其紫外吸收的A260/A280=1.9。已知50ugDNA 的A260=1和40ugRNA的A260=1。 1多少ug DNA的A280=1,多少ug RNA的A280=1? 2样品中的DNA和RNA的ug 数是多少? 五、实验题34’ 1某蛋白质酶经SDS电泳得两种成分分子量为80KDa,30KDa,分子量大的仍具有催化活性,而小的不具催化活性,再经β-巯基乙醇处理后分离得两种成分分子量为40KDa,15KDa,两者都不具催化活性,问该蛋白质的结构及结构与功能的关系?12’ 2 有一同学要测水稻叶片中的酶活力,可是他只找到了动物体中这种酶的测量方法,于是他用此方法测定,结果测得的酶活力非常低,试分析可能的原因有哪些?12’ 3写出下列英文缩写的化学物质在生化实验中的作用10’ DTT BSA DEAE-C PITC DEPC

中科院植物学历年真题

《植物学》考试大纲 一、考试科目基本要求及适用范围概述 本《植物学》考试大纲适用于中国科学院大学生态学、植物学和植物生理学 等专业的硕士研究生入学考试。主要内容包括植物的细胞与组织、植物体的形态 结构与发育、植物的繁殖、植物分类与系统发育、植物分子系统学、植物进化发 育生物学以及植物分子生物学七大部分。要求考生能熟练掌握有关基本概念,掌 握植物形态解剖特征,系统掌握植物分类与系统发育知识,并具有综合运用所学 知识分析问题和解决问题的能力。 二、考试形式和试卷结构 (一)考试形式 闭卷,笔试,考试时间180 分钟,总分150 分 (二)试卷结构 名词解释、填空题、简答题、论述题 三、考试内容 (一)植物的细胞与组织 1. 植物细胞的发现、基本形状、结构与功能;原核细胞与真核细胞的区 别。 2. 植物细胞分裂的方式;植物细胞的生长与分化。 3. 植物的组织类型及其作用;植物的组织系统。 (二)植物体的形态、结构和发育 1. 种子的结构与类型;种子萌发的条件、过程与幼苗的形成过程。 2. 根与根系类型;根的初生生长与初生结构;根的次生生长与次生结构。 3. 茎的形态特征和功能;芽的概念与类型;茎的生长习性与分枝类型; 茎的初生结构与次生结构。 4. 叶的形态、结构、功能与生态类型;叶的发育、脱落及其原因。 5. 营养器官间的相互联系。 6. 营养器官的变态。 (三)植物的繁殖 1. 植物繁殖的类型。 2. 花的组成与演化;无限花序与有限花序。 3. 花的形成和发育。 4. 花药的发育和花粉粒的形成。 5. 胚珠的发育和胚囊的形成。 6. 自花传粉和异花传粉;风媒花和虫媒花。 7. 被子植物的双受精及其生物学意义;无融合生殖和多胚现象。 8. 胚与胚乳的发育;果实的形成与类型。 9. 植物的生活史与世代交替。 (四)植物的分类与系统发育1. 植物分类的阶层系统与命名。 2. 植物界所包括的主要门类及主要演化趋势。 3. 藻类植物的分类和生活史。 4. 苔藓植物的形态特征、分类和演化。 5. 蕨类植物的形态特征、分类和演化。 6. 裸子植物的一般特征;松柏纲植物的生活史。 7. 被子植物的一般特征和分类原则。 8. 被子植物的分类系统;常见重要科属植物的分类特征。 9. 植物物种和物种的形成。 10. 植物的起源与演化;维管植物营养体的演化趋势;有性生殖的进化趋 势;植物对陆地生活的适应;生活史类型及其演化;个体发育与系统 发育;植物生态学的基本概念。 11. 被子植物的起源与系统演化。 (五)植物分子系统学 1. 分子系统学的概念。 2. 分子系统树的基本原理和方法。 3. 分子系统学研究的进展。 (六)植物进化发育生物学 1. 进化发育生物学的基本概念。 2. 植物进化发育生物学的发展简史。 3. 植物进化发育生物学的主要研究方法。 4. 植物进化发育生物学相关研究进展。 (七)植物分子生物学 1. 基因的基本概念、基因结构和基因表达调控。 2. 基因型、表型和环境的关系。 3. 简单的植物分子生物学研究方案设计。 四、考试要求 (一)植物的细胞与组织 1. 掌握植物细胞的结构组成;熟练掌握细胞器的种类和功能;理解并掌 握真核细胞与原核细胞的异同。 2. 了解植物细胞的生长与分化;理解并熟练掌握细胞的有丝分裂和减数 分裂。 3. 熟练掌握植物组织的分类及其结构与功能;掌握组织系统的概念和维 管植物的组织系统。 (二)植物体的形态、结构和发育 1. 理解种子萌发成幼苗的过程;掌握种子的结构与萌发的外界条件;掌 握种子休眠的概念及其原因;熟练掌握种子与幼苗的类型。 2. 了解根和根系的类型;掌握根尖的结构与发展;熟练掌握根的初生结 构;理解并掌握根的次生结构及次生生长。 3. 了解茎的形态特征与生长习性;理解芽的概念与分类;掌握分枝的类

08—02分子遗传学 中科院

中国科学院研究生院 2008年招收攻读博士学位研究生入学统一考试试卷 科目名称:分子遗传学 考生须知: 本试卷满分为100分,全部考试时间总计180分钟。 1、什么是反向遗传学(Reverse Genetics)?如何应用反向遗传学技术研究基因功能?目前广泛应用的反向遗传学研究技术是什么?可举例说明。(20分) 2、基因工程中应用的载体主要是对天然质粒进行了哪些人工构建?(10分) 3、什么是生物信息学(Bioinformatics)?生物信息学主要包括哪些研究领域?可举例说明。(20分) 4、借助基因工程可以改造生物的某些性状,但是在实践中,获取高产、抗逆以及优良品质集一身的超级转基因农作物却非常困难。谈谈你对这一问题的认识。(10分) 5、已知某病原物的一段基因序列的表达产物无毒性、无感染能力、有很强的免疫原性。有人希望通过植物体来生产该疾病的基因工程疫苗,请设计出一个可行的技术路线。(20分) 6、什么是遗传多样性(Genetic diversity)?为什么要进行遗传多样性的保护?请用实例说明大规模养殖(种植)单一的“优良”动(植)物品种的风险。(20分) 科目名称:分子遗传学第1页共1页

2007年招收攻读博士学位研究生入学考试试题 科目名称:遗传学 考生须知: 1.本试卷满分为100分,全部考试时间总计180分钟。 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。 1.简单说明RNA干扰技术的原理?如何通过RNA干扰方法研究基因的功能? (20分) 2.水稻基因组计划对于水稻遗传学研究有哪些重要意义?(15分) 3.在作物的遗传育种过程中,说明传统育种和现代生物技术(转基因)的关系。 (20分) 4.研究者在基因工程研究过程中打交道最多的是各种分子克隆载体和受体菌或 细胞,比如构建基因组文库或cDNA文库和开展基因表达时,研究者就必须特别认真选择分子克隆载体和宿主菌或细胞。事举例分别说明构建文库时和作基因表达时应如何选择分子克隆载体和宿主菌或细胞。(20分) 5.当你获得一种很有用的生物材料后,你可能希望克隆该生物中的某个基因。 假设这种生物是一种原核生物,应如何设计该实验?要是它是一种真核生物,又该如何设计此实验?如果你是世界上第一个克隆此基因的人,又应如何设计该实验?要是此基因已在其它生物中被克隆,实验方案又该如何设计?由于各种可能性都存在,你也可以作出必要的假设。如果可用不同方法分离此基因时,这些方法有什么优缺点?(25分)

分子遗传学复习题及答案-

分子遗传学复习题 1.名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

中科院《植物学》真题98-08

1998年招收攻读硕士学位研究生入学统一考试试题科目名称:植物学 (一)名词解释 无限维管束同源器官颈卵器心皮聚合果无融合生殖核型胚乳花程式孢蒴内始式: (二)、蕨类植物比苔藓植物在那些方面更能适应陆生环境。 (三)、试比较裸子植物与被子植物的主要异同点。 (四)、何谓木材的三切面?它们的概念怎样?以双子叶禾本植物为例,写出三切面的特征。 (五)、以水稻为例,叙述禾本科植物花序及花的详细组成。 (六)、试述被子植物由小孢子母细胞发育为花粉粒的全过程。 (七)、写出图中数字所指花序类型和胎座类型的名称。……(图略) 1999年招收攻读硕士学位研究生入学统一考试试题科目名称:植物学 一、名词解释 有丝分裂次生结构形成层侵填体花程式和花图解真核生物颈卵器世代交替孢子和种子 C3和C4植物 二、试举例说明高等植物根的变态及其主要功能。 三、何谓光合作用,简述提高光合作用的几种途径。 四、试比较单子叶植物与双子叶植物茎的特点。 五、试比较裸子植物与被子植物的生活史 2000年招收攻读硕士学位研究生入学统一考试试题科目名称:植物学 一、名词解释 管胞;凯氏带;居间生长;合轴分枝;孢子、合子与种子;平行进化;景天酸代谢;双名法;石松类植物;单性结实 二、简述植物细胞中各类细胞器的形态特征与主要特征与主要功能。 三、何谓次生生长?分别以根和茎为例简要说明之。 四、试说明苔藓植物的主要进化特征。 五、白果(银杏)和苹果两种“果”的用法各指什么,试分辨之。 六、请写出下列植物拉丁文的中文属名及所在的科 betula eucalyptus ficus ginkgo mangnolia populus quercus rhododendron salix ulmus 2001年招收攻读硕士学位研究生入学统一考试试题科目名称:植物学 一名词解释 细胞器减数分裂心皮管胞有限花序子实体世代交替地衣楔叶植物通道细胞 二、植物有那些主要的组织,简要说明它们的功能。 三、简述茎尖的结构及其进一把发育形成的结构或组织。 四、简述花在自然演化过程中的主要进化方向。 五、试以海带为例,说明褐藻类植物的生活史。 六、请写出下列拉丁文的中文属名及其所在的科名。 Vitex stipa eucalypms syringe carex poa quercus ligustcum camellia pinus 2002年招收攻读硕士学位研究生入学统一考试试题科目名称:植物学 一、名词解释 伴胞衬质势初生分生组织担子高等植物基因突变心皮维管束有限花序生物圈 二、何谓植物的细胞周期,请简要说明其基本的过程。 三、以地钱为例,说明苔藓植物的生活史。 四、简述禾本科C4植物叶的形态解剖特点及其生态意义。 五、高等植物与低等植物的区别主要在哪里?简述其重要的进化特征。 六、请写出下列植物所在属的拉丁文(写出属名即可),并指出其所在的科。 国槐油松银杏委陵菜青冈栎樟树小麦蔷薇早熟禾睡莲 2003年招收攻读硕士学位研究生入学统一考试试题科目名称:植物学 一、名词解释(3/30) 真核细胞线粒体韧皮部中柱鞘合轴分枝花被花图式隐头花序维官形成层子叶髓射线 厚壁组织托叶蒴果植物区系植物生活型双名法高等植物模式标本维管束 二、简答题:(10/50任选5题作答) 1、简述裸子植物与被子植物的区别 2、典型的花分哪些主要部分?各部分的形态和结构如何?

分子遗传学重点讲义资料

1.分子遗传学:是研究遗传信息大分子的结构和功能的科学。它依据物理、化学的原理来解 释生命遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。 2. 分子遗传学研究对象:从基因到表型的一切细胞内与遗变异有关的分子事件。不仅仅包括中心法则中从DNA到蛋白质的过程。 分子遗传学研究内容:遗传信息大分子在生命系统中的储存、复制、表达及调控过程。 分子遗传学研究目标:明确遗传信息大分子对生物表型形成的作用机制。 第二章基因 1.从遗传学史的角度看,基因概念大致分以下几个阶段: 泛基因(或前基因)→孟德尔(遗传因子) →摩尔根(基因):基因是功能单位(决定性状),基因是突变单位(基因是突变的最小结构),交换单位(交换的最小结构)三位一体的组合。 →顺反子:在一个等位基因内部发生两个以上位点的突变,如两个突变位点位于同一染色体上,为顺式结构,生物个体表现为野生型;突变位点分别位于两个同源染色体上,为反式结构,生物个体表现为突变型。即其顺式和反式结构的表型效应是不同的。一个具有顺反效应的DNA片段就是一个顺反子,代表一个基因。(或者具有顺反效应的DNA片段就是一个基因) (基因内部这些不同位点之间还可以发生交换和重组:一个基因不是一个突变单位,也不是一个重组单位) →操纵子:基因是一个转录单位,是一个以不同来源的外显子为构件的嵌合体,处于沉默的DNA介质(内含子)中 →现代基因 2.鉴定基因的5个标准 1)基因具有开放性阅读框ORF。 2)基因往往具有一定的序列特征。 3)基因序列具有一定的保守特性。 4)基因能够进行转录。 5)通过基因失活产生的功能改变鉴定基因。(能排除假基因的干扰) 3.蛋白质基因:能够自我复制的蛋白质病毒因子。 朊病毒:一类不含核酸而仅由蛋白质构成的可自我复制并具有感染性的因子。 4.基因组印记(genomic imprinting):由于一些可遗传的修饰作用(如DNA、组蛋白甲基化作用)控制着亲本中某个单一的等位印记基因活性,从而导致个体在发育上的功能差异,使个体具有不同的性状特征。 5.印记基因(imprinted gene):表达特性取决于它们是在父源染色体上还是在母源染色体上的等位基因。 6.组蛋白上的共价键修饰:包括甲基化、乙酰化、磷酸化等在组蛋白上以组合形式。这些修饰的组合能改变染色质的结构,进而影响基因的表达。属于一种表观遗传学现象(epigenetics )。 7.组蛋白密码含义: 1)组蛋白末端不同的修饰作用将诱导与染色质相连蛋白之间的相互亲和力。 2)一个核小体中同一末端的修饰可能是相互依赖的,产生不同组合。 3)染色质高级结构的不同性质极大地依赖于具有不同修饰的核小体共价修饰的局部浓度和

2011中科院植物学真题

中国科学院研究生院 2011年招收攻读硕士学位研究生入学统一考试试题 科目名称:植物学 考生须知: 1.本试卷满分为150分,全部考试时间总计180分钟。 名词解释: 离区、 年轮、 花冠、 伴胞、 细胞分化、 髓射线、 系统发育、 原生质体、 质体、 生态位 简答: 1、花序类型 2、在野外怎样区分裸子被子

3、香椿、臭椿的区别 4、植物组织按功能分有哪些 5、形态学分类的局限,分子生物学为何受欢迎 6、植物进化的趋势和样式Q:735074402 7、植物适应干旱的两个策略,耐旱植物的特征 8、举6种果实类型 论述: ABC模型 中国科学院研究生院 2007年招收攻读硕士学位研究生入学统一考试试题 科目名称:植物学 考生须知: 1.本试卷满分为150分,全部考试时间总计180分钟。 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。 一、名词解释(20分,每词2分) 1. 初生壁 2. 组织 3. 细胞分化 4. 幼苗 5. 不定根 6. 增殖分裂

7. 枝迹8. 花图式9. 世代交替10. 初生结构 二、填空题(30分,每题3分) 植物的成熟组织按照功能可分为保护组织、薄壁组织、输导组织、______________和_______________。 根尖可分为四部分,其中___________是执行根的吸收功能的主要部分,它的内皮层上的特殊结构起着很重要的作用,这个特殊结构被称作__________。 小枝区别于叶轴在于:a. 叶轴顶端无__________;b. 小叶的叶腋无____________。 植物落叶是由于在叶柄的基部形成了一个重要的区,该区由__________和___________两层组成。 单室子房胚珠沿腹缝线着生成纵行,称作___________胎座;单室复子房,胚珠沿相邻二心皮的腹缝线排列成若干纵行,称作_____________胎座。 根据《国际植物命名法规》的规定,植物命名采用_________法,命名所依据的标本称作______________。 松属植物的胚胎发育过程中会形成一个较复杂的原胚,原胚通常由上层、胚柄层、___________和____________组成。 具有柔荑花序的杨柳科曾被归入五桠果亚纲,主要是因为其具有_____________和______________等特征。 被子植物起源的单元说主要依据______________、_______________等。

分子遗传学考博试题

分子遗传学试题(2003年) 一、名词解释 1.持家基因:在哺乳动物各类不同的细胞中均有相同的一组基因在表达,这组基因数目在10000左右,它们的功能对于每个细胞都是必需的,这组基因叫做持家基因。 2.DNA指纹: 3.剪接体: 4.操纵子:又称操纵元,是原核生物基因表达和调控的一个完整单元,其中包括结构基因、调节基因、操作子和启动子。 5.S-D序列: 6.内含子:在原初转录物中通过RNA拼接反应而被去除的RNA序列或基因中与这段序列相应的DNA序列。有些基因的内含子可以编码蛋白质(RNA成熟酶或转座酶)。 7.AP位点: 8.基因簇: 9.冈崎片段: 10.Alu序列:Alu族序列大约有300000个,平均每6kbDNA就有一个。每个长度约300bp,在其第170位置附近都有AGCT这样的序列,可被限制性内切酶AluⅠ所切割(AG↓CT)。11.核酶: 12.琥珀突变: 13.弱化子: 14.同功tRNA:携带氨基酸相同而反密码子不同的一族tRNA称为同功tRNA。 15.颠换:由一个嘌呤碱基变为一个嘧啶碱基或由一个嘧啶碱基变为一个嘌呤碱基的突变,就做颠换。 16.核小体: 17.拟基因: 18.增变基因:研究发现有一些基因的突变可以大大提高整个基因组其它基因的突变率,这些基因被称为增变基因。 19.异源双链体:是指重组DNA分子两条链不完全互补的区域。 二、问答题: 1.简述snRNA的生物学功能 2.真核mRNA和原核mRNA在结构上有何区别 3.真核生物体内的重复序列有哪几种类型?有何生物学意义?在分子研究中有何应用?4.病毒8s(+)RNA复制的表达特点 5.以乳糖操纵子为例,说明正调控和负调控的作用 分子遗传学试题(2002年) 一、名词解释 1.拓扑异构酶(topoisomerase):催化DNA拓扑异构体相互转化的酶,有Ⅰ、Ⅱ两类,Ⅰ类使一条链产生切口,Ⅱ类使两条链都产生缺口,Ⅱ使DNA超螺旋化,Ⅰ使DNA松驰化。2.同裂酶(Isoschizomer):能识别和切割同样的核苷酸靶序列的不同内切酶。 3.卫星DNA(Satellite-DNA):DNA碱基的高度重复序列,用CsCl密度梯度离心时,在高峰外有几个小峰处于不同密度位置,长度为2~10bp,可 4.接酶(ribozyme):具有催化活性的RNA,如L19,有些只作用于,有些可作用于。5.同功tRNA(isoacceptor):由于简并性原理,一个aa可有不同的密码子,也就不同的6.冈崎片段:DNA复制过程中后随链方向的3-5端DNA合成

相关文档
最新文档