有限元法电磁散射特性分析

有限元法电磁散射特性分析
有限元法电磁散射特性分析

有限元分析复习内容汇总

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 . 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_ 19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. 梁单元和平面钢架结构单元的自由度由什么确定 答:由每个节点位移分量的总和确定 6. 简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量

★★★装配体有限元分析

基于ANSYS WORKBENCH的装配体有限元分析 模拟装配体的本质就是设置零件与零件之间的接触问题。 装配体的仿真所面临的问题包括: (1)模型的简化。这一步包含的问题最多。实际的装配体少的有十几个零件,多的有上百个零件。这些零件有的很大,如车门板;有的体积很小,如圆柱销;有的很细长,如密封条;有的很薄且形状极不规则,如车身;有的上面钻满了孔,如连接板;有的上面有很多小突起,如玩具的外壳。在对一个装配体进行分析时,所有的零件都应该包含进来吗?或者我们只分析某几个零件?对于每个零件,我们可以简化吗?如果可以简化,该如何简化?可以删除一些小倒角吗?如果删除了,是否会出现应力集中?是否可以删除小孔,如果删除,是否会刚好使得应力最大的地方被忽略?我们可以用中面来表达板件吗?如果可以,那么,各个中面之间如何连接?在一个杆件板件混合的装配体中,我们可以对杆件进行抽象吗?或者只是用实体模型?如果我们做了简化,那么这种简化对于结果造成了多大的影响,我们可以得到一个大致的误差范围吗?所有这些问题,都需要我们仔细考虑。 (2)零件之间的联接。装配体的一个主要特征,就是零件多,而在零件之间发生了关系。我们知道,如果零件之间不能发生相对运动,则直接可以使用绑定的方式来设置接触。如果零件之间可以发生相对运动,则至少可以有两种选择,或者我们用运动副来建模,或者,使用接触来建模。如果使用了运动副,那么这种建模方式对于零件的强度分析会造成多大的影响?在运动副的附近,我们所计算的应力其精确度大概有多少?什么时候需要使用接触呢?又应该使用哪一种接触形式呢? (3)材料属性的考虑。在一个复杂的装配体中所有的零件,其材料属性多种多样。我们在初次分析的时候,可以只考虑其线弹性属性。但是对于高温,重载,高速情况下,材料的属性不再局限于线弹性属性。此时我们恐怕需要了解其中的每一种材料,它是超弹性的吗?是哪一种超弹性的?它发生了塑性变形吗?该使用哪一种塑性模型?它是粘性的吗?它是脆性的吗?它的属性随着温度而改变吗?它发生了蠕变吗?是否存在应力钢化问题?如此众多的零件,对于每一个零件,我们都需要考察其各种各样的力学属性,这真是一个丰富多彩的问题。(4)有限元网格的划分。我们知道,通过WORKBENCH,我们只需要按一个按钮,就可以得到一个粗糙的网格模型。但是如果从HYPERMESH的角度来看,ANSYS自动划分的网格,很多都是不合理的,质量较差而不能使用。那么对于装配体中的每个零件,我们该如何划分网格?对于每一个零件,我们是否要对之进行切割形成规则的几何体后,然后尽量使用六面体网格?如果

自补偿液体静压轴承静动态特性有限元分析

龙源期刊网 https://www.360docs.net/doc/1f5713466.html, 自补偿液体静压轴承静/动态特性有限元分析 作者:佐晓波尹自强王建敏李圣怡 来源:《湖南大学学报·自然科学版》2014年第01期 摘要:对一种新型的自补偿双锥面液体静压轴承进行了理论和实验研究.介绍了自补偿双锥面液体静压轴承结构与工作原理,采用小扰动法建立了其润滑油膜的理论模型,自补偿节流公式中计入了转子移动对节流间隙的影响.采用有限元方法求解了轴承的承载力、流量、刚度和阻尼系数,通过对承载力的测试验证了模型的可行性.结果表明:自补偿双锥面液体静压轴承比同条件下固定节流静压轴承的径向承载力高,且其在较小载荷下工作时具有较高刚度. 关键词:液体静压轴承;自补偿;静态特性;动态特性;有限元;小扰动方法 中图分类号:TH133.3 文献标识码:A 液体静压轴承具有承载力大,刚度高,阻尼特性好和磨损小等一系列优点,在精密机床主轴、导轨和转台等基础设备中有着广泛的应用.节流器对静压轴承的静、动态性能具有重要影响.常用的轴承节流器包括小孔、毛细管、狭缝等固定节流器和薄膜等可变节流器,其在现有文献中有较深入的研究.Chen等[1]对毛细管节流静压轴承性能进行了理论研究,郭力等[2]则对毛细管节流的大型动静压轴承进行了实验研究, Chen等[3]以及 Nicodemus和Sharma[4]研究 了小孔节流静压轴承性能,结果均表明节流参数的选择对轴承性能具有重要影响.Sharma等[5]研究了狭缝节流轴颈轴承,指出其失稳速度比毛细管和小孔节流轴承高.郭力等[6]则提出一种圆隙缝节流静压轴承,计算表明其性能优于传统狭缝节流轴承.Singh等[7]和Brecher等[8]研究了薄膜节流多腔静压轴承的特性.Gao等[9-10]分析了一种采用PM流量控制器的新型薄膜节流静压轴承的静态和动态特性.以上类型轴承,节流器的设计、制造往往较为复杂.自补偿节流轴承不使用节流器,采用自身结构实现节流,其性能介于固定节流和薄膜节流之间.夏恒青[11]和王瑜[12]分别对自补偿液体静压轴颈轴承的节流腔结构和动态性能进行了研究.Kane等[13]将节流间隙与承载间隙设计成呈角度相交的两段,制造了一种适用于转台的自补偿静压轴承.现有文献中对自补偿轴承的报道相对较少.本文设计了一种新型的自补偿液体静压轴承,采用小扰动理论建立了轴承计算模型,并采用有限元法计算了其静、动态特性. 1自补偿静压轴承结构及其节流原理 轴承结构示意图如图1(a)所示.轴承采用双锥面形式,主轴由两个圆锥零件和一个连接块组装而成,定子上安装节流环,由节流环的外表面与转子相应配合表面形成的间隙实现润滑油的节流,因不采用传统形式的节流器,所以称为自补偿静压轴承.图1(b)所示为轴承实物

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

雷达天线罩电磁散射特性研究

第3l卷第10期2009年lO月 现代雷达 ModemRadar V01.31No.10 0ct.2009 ?1穷真技术?中图分类号:TN011文献标识码:A文章编号:1004—7859(2009}10—0095—04雷达天线罩电磁散射特性研究 李西敏1’2,童创明1’2,付树洪1’2,李晶晶1 (I.空军工程大学导弹学院,陕西三原713800) (2.东南大学毫米波国家重点实验室,南京210096) 摘要:采用高阶矩量法研究了常见雷达天线罩的电磁散射特性。首先采用双线性表面几何建模技术对天线罩进行面剖分,再依据等效原理在天线罩表面建立电磁积分方程,最后用基于混合域基函数的高阶矩量法对其离散求解。实例验证,该方法简单易行、结果精确,同时发现天线罩材料的电参数在很大程度上影响了其电磁散射特性。 关键词:雷达天线罩:电磁散射特性;高阶矩量法;双线性表面 AStudyonEMScatteringCharacteristicsofRadome UXi-rain,TONGChuang-ming,FUShu-hong,LIJing-jing (1.MissileInstituteofAirForceEngineeringUniversity,Sanyuan713800,China) (2.StateKeyLabofMillimeterWaves,SoutheastUniversity,Nanjing210096,China)Abstract:Electromagnetic(EM)scatteringcharacteristicsofcommonradomearestudiedwithhiighorderMethodofMoment(MoM).Firstly,radomesurfaceissegmentedusingbilinearsurfacegeometricalmodeling.Then,EMintegralequationsalee¥tab-fishedwithequivalenceprinciple.Finally,bymean8ofhishorderMoMinwhichmixed?domainbasisfunctions8xeadopted,thee—quationsa聆discretizedand solved.Theresultsofsimulationshowthatthismethodissimpleandaccurate.ItisalsoshownthatthepermittivityofradomematerialhasgreatinfluenceonitsEMscaReringcharacteristics. Keywords:radome;EMscatteringcharacteristics;highorderMoM;bilinearsurface 0引言 雷达天线罩是天线的电磁窗口和保护罩。它既保护天线免受恶劣环境侵害,又可以最大限度保持天线的电性能。不仅地面雷达需要加载天线罩,机载、弹载雷达更需要天线罩的保护,图1给出了一种常见的弹载雷达天线罩。 图1某弹载雷达天线罩 天线罩的电磁散射特性是其很重要的电性能指标,雷达散射截面(RadarCrossSection,RCS)又是量化 基金项目:毫米波国家重点实验室基金资助项目K200818/K200907) 通信作者:李西敏Email:chmtong@126.com 收稿Et期:2009-06.18修订日期:2009-09.18反映目标电磁散射特性的参数。设计者都希望尽可能减小天线罩的RCS,从而减小被对方雷达发现和被反辐射导弹跟踪的概率,提高系统在现代电子对抗中的生存能力。 分析天线罩电磁散射特性的方法可分为实验测量和仿真计算2种。前者可信度高但操作复杂且费用比较昂贵,同时受诸多实际条件的限制,很难获得完备的散射特性数据。因此仿真计算辅之以实测数据对其结果进行修正和完善的方法,成为分析和获取天线罩电磁散射特征的重要手段。本文采用结合双线性表面几何建模技术的高阶矩量法…研究了天线罩的电磁散射特性。 1几何建模 采用高阶矩量法求解天线罩电磁散射问题,首先须说明其几何形状,即几何建模。几何建模是一项很复杂的工作,很多天线罩具有复杂的几何形状,不易精确描述,因而必须进行适当近似处理。拟采用双线性表面几何建模嵋1的方法来逼近模拟天线罩的表面。 一般来讲,双线性表面是一个曲面四边形,按照一 一95— 万方数据

(完整版)基于ANSYS的重力坝三维静动态结构分析

基于ANSYS 的重力坝三维静动态结构分析 目录 1 引言..................................................................... 1.. 2 工程概况................................................................. 1... 3 基本资料................................................................. 1... 3.1 反应谱............................................................ 1... 3.2 材料参数.......................................................... 2... 3.3 规范要求.......................................................... 2... 4 分析简介................................................................. 4... 4.1 分析模型.......................................................... 4... 4.2 边界条件.......................................................... 6... 4.3 荷载工况.......................................................... 6... 5 计算成果................................................................. 7... 5.1 工况一............................................................. 7... 5.2 工况二............................................................ 8... 5.3 工况三 1..0. 5.4 工况四 1..1. 5.5 工况五 1.. 2. 5.6 工况六 1..4. 5.7 结果总结及分析 1..5 6 结论及建议 1..7. 7 分析命令流 1..7.

基于ANSYS的典型零件有限元分析

基于ANSYS的典型零件的有限元分析 通过对典型零件的有限元分析来验证里零件的强度是否符合设计标准,可以及早发现缺陷,实现优化设计。对产品的设计安全性有重要意义。我们从零件的静力分析和模态分析两个方面来做CAE分析。 使用ANSYS软件的不同模块:ANSYS经典界面 ANSYS WORKBENCH 一、轮毂的模态分析 1.1轮毂的CAD模型: 该模型由NX建模,导入Ansys WorkBench中。 1.2网格划分: 采用自由网格划分 1、分析时采用的单位制: Metric (mm, kg, N, s, mV, mA) 2、轮毂的材料 铝合金:Aluminum Alloy 密度:2.77e-006 kg mm^-3 杨氏模量:710000MP 泊松比:0.33 1.3添加约束: 在五个螺栓孔添加固定约束:

阶数频率(HZ)最大位移(mm) 1 2470.4 89.844 2 3044.1 127.1 3 3047.6 127.27 4 3294.1 210.18 5 3295.5 209.73 6 4509.5 94.061 7 6040.5 247.04 8 6041.9 245.43

2、传动齿轮的静应力分析 该模型为传动系变速器与托深差速器动力传递的齿轮,该齿轮在传动系中起到关键作用,所以对其结构安全性分析是非常有必要的。 2.1模型建立 该齿轮首先在PRO/E中建模,导出IGES文件,再导入Ansys经典中,由于出现错误,只有面体,所以本人将模型的进行修改,通过删除面、线、点的方法,最终的到一个齿轮面。 2 2.2网格划分 在本例中,我采用由面网格扫略生成体同时生成体网格的方法。 采用的单元:1 PLANE42 面单元 2 SOLID45 体单元 材料参数:杨氏模量:2.7X10^5 MP 泊松比:0.33 首先对齿轮面进行网格划分,让后由面网格进拉伸成体网格 具体操作如下: modeling—operate—extrude—Elem Ext Opets—在element type number 中选择2 solid45, 同时在No. Elem divs 中设置要拉伸网格的数量。

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

电磁散射和隐身技术导论

电磁散射与隐身技术导论课程大作业报告 学院:电子工程学院 专业:电子信息工程 班级: 0210** 学号: 0210**** 姓名: ****** 电子邮件: 日期: 2018 年 07 月 成绩: 指导教师:姜文

雷达目标RCS近远场变换 在现代军事领域中,隐身技术和反隐身技术是重中之重,研究隐身和反隐身技术就要研究目标的电磁散射特性。雷达散射截面(RCS)是评价目标散射特征的最基本参数之一,其计算和测量的研究具有重要意义。计算方法有解析方法,精确预估技术和高频近似方法等。根据测量方式的不同,可以分为远场测量、近场测量和紧缩场测量。远场测量在室外进行,虽然能直接得到目标RCS,但是条件难以满足(满足远场条件时,被测目标与天线间的距离非常大),相比之下,在微波暗室中进行的近场测量由于采用缩比测量的方法更容易满足测试条件。相对于紧缩场测量,近场测量的精度更高,成本也有所降低,于是近场测量越来越成为研究的一个重点。近场测试到的雷达回波信号并不是工程中所关心的RCS,而如何由近场测量数据得到目标RCS,则是必须要解决的问题。 为了得到目标RCS,将目标等效为一维分布的散射中心,并忽略了散射中心与雷达之间的相互影响,忽略散射中心与测试环境之间的相互影响。根据雷达回波信号,研究了一种利用雷达近场数据来估计目标总的RCS的方法。推导了算法的具体过程,将研究重点放在了算法的核心——权重函数上。分别仿真了单站正视,单站侧视,对称双站,不对称双站几种情况下权重函数的特性,具体表现为不同参数对权重函数幅度和相位的影响。基于仿真结果,提出了用定标来求得权重函数的方法。并用不同尺寸的金属球作为实验目标,采用某一个金属球理论RCS 值来定标,求得权重函数之后,用此算法变换出目标的RCS,并与其理论值做比对,验证了算法的可行性。 一、雷达截面的研究背景、发展现状 隐身和反隐身技术作为现代战争中电子高科技对抗的重要领域,一直都是各国军事研究的重点,随着各种精确制导武器和探测系统研制成功,隐身技术和反隐身技术越发重要。在军事应用中,希望己方的武器隐身性能尽可能好,并且能尽可能的探测到敌方的隐身目标。这就是必须研究隐身技术和反隐身技术最主要的原因,隐身技术与反隐身技术都必须研究目标的雷达散射特性,隐身技术是让目标的散射尽可能的小,反隐身技术则是尽量能够接收到目标的回波信号,因此要研究隐身和反隐身技术就要研究目标的电磁散射特性。隐身技术和反隐身技术

橡胶件的静、动态特性及有限元分析

橡胶件的静、动态特性及有限元分析 北方交通大学 硕士学位论文   橡胶件的静、动态特性及有限元分析   姓名:郑明军 申请学位级别:硕士 专业:车辆工程 指导教师:谢基龙   2002.2.1 file:///E|/Material/new download/Y476948/Paper/pdf/fm.htm2007-7-3 11:31:00

目录 文摘 英文文摘 第一章绪论 1.1引言 1.2选题背景 1.3本论文的主要研究内容第二章橡胶类材料的本构关系 2.1引言 2.2橡胶材料的本构关系2.2.1橡胶材料的统计理论2.2.2橡胶材料的唯象理论2.3橡胶材料的应力应变关系2.4小结 第三章非线性橡胶材料的有限单元法 3.1引言 3.2非线性橡胶材料的罚有限元法3.3非线性橡胶材料的混合有限元法3.4非线性橡胶材料的杂交有限元法 3.5ANSYS软件的非线性有限元分析方法3.6小结 第四章橡胶材料常数的研究 4.1引言 4.2测定橡胶材料常数的实验方法 4.3 Mooney-Rivlin型橡胶材料常数C1和C2的测定4.4橡胶硬度对Mooney-Rivlin型橡胶材料常数的影响 4.4.1橡胶硬度与弹性模量的关系4.4.2橡胶柱的压缩试验 4.4.3橡胶柱的有限元分析 4.4.4橡胶支座的有限元分析 4.4.5不同硬度下橡胶材料常数C1和C2的确定5小结 第五章橡胶夹层的断裂分析 5.1引言 5.2双悬臂橡胶夹层梁的有限元分析5.2.1试验研究 5.2.2有限元分析 5.2.3计算结果分析 5.3双悬臂橡胶夹层梁的断裂力学分析5.3.1双悬臂橡胶夹层梁界面J积分5.3.2双悬臂橡胶夹层梁应变能释放率G 5.3.3双悬臂橡胶夹层梁的断裂力学分析5.4双剪切橡胶夹层的有限元分析 5.5双剪切橡胶夹层的断裂力学分析 5.5.1双剪切橡胶夹层界面断裂韧性 5.5.2双剪切橡胶夹层的断裂力学分析 6小结 第六章橡胶弹性车轮动态特性分析 6.1引言 6.2橡胶弹性车轮的特点 6.3橡胶弹性车轮的结构 6.4橡胶弹性车轮的有限元分析6.4.1橡胶弹性车轮的有限元分析 6.4.2橡胶弹性车轮的减振效果 6.4.3橡胶硬度对弹性车轮动态特性的影响6.5小结 第七章结论 7.1橡胶材料常数的研究 7.2橡胶夹层的断裂分析 7.3橡胶弹性车轮动态特性分析 参考文献 致谢

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

齿轮动态啮合有限元分析

齿轮动态啮合有限元分析 作者:陕西法士特齿轮有限公司孙春艳郭君宝 齿轮传动是机械传动中最重要、应用最广泛的一种传动。通常齿轮安装于轴上并通过键连接,转矩从驱动轴经键、齿轮体和轮齿最终传递到从动轮的齿轮。在这一过程中,齿轮承受应力作用。另外,为了润滑齿轮传动与减少齿轮传动时产生的热量,通常在齿轮轮体上开设润滑油孔(图1)。油孔的开设位置将影响齿轮的应力及其分布,进而影响齿轮疲劳寿命。 图1中的齿轮A在实际使用过程中,经常发生油孔附近轮齿断裂的现象。本文的目的在于计算齿轮动态啮合过程的应力分布,得到齿轮轮齿根部应力及接触应力的分布情况,从而为齿轮的结构优化提供理论依据。 传动齿轮在工作中速度高,所受载荷大,引起的应力情况复杂。传统的齿轮强度分析是建立在经验公式基础上的,其局限性和不确定性日益突出。有限元方法在齿轮仿真分析中的应用,提高了齿轮设计计算精度。目前,轮齿接触有限元分析多建立在静力分析基础上,未考虑动力因素的影响。而在齿轮轮齿啮合过程中,动力因素对轮齿的受力和变形状态会产生较大的影响,尤其在轮齿啮入和啮出时,由于轮齿受力变形,会产生较大的啮合冲击。本文应用参数化方法首先建立齿轮轮齿的精确几何模型,然后采用动力接触有限元方法,对齿轮轮齿啮合过程中的应力变化情况进行仿真分析,得到轮齿应力在啮合过程中随时间的变化情况。 本文主要针对图1中的齿轮A和与其配对齿轮在运转过程中的应力变化情况进行有限元分析。其主要参数为:主动齿轮齿数20,从动齿轮齿数19,模数4.5,压力角为20°,齿宽为23mm,从动齿轮上所受扭矩为400N·m。

如图2 所示,首先利用Pro/ENGINEER软件建立四齿对啮合的齿轮轮齿几何模型。这是因为,对于重合度大于1的齿轮副,需要考虑几对轮齿同时啮合的情况,建立多对轮齿的几何模型,在此基础上划分有限元网格,如图3所示。由于轮齿接触区域很小,需要对接触齿面的有限元网格加密。边界条件为约束齿轮内圈表面节点的径向和轴向位移,只保留沿轴向的转动自由度。在主动齿轮上施加轴向的角速度载荷,在从动齿轮上施加扭矩负载,然后应用显式非线性动力有限元方法进行求解。对于动力接触这种非线性问题,可采用拉格朗日增量描述法。设质点在初始时刻的坐标为Xi,任意时刻t,该质点坐标为xi,质点运动方程为:xi=xi(Xi,t), i=1,2,3。结合动量方程、质量守恒方程和能量方程,并考虑沙漏效应和阻尼影响,得到总体运动方程: 其中M为集中质量矩阵;P为总体载荷矢量;F为单元应力场的等效节点力矢量组集而成; H 为总体结构沙漏粘性阻尼矩阵;为总体节点加速度矢量; C为阻尼矩阵。对总体运动方程采用显式时间积分法求解。本文采用ABAQUS 有限元分析软件对上述模型进行有限元分析,得到该对齿轮的一对轮齿啮合全过程,及Von Mises应力变化,如图4 所示。

Ansys有限元分析温度场模拟指导书

实验名称:温度场有限元分析 一、实验目的 1. 掌握Ansys分析温度场方法 2. 掌握温度场几何模型 二、问题描述 井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。井式炉炉壁体材料的各项参数见表1。 表1 井式炉炉壁材料的各项参数 三、分析过程 1. 启动ANSYS,定义标题。单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine” 2.定义单位制。在命令流窗口中输入“/UNITS, SI”,并按Enter 键

3. 定义二维热单元。单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE55 4.定义材料参数。单击Main Menu→Preprocessor→Material Props→Material Models菜单

5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。 6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。 7.建立模型。单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。

C波段中国陆地电磁散射特性统计分析

文章编号!""#$"%&&’(""!)"!$""&"$"# *波段中国陆地电磁散射特性统计分析+ 康士峰!,(葛德彪(张忠治! ’!-中国电波传播研究所青岛分所,青岛(.."/!0(-西安电子科技大学物理系,陕西西安/!""/!) 摘要陆地表面的电磁散射特性同地形地物存在的真实物理状态密切相关1利用 234$!和234$(卫星!55!至!555年的*波段66极化散射计数据,对中国陆地不同地形地物分类环境所对应的散射系数特性进行了统计分析和比较,为地球遥感信息分析和雷达目标检测地杂波环境评价提供参考1 关键词*波段234$!7(卫星电磁散射散射系数中国 中图分类号895#.文献标识码: ;<=<>?<>@=A=B=A C?>?D E F G?@=<B J@K=I=@?<>@? =B= P Q R S;K>M E H B J!,(S FT H M N>=D(U V Q R S U K D B J M W K>! ’!-X Y Z[\]^_^\‘a Yb[_c Z c d c^e f]\g Z e h\i^j‘e k\l\c Z e[,m Z[l g\e(.."/!,X Y Z[\0 (-n^k\‘c o^[c e fk Y p_Z a_,q Z g Z\[r[Z i^‘_Z c p,q Z s\[t Y\[u Z/!""/!,X Y Z[\) Q N?

电磁场有限元分析

水轮发电机单通风沟三维简化模型温升计算 一、问题分析 近年来,随着水轮发电机单机容量的不断增加,在发电机进行能量转换过程中产生的损耗不断增大,使其运行的温升问题日趋严峻。根据上述情况,运用有限元分析方法,建立发电机单通风沟三维简化模型进行发电机温升计算。 二、电机单通风沟有限元分析 1.1 水轮发电机单通风沟三维简化模型建立 根据实际水轮发电机结构和通风沟特点,并考虑可接受误差,进行适当简化,以便于简化有限元分析计算得到以下模型,如图1所示。 图1 发电机单通风沟简化物理模型 由图1所示:水轮发电机单风沟简化物理模型三维求解域在轴向上包含发电机一个通风沟以及通风沟两侧各半个轴向铁心段;幅向上包含发电机定子三个槽、转子两个槽。 根据有限元分析特点,对发电机单通风沟简化物理模型进行网格剖分,得到发电机单通风沟简化物理模型剖分图如图2所示。

图2 电机单通风沟简化物理模型网格剖分 由于物理模型较小,可以适当加密剖分进而提高计算精度,故采用楔形和六面体的混合网格进行剖分,总网格数共48万,节点数为30万。利用有限体积法,将流体场和温度场进行强耦合求解,从而 得到发电机的详细温升分布情况。 1.2 边界条件 在图1中,求解域内的面 S为径向通风沟的进风口,沿径向与面 1 S对应的面2S为径向通风沟的出风口。由此,根据所研究发电机的实1 际运行工况,可以给定如下发电机单风沟物理模型的边界条件:1)冷却空气的初始基值绝对温度为0K; 2)径向通风沟入口 S风速为5.1m/s的速度入口边界,通风沟出 1 口 S为自由流动边界; 2 3)求解域其它外边界均为绝热面,发电机内部流体与固体的接 触面均为无滑移边界面。

基于某ANSYS地典型零件有限元分析报告

基于ANSYS的典型零件的有限元分析通过对典型零件的有限元分析来验证里零件的强度是否符合设计标准,可以及早发现缺陷,实现优化设计。对产品的设计安全性有重要意义。我们从零件的静力分析和模态分析两个方面来做CAE分析。 使用ANSYS软件的不同模块:ANSYS经典界面 ANSYS WORKBENCH 一、轮毂的模态分析 1.1轮毂的CAD模型: 该模型由NX建模,导入Ansys WorkBench中。 1.2网格划分: 采用自由网格划分 1、分析时采用的单位制: Metric (mm, kg, N, s, mV, mA) 2、轮毂的材料 铝合金:Aluminum Alloy 密度:2.77e-006 kg mm^-3 杨氏模量:710000MP 泊松比:0.33 1.3添加约束: 在五个螺栓孔添加固定约束:

1.4求解结果 阶数频率(HZ)最大位移(mm) 1 2470.4 89.844 2 3044.1 127.1 3 3047.6 127.27 4 3294.1 210.18 5 3295.5 209.73 6 4509.5 94.061 7 6040.5 247.04 8 6041.9 245.43

2、传动齿轮的静应力分析 该模型为传动系变速器与托深差速器动力传递的齿轮,该齿轮在传动系中起到关键作用,所以对其结构安全性分析是非常有必要的。 2.1模型建立 该齿轮首先在PRO/E中建模,导出IGES文件,再导入Ansys经典中,由于出现错误,只有面体,所以本人将模型的进行修改,通过删除面、线、点的方法,最终的到一个齿轮面。 2 2.2网格划分 在本例中,我采用由面网格扫略生成体同时生成体网格的方法。 采用的单元:1 PLANE42 面单元 2 SOLID45 体单元 材料参数:杨氏模量:2.7X10^5 MP 泊松比:0.33 首先对齿轮面进行网格划分,让后由面网格进拉伸成体网格 具体操作如下: modeling—operate—extrude—Elem Ext Opets—在element type number 中选择2 solid45, 同时在No. Elem divs 中设置要拉伸网格的数量。

相关文档
最新文档