紫外光谱法在线测量连串反应动力学过程1

紫外光谱法在线测量连串反应动力学过程1
紫外光谱法在线测量连串反应动力学过程1

实验名称:紫外光谱法在线测量连串反应动力学过程

一. 目的

(1) 学习并掌握用紫外光谱仪在线测量反应过程的方法。

(2) 了解化学计量学基本方法在光谱动力学矩阵数据解析中的应用。

二. 原理

邻苯二甲酸二甲酯(DMP)在碱性条件下的水解反应为典型的连串反应:

COOCH 3

COOCH 3 OH - H 2O COO -COOCH 3 H 2O OH -COO -COO -

(4) 三种成分DEP 、邻苯二甲酸单乙酯、邻苯二甲酸根均有紫外吸收,且光谱重叠严重。每个时间测量到的光谱均可视作三种成分的混合光谱。在线测量的一系列反应时间(设为nt 个)的紫外吸收光谱(设波长数为nw 个)可记作数据矩阵Y ,其维数为nw ×nt 。它可分解为各组分的纯光谱矩阵S 和动力学谱矩阵Q t ,即Y = SQ t +E 。式中上标“t ”表示矩阵或向量的转置;E 为量测误差矩阵。如果能知道S 或Q t 中任一个,则另一个矩阵利用最小二乘回归法能直接解出。而实际测定的如邻苯二甲酸二乙酯的碱性水解一类的反应,各组分的光谱重叠严重,各组分的纯光谱预先也不知道。但化学反应有确定的模式。尝试设定一组包括反应级数和速率常数的动力学参数,则根据动力学方程可计算出动力学谱t

test Q ,并进一步

按式(5)算出此时的光谱矩阵:

t 1test test test test ()-=S Y Q Q Q (5)

所获得的光谱和动力学矩阵可重构数据矩阵,并计算出原始数据矩阵的残余矩阵Y res :

Y res =Y - S test t

test Q (6)

以残余矩阵Y res 中各元素的平方和SSQ 为目标函数,当SSQ 达到最小值时,此时的S test 和t

test Q 就可视作实际的光谱及动力学谱矩阵,反应的动力学模型(包括

反应级数及速率常数)也就被确定。为便于与实际测量误差相比较,把SSQ 转化为残余标准偏差RSD ,两者的关系为:

S S Q

R S D nw (nt -nc) (7)

式中nc 为体系中的组分数。通过适当的优化方法搜索动力学参数,RSD 作为目标函数,解析测得的矩阵数据而获得各组分的纯光谱。

三. 仪器与试剂

Agilent8453紫外分光光度计(安捷伦科技有限公司,包括Agilent 89090A

Peltier 型恒温搅拌装置和DAD 检测器);移液器(德国BRAND 公司)。

邻苯二甲酸二乙酯(DEP),不易溶于水,建议配制浓度约为:1.3×10-3mol/L ;

氢氧化钠建议配制浓度约1.0 mol/l 。氢氧化钠的浓度远大于DEP 的浓度。

四. 实验内容

(1) 温度及搅拌设定:根据室温设定适当的温度,Peltier 型恒温附件,

既可升温又可降温,控温精度为±0.1℃。设置适当的搅拌速率,一般为500rpm 。DEP 和氢氧化钠两种反应液也应提取控制在所选温度。

(2) 测量参数设置:在仪器操作软件界面上选择动力学模式(kinetics ),

选取扫描波长的范围190-400nm ,根据实际的反应情况设置测量时间范围,时间间隔,时间增量等参数,一个合适的参数设置如图13。设置完成后再设定路径和文件名并测定空白溶液,该反应的空白可用同浓度的氢氧化钠溶液。

(3) 动力学过程测量:用移液器移取1.50ml DEP 于1cm 的石英吸收池中,

放入微型搅拌子,在Peltier 型控温池中恒温,当池温显示已经达到设定的温度约1min 后,用移液器吸取已预先控制温度的NaOH 溶液1.50ml ,快速加入到比色皿中开始反应,同时按动软件界面上的start ,开始扫描光谱,数据自动存储,直到设定的时间结束后完成检测。

五. 数据处理

分别点击左面“导入时间序列”和“导入Y 矩阵”的按钮读入测量时间和相

应的光谱数据矩阵。然后点击“计算”按钮。此时可看到TT-NGA 的运算过程,目标函数逐步趋于最低值而获得结果。运算结束后依次点击“计算结果Q 矩阵”和“计算结果S 矩阵”按钮,便可以看到相应的动力学曲线和纯光谱。

主要根据目标函数(即残余矩阵的标准差)及优化获得的反应级数和速率常

数的数值。由于酯在过量碱存在下的反应为典型的准一级反应,因此优化获得的反应级数应接近于1。而残余标准差在操作正确的情况下主要有仪器本身的噪声所决定。

数据处理结果如下: 计算结果

- 动力学谱图

时间

100

9080706050403020100浓度1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

反应级数:01= 1.068113

02= 0.727203

残差: K1=0.054969

K2=0.001294

结果分析:本来该反应是一个二级反映,由于使用的NaOH的浓度很高,所以可以看成是一个一级反应;在实验过程的一些操作,也可能对结果造成了一定的影响。

六. 思考与讨论

(1)如何根据光谱-动力学数据矩阵确定反应过程中是否存在中间体?

答:从光谱-动力学数据矩阵中的动力学谱图中就可确定是否存在中间体,在反应刚进行不久,,光谱图的曲线呈大幅度的上升走势,上升到最大时,该曲线慢慢下降直到低点,那么就说明有中间体存在,

反之就不存在。

(2)列举与常规紫外吸收曲线测量相比,紫外光谱法在线测量反应过程的注意事项。

答:其一,在开始测量的时候,紫外光谱法在线测量反应过程中要求加入溶液和测量开始时同步的,而常规紫外吸收曲线测量是先加入溶液后测量;其二,它们的原理不一样,紫外光谱法在线测量反应过程是分时段测量,由许多时间段组合而成,而常规紫外吸收曲线测量是一次性测量完成。

(3)比较各种分析仪器常用光源:

①紫外-可见分光光度计:常用的光源有热辐射光源和气体放电光源,紫外区范围用氢灯或氘灯(气体放电),可见光范围可用钨灯和卤钨灯作光源(热辐射);

② 722型光分光光度计:钨卤素灯12V30W;

③拉曼光谱仪:由于拉曼散射很弱,因此要求光源强度大,一般用激光光源。

④荧光计分光光度计中常用汞灯和氙弧灯作光源,汞灯提供线性光谱,由于光强度随波长有很大的变化,作为激发光源有一定的局限性,仅适用于滤光片的荧光计的光源,氙弧灯内有氢气,通电后氙气电离,同时产生很强的光源,并提供250—600nm的连续光谱,最高峰值在470nm。

⑤红外光谱仪:碳化硅光源,EVER-GLO光源,陶瓷光源,能斯特灯光源,白炽线圈光源等。

七.在线测量的运用

在线测量的主要运用有以下几点:

(1)在线测量技术(ISRA)在车身焊接领域的运用

引入了ISRA技术,并将车身在线测量、冲孔、切割技术相结合,作为一个技术整体,应用到车身制造中。该套技术的应用,一方面能及时、有效地反映车身关键点尺寸波动情况,控制车身尺寸;另一方面,通过在线冲孔或切割,能有效地消除拼焊过程产生的累积误差,保证总装前围模块和尾灯区域零件间的匹配效果。该项技术弥补了离线检测数据匮乏的缺陷,实现了离线检测条件下装配误差源的快速诊断,从而大幅度提高了制造质量诊断的效率和准确率,并为快速纠正误差提供了保证。随着ISRA(在线测量技术)技术的逐步成熟,以及它在车身焊接中的推广使用,车身骨架总成积累误差最小化已成为现实。

(2)在线测量在测量蓄电池内阻的运用

该系统运用四引线连接法,将一定频率的交流信号注入电池,再将电池两端产生的微弱信号通过前置放大滤波,送入AD630进行相关检测,有效地抑制了噪声和干扰,简化了设计,实现了蓄电池内阻的在线测量。

(3)在线测量在水质监测方面的运用

测量原理是基于紫外光谱法,流通池中的水路被氙灯的紫外光照射。紫外光的某些组份通过流通池而被吸收,从而检测和分析出来。然后,根据比尔-朗伯(Beer-Lambert)定律,以不饱和

有机分子在(COD在 UV254nm,NO3是在UV220nm,色度在UV350nm)的吸收为基础,测量这种光的吸收量。可承受象活性污泥那样的极高浓度的悬浮粒子,而不需过滤亦不会堵塞,也不会影响测量效果,它具有极高的稳定性和极低的维护量,且反应速度快。(4)在线测量在电力设备上的运用

电力设备在线监测,就是利用传感、电子、计算机等技术,通过对运行中高压设备的信号采集和传输、数据处理、逻辑判断,来实现对电力设备运行状态的带电测试或不间断的实时监测和诊断。

紫外可见分光光度法思考题与练习题

思考题与练习题 1.有机化合物分子中电子跃迁产生的吸收带有哪几种类型?各有什么特点?在分析上较有实际 应用的有哪几种类型? 2.无机化合物分子中电子跃迁产生的吸收带有哪几种类型?何谓配位场跃迁?请举例加以说 明。 3.采用什么方法可以区别n-π*和π-π*跃迁类型? 4.何谓朗伯-比耳定律(光吸收定律)?数学表达式及各物理量的意义如何?引起吸收定律偏离 的原因是什么? 5.试比较紫外可见分光光度计与原子吸收分光光度计的结构及各主要部件作用的异同点。 6.试比较常规的分光光度法与双波长分光光度法及导数分光光度法在原理及特点是有什么差 别。 7. 分子能发生n-σ*跃迁,为227nm(ε为900)。试问:若在酸中测量时,该吸收峰会怎样变化?为什么? 答案: n-σ*跃迁产生的吸收峰消失。 8. 某化合物的为305nm,而为307nm。试问:引起该吸收的是n-π*还是π-π*跃迁? 答案:为π-π*跃迁引起的吸收带。 9.试比较下列各化合物最大吸收峰的波长大小并说明理由。 (a) (b) (c) (d) 答案: d > c > a > b。 10.若在下列情况下进行比色测定,试问:各应选用何种颜色的滤光片?(1) 蓝色的Cu(Ⅱ)-NH3 配离子;

(2) 红色的Fe(Ⅲ)-CNS-配离子; (3) Ti(Ⅴ)溶液中加入H2O2形成黄色的配离子。 答案: (1)黄色;(2)蓝绿色;(3)蓝色。 11. 排列下列化合物的及的顺序:乙烯、1,3,5-己三烯、1,3-丁二烯。 答案: 1,3,5-己三烯 > 1,3-丁二烯 > 乙烯。 12. 基化氧(4-甲基戊烯酮,也称异丙又丙酮)有两种异构体,其结构为:(A)CH2=C(CH3)-CH2-CO(CH3),(B)CH3-C(CH3)=CH-CO(CH3)。它们的紫外吸收光谱一个为235nm(ε为12000),另一个在220nm以后无强吸收。判别各光谱属于何种异构体? 答案:。 13.紫罗兰酮有两种异构体,α异构体的吸收峰在228nm(ε=14000),β异构体吸收峰在 296nm(ε=11000)。该指出这两种异构体分别属于下面的哪一种结构。 (Ⅰ)(Ⅱ) 答案: I为β,II为α。 思考题与练习题 14.如何用紫外光谱判断下列异构体: (a) (b) (c) (d)

第七章配合物反应动力学

第七章配合物反应动力学 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

第七章配合物反应动力学 研究范围:取代、氧化还原、异构化、加成与消除、配体上进行的 反应 第一节配合物的反应类型 1、取代反应 [Cu(H2O>6]2+ + NH3 [Cu(NH3>4(H2O>2]2+ + H2Ob5E2RGbCAP [Mo(CO>6] + bipy [Mo(CO>4bipy] [Cr(H2O>6]3+ + Cl? [Cr(H2O>5Cl]2+ + H2O 2、氧化还原反应 [Os(bipy>3]2++ [Mo(CN>6]3?[Os(bipy>3]3+ + [Mo(CN>6]4?p1EanqFDPw 3、异构化反应 cis-[CoCl2(en>2]+ trans-[CoCl2(en>2]+ [Co(-ONO>(NH3>5]2+ [Co(-NO2>(NH3>5]2+ 4、加成和消除反应 [IrICl(CO>(PPh3>2] + H2 [IrIIIClH2(CO>(PPh3>2]DXDiTa9E3d [PtIICl2(NH3>2] + Cl2 [PtIVCl4(NH3>2] cis-[PtIVHCl2Me(PEt3>2] cis-[PtIICl2(PEt3>2] + CH4RTCrpUDGiT 5、配体的反应

第二节取代反应动力学 定义:配离子中一个配体被另一个自由配体取代的反应。 例:L5M-X+Y L5M-Y+X 一、取代的反应机理 1、SN1和SN2机理 <1)离解机理

紫外可见吸收光谱习题集及答案

五、紫外可见分子吸收光谱法(277题) 一、选择题( 共85题) 1、 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰( ) (1) 消失(2) 精细结构更明显 (3) 位移(4) 分裂 2、 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、c、d、e滤光片可供选用,它们的透光曲线如图2所示,您认为应选的滤光片为( ) 3、 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的就是( ) (1) 比色法(2) 示差分光光度法 (3) 光度滴定法(4) 分光光度法 4、 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参 比溶液,用一般分光光度法测得透射比为20% 的标准溶液作参比溶液,则试液的透 光率应等于( ) (1) 8% (2) 40% (3) 50% (4) 80% 5、 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为510 nm,如用光电比色计测定应选用哪一种 滤光片?( ) (1) 红色(2) 黄色(3) 绿色(4) 蓝色 6、 2 分(1074) 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物就是( ) (1) 一氯甲烷(2) 丙酮(3) 1,3-丁二烯(4) 甲醇 7、 2 分(1081) 双波长分光光度计的输出信号就是( ) (1) 试样吸收与参比吸收之差(2) 试样在λ1与λ2处吸收之差 (3) 试样在λ1与λ2处吸收之与(4) 试样在λ1的吸收与参比在λ2的吸收之差8、 2 分(1082) 在吸收光谱曲线中,吸光度的最大值就是偶数阶导数光谱曲线的( ) (1) 极大值(2) 极小值(3) 零(4) 极大或极小值 9、 2 分(1101) 双光束分光光度计与单光束分光光度计相比,其突出优点就是( ) (1) 可以扩大波长的应用范围(2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差(4) 可以抵消因光源的变化而产生的误差

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

紫外可见分光光度法练习题

紫外-可见分光光度法 一、单项选择题 1.可见光的波长范围是 A、760~1000nm B、400~760nm C、200~400nm D、小于400nm E、大于760nm 2.下列关于光波的叙述,正确的是 A、只具有波动性 B、只具有粒子性 C、具有波粒二象性 D、其能量大小于波长成正比 E、传播速度与介质无关 3.两种是互补色关系的单色光,按一定的强度比例混合可成为 A、白光 B、红色光 C、黄色光 D、蓝色光 E、紫色光 4.测定Fe3+含量时,加入KSCN显色剂,生成的配合物是红色的,则此配合物吸收了白光中的 A、红光 B、绿光 C、紫光 D、蓝光 E、青光 5.紫外-可见分光光度计的波长范围是 A、200~1000nm B、400~760nm C、1000nm 以上 D、200~760nm E、200nm以下 6.紫外-可见分光光度法测定的灵敏度高,准确度好,一般其相对误差在 A、不超过±% B、1%~5% C、5%~20%

D 、5%~10% E 、%~1% 7.在分光光度分析中,透过光强度(I t )与入射光强度(I 0)之比,即I t / I 0称 为 A 、吸光度 B 、透光率 C 、吸光系数 D 、光密度 E 、 消光度 8.当入射光的强度(I 0)一定时,溶液吸收光的强度(I a )越小,则溶液透过光的 强度(I t ) A 、越大 B 、越小 C 、保持不变 D 、等于0 E 、以 上都不正确 9.朗伯-比尔定律,即光的吸收定律,表述了光的吸光度与 A 、溶液浓度的关系 B 、溶液液层厚度的关系 C 、波长的关系 D 、溶液的浓度与液层厚度的关系 E 、溶液温度的关系 10.符合光的吸收定律的物质,与吸光系数无关的因素是 A 、入射光的波长 B 、吸光物质的性质 C 、溶 液的温度 D 、溶剂的性质 E 、在稀溶液条件下,溶液的浓度 11.在吸收光谱曲线上,如果其他条件都不变,只改变溶液的浓度,则最大吸收波长的位置和峰的 高度将 A 、峰位向长波方向移动,逢高增加 B 、峰位向短波方向移 动,峰高增加

紫外可见吸收光谱习题集及答案42554

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题) 1.2分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰( ) (1)消失(2) 精细结构更明显 (3)位移 (4)分裂 2。 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3。 2 分 (1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4)分光光度法 4。2分 (1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为10%,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于( ) (1)8% (2) 40% (3) 50% (4)80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm,如用光电比色计测定应选用哪一种 滤光片?( ) (1)红色(2) 黄色 (3)绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有n→π*,π→π*,σ→σ*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮(3) 1,3-丁二烯(4) 甲醇 7. 2 分(1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在λ1和λ2处吸收之差 (3) 试样在λ1和λ2处吸收之和 (4)试样在λ1的吸收与参比在λ2的吸收之差 8. 2分 (1082) 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的( ) (1) 极大值 (2) 极小值 (3) 零(4) 极大或极小值 9。 2 分 (1101) 双光束分光光度计与单光束分光光度计相比,其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统

紫外可见吸收光谱习题集及答案(20200925103547)

专业资料 值得拥有 一、选择题(共85题) 1. 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 () (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时 ,配合物的吸收曲线如图 1所示,今有a 、b 、 c 、 d 、 e 滤光片可供选用,它们的透光曲线如图 2所示,你认为应选的滤光片为 () 3. 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是 () (1) 比色法 (2) 示差分光光度法 (3)光度滴定法 (4) 分光光度法 4. 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为 10% ,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于 () (1) 8% (2) 40% (3) 50% ⑷ 80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm ,如用光电比色计测定应选用哪一种 滤光片? () (1)红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有 n →d , τ→d , C →

紫外可见分子吸收光谱习题集及答案

第二章、紫外可见分子吸收光谱法 一、选择题( 共20题) 1. 2 分 在吸收光谱曲线中,吸光度的最大值是偶数阶导数光谱曲线的( ) (1) 极大值(2) 极小值(3) 零(4) 极大或极小值 2. 2 分 在紫外光谱中,λmax最大的化合物是( ) 3. 2 分 用实验方法测定某金属配合物的摩尔吸收系数ε,测定值的大小决定于( ) (1) 配合物的浓度(2) 配合物的性质 (3) 比色皿的厚度(4) 入射光强度 4. 2 分 1198 有下列四种化合物已知其结构,其中之一用UV 光谱测得其λmax为302nm,问应是哪种化合物?( )

CH 3CH CHCOCH 3 CH 3CH 3(4)(3) (2) Br O HO O CH 3 3 CH 3(1) 5. 5 分 下列四种化合物中,在紫外光区出现两个吸收带者是 ( ) (1)乙烯 (2)1,4-戊二烯 (3)1,3-丁二烯 (4)丙烯醛 6. 2 分 助色团对谱带的影响是使谱带 ( ) (1)波长变长 (2)波长变短 (3)波长不变 (4)谱带蓝移 7. 5 分 对化合物 CH 3COCH=C(CH 3)2的n — *跃迁,当在下列溶剂中测定,谱带波长最短的 是 ( ) (1)环己烷 (2)氯仿 (3)甲醇 (4)水 8. 2 分 紫外-可见吸收光谱主要决定于 ( ) (1) 分子的振动、转动能级的跃迁 (2) 分子的电子结构

(3) 原子的电子结构(4) 原子的外层电子能级间跃迁 9. 1 分 下面哪一种电子能级跃迁需要的能量最高? ( ) (1) σ→σ*(2) n→σ * (3) π→π* (4) π→σ* 10. 2 分 化合物中CH3--Cl在172nm有吸收带,而CH3--I的吸收带在258nm处,CH3--Br 的吸收 带在204nm ,三种化合物的吸收带对应的跃迁类型是( ) (1) σ→σ*(2) n→π* (3) n→σ * (4)各不相同 11. 2 分 某化合物在乙醇中λmax乙醇=287nm,而在二氧六环中λmax二氧六环=295nm,该吸收峰的跃迁类型是() (1) σ→σ* (2) π→π* (3) π→σ* (4) π→π* 12. 2 分 一化合物溶解在己烷中,其λmax己烷=305 nm,而在乙醇中时,λ乙醇=307nm,引起该吸收的电子跃迁类型是( ) (1) σ→σ * (2)n→π * (3) π→π* (4) n→σ* 13. 2 分

配合物的反应动力学

第五章配合物的反应动力学 化学反应动力学研究的内容包括反应速率和反应机理。研究配合反应动力学主要有两个目的:一是为了把具有实用意义的化学反应最大效率地投入生产,必须研究这一反应所遵循的动力学方程和反应机理,从而获得必要的认识,以利于设计工艺设备和流程。二是希望通过化学反应动力学的研究,寻找化学变化时从作用物到产物过程中所发生的各步反应模式,在广泛实验基础上概括化学微观变化时所服从的客观规律性。 化学反应可能以各种不同的速率发生,有些反应慢得无法测定其变化,而另有一些反应则又太快,是人们难以测量其速率。根据不同的反应速率,可选用不同的实验技术来研究。适合于一般反应的实验方法有:直接化学分析法,分光光度法,点化学方法或同位素示踪法。五十年代以来,应用快速放映动力学的测定方法来研究配合物,大大扩充了配合物动力学的研究领域,目前已发展了二十多种快速实验技术,如横流法、淬火法、核磁共振和弛豫法等等。其中有些方法可以测量半衰期达到10-10秒的速度,接近于分子的扩散速度。 在化学反应中,通常发生旧的化学键的断裂核心的化学键的形成,因而从反应物到生成物的过程中,通常要发生反应物分子的靠近,分子间碰撞,原子改变位置,电子转移直到生成新的化合物,这种历程的完整说明叫做反应机理。反应机理是在广泛的实验基础上概括出的化学反应微观变化时所服从的客观规律性。它不是一成不变的,当新的信息被揭露或当新的概念在新科学领域得到发展的时候,反应机理也会随之变化。研究反应机理可以采用许多手段,如反应速率方程、活化热力学参数、同位素示踪法等。 有关配合物反应的类型很多,有配合物中金属离子的氧化还原反应、取代反应,配合物中配体得宠排(消旋化作用和异构化作用)以及配体所进行的各种反应、配位催化等。本章主要介绍配合物取代反应和盐化还原反应的动力学特性。 第一节配合物的取代反应 取代反应是配合物中金属-配体键的断裂和代之以新的金属-配体键的生成的一种反应。这种反应在配位化学中是极为普遍和重要的,是制备许多配合物的一个重要方法。对于不同配位数的配合物发生取代反应的情况也不完全相同。配位数为4和6的配合物取代反应研究得比较充分,在讨论具体取代反应前,先介绍几个有关的名词。 一、取代反应中的几个名词的说明 1.活化配合物和中间化合物 过渡态理论认为,反应物与一个设想的所谓活化配合物之间达到平衡,而这一活化配合物在整个反应中以同样的反应速率常数分解成产品,形成活化配合物所需的总能量是活化能。从反应物到产物所经过的能量最高点称过渡态。而活化配合物和过渡态是有区别的,过渡态是一个能态,活化配合物是设想在这一能态下存在的一个化合物。另外,有一些反应,从反应物到产物之间会生成一种中间化合物。如图5-1所示。 从反应物到产物之间生成了一个中间化合物,它是客观存在的一个化合物,在许多反应体系中能把它分离出来,或采用间接方法推断出来。 2.活化配合物和惰性配合物 配合物的取代反应速率差别很大,快的反应瞬间完成,慢的反应要几天,甚至几个月,所以在动力学上,将一个配离子中的某一配体能迅速被另一配体所取代的配合物称为活性配合物,而如果配体发生取代反应的速率很慢称为惰性配合物。但活性配合物和惰性配合物之间也没有明显的分界线,需要用一个标准来衡量。目前国际上采用H.Taube所建议的标准:即在反应温度为25℃,各反应物浓度均为0.1mol·L-1的条

紫外吸收光谱法测定双组分混合物

紫外吸收光谱法测定双组分混合物 一、实验目的 1、 掌握单波长双光束紫外可见分光光度计的使用。 2、 学会用解联立方程组的方法,定量测定吸收曲线相互重叠的二元混合物。 二、方法原理 根据朗伯—比尔定律,用紫外--可见分光光度法很容易定量测定在此光谱区有吸收的单一成分。由两种组分组成的混合物中,若彼此都不影响另一种物质的光吸收性质,可根据相互间光谱重叠的程度,采用相对的方法来进行定量测定。如:当两组分吸收峰部分重叠时,选择适当的波长,仍可按测定单一组分的方法处理;当两组分吸收峰大部分重叠时(见图1),则宜采用解联立方程组或双波长法等方法进行测定。 图1 高锰酸钾、重铬酸钾标准溶液吸收曲线 解联立方程组的方法是以朗伯--比尔定律及吸光度的加和性为基础,同时测定吸收光谱曲线相互重叠的二元组分的一种方法。 从图2可看出,混合组分在λ1处的吸收等于A 组分和B 组分分别在λ1处的吸光度之和A A+B λ1 ,即: A A+B λ1 = κA λ1bc A + κB λ1bc B 同理,混合组分在λ2处吸光度之和A A+B λ2 应为: A A+B λ2 = κA λ2bc A + κB λ2bc B 若先用A 、B 组分的标样,分别测得A 、B 两组分在λ1和λ2处的摩尔吸收系数κA λ1、κA λ2和κB λ 1 、κB λ2;当测得未知试样在λ1和λ2的吸光度A A+B λ1和A A+B λ2后,解下列二元一次方程组: A A+B λ1 = κA λ1 b c A + κB λ1 b c B

A A+Bλ2 = κAλ2 b c A + κBλ2 b c B 即可求得A、B两组分各自的浓度c A和c B。 c A= (A A+Bλ1 ·κBλ2 - A A+Bλ2 ·κBλ1) / ( κAλ1 ·κBλ2 - κAλ2 ·κBλ1) c B= (A A+Bλ1 - κAλ1 · c A) /κBλ1 一般来说,为了提高检测的灵敏度,λ1和λ2宜分别选择在A、B两组分最大吸收峰处或其附近。 图2高锰酸钾、重铬酸钾标准溶液及混合溶液的吸收曲线 三、仪器和试剂 1.紫外可见分光光度计(UV/VIS 916型);1cm比色皿; 2.容量瓶、移液管、烧杯; 3.0.0200mol/L KMnO4标准溶液(其中含H2SO4 0.5mol/L,含KIO4 2g/L); 4.0.0200mol/L K2Cr2O7标准溶液(其中含H2SO4 0.5mol/L,含KIO4 2g/L)。 四、实验步骤 1.分别吸取一定量的0.0200mol/L K2Cr2O7标准溶液,稀释配制成浓度为0.0008 mol/L、0.0016 mol/L、0.0024 mol/L、0.0032 mol/L、0.0040 mol/L的系列标准溶液。编号1~5。 2.分别吸取一定量的0.0200mol/L KMnO4标准溶液,稀释配制成浓度为0.0008 mol/L、0.0016 mol/L、0.0024 mol/L、0.0032 mol/L、0.0040 mol/L的系列标准溶液。编号6~10。 3.按照分光光度计操作规程,开启仪器。 4.绘制标准溶液在375~625nm围的吸收光谱图,找到最大吸收波长(λ1和λ2)。并测定它们在最大吸收波长(λ1和λ2)处的吸光度。 操作步骤: 4.1 波长扫描(定性) A.用去离子水作为空白,做基线;

【精选】紫外吸收光谱法练习题

第二章:紫外吸收光谱法 一、选择 1. 频率(MHz)为4.47×108的辐射,其波长数值为 (1)670.7nm (2)670.7μ(3)670.7cm (4)670.7m 2. 紫外-可见光谱的产生是由外层价电子能级跃迁所致,其 能级差的大小决定了 (1)吸收峰的强度(2)吸收峰的数目 (3)吸收峰的位置(4)吸收峰的形状 3. 紫外光谱是带状光谱的原因是由于 (1)紫外光能量大(2)波长短(3)电子能级差大 (4)电子能级跃迁的同时伴随有振动及转动能级跃迁的原因 4. 化合物中,下面哪一种跃迁所需的能量最高 (1)σ→σ*(2)π→π*(3)n→σ*(4)n→π* 5. π→π*跃迁的吸收峰在下列哪种溶剂中测量,其最大吸收 波长最大 (1)水(2)甲醇(3)乙醇(4)正己烷6. 下列化合物中,在近紫外区(200~400nm)无吸收的是 (1)(2)(3)(4) 7. 下列化合物,紫外吸收λmax值最大的是 (1)(2)(3)(4) 二、解答及解析题 1.吸收光谱是怎样产生的?吸收带波长与吸收强度主要由什

么因素决定? 2.紫外吸收光谱有哪些基本特征? 3.为什么紫外吸收光谱是带状光谱? 4.紫外吸收光谱能提供哪些分子结构信息?紫外光谱在结构 分析中有什么用途又有何局限性? 5.分子的价电子跃迁有哪些类型?哪几种类型的跃迁能在紫 外吸收光谱中反映出来? 6.影响紫外光谱吸收带的主要因素有哪些? 7.有机化合物的紫外吸收带有几种类型?它们与分子结构有什 么关系? 8.溶剂对紫外吸收光谱有什么影响?选择溶剂时应考虑哪些 因素? 9.什么是发色基团?什么是助色基团?它们具有什么样结构 或特征? 10.为什么助色基团取代基能使烯双键的n→π*跃迁波长红 移?而使羰基n→π*跃迁波长蓝移? 11.为什么共轭双键分子中双键数目愈多其π→π*跃迁吸收带 波长愈长?请解释其因。 12.芳环化合物都有B吸收带,但当化合物处于气态或在极性溶剂、非极性溶剂 中时,B吸收带的形状有明显的差别,解释其原因。 13.pH对某些化合物的吸收带有一定的影响,例如苯胺在酸性介质中它的K吸收带和B吸收带发生蓝移,而苯酚在碱性介质中其K吸收带和B吸收带发生红移,为什么?羟酸在碱性介质中它的吸收带和形状会发生什么变化? 14.某些有机化合物,如稠环化合物大多数都呈棕色或棕黄色,许多天然有机 化合物也具有颜色,为什么?

第9章-紫外可见吸收光谱法

第九章紫外可见吸收光谱法 §9-1 概述 利用紫外可见分光光度计测量物质对紫外可见光的吸收程度(吸光度)和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法(ultraviolet and visible spectrophotometry,UV-VIS)。它具有如下特点: (1)灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以达到104~105数量级。 (2) 准确度较高其相对误差一般在1% ~ 5%之内。 (3) 方法简便操作容易、分析速度快。 (4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定及结构分析(鉴定有机化合物中的官能团)。可对同分异构体进行鉴别。此外,还可用于配合物的组成和稳定常数的测定。 紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。例如,甲苯和乙苯的紫外吸收光谱基本相同。因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。 §9-2 紫外可见吸收光谱法的基本原理 当一束紫外可见光(波长范围200~760nm)通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子则不被吸收,光子是否被物质所吸收既决定于物质的内部结构,也决定于光子的能量。当光子的能量等于电子能级的能= h f),则此能量的光子被吸收,并使电子由基态跃迁到激发量差时(即ΔE 电 态。物质对光的吸收特征,可用吸收曲线来描述。以波长λ为横坐标,吸光度A 为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱(或紫外可见吸收曲线)。它能更清楚地描述物质对光的吸收情况(图9-1)。 从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长(λmax);低于高吸收峰的峰称为次峰;吸收峰旁

紫外可见吸收光谱法

紫外可见吸收光谱法 开放分类:化学科学 收藏分享到顶[1]编辑词条 目录 ? 1 概述 ? 2 基本原理 ? 3 特点 ? 4 仪器组成 ? 5 应用 ? 6 影响因素 ?展开全部 摘要 紫外可见吸收光谱法是利用某些物质的分子吸收10~800nm光谱区的辐射来进行分析测定的方法,这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于有机和无机物质的定性和定量测定。该方法具有灵敏度高、准确度好、选择性优操作简便、分析速度好等特点。 紫外可见吸收光谱法-概述 图4.3

分子的紫外可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。如(图4.3),胆甾酮(a)与异亚丙基丙酮(b)分子结构差异很大,但两者具有相似的紫外吸收峰。两分子中相同的O=C-C=C共轭结构是产生紫外吸收的关键基团。 紫外-可见以及近红外光谱区域的详细划分如图4.4所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。[1] (图)图4.4 紫外可见吸收光谱法-基本原理 紫外可见吸收光谱的基本原理是利用在光的照射下待测样品内部的电子跃迁,电子跃迁类型有: (1)σ→σ* 跃迁指处于成键轨道上的σ电子吸收光子后被激发跃迁到σ*反键轨道 (2)n→σ* 跃迁指分子中处于非键轨道上的n电子吸收能量后向σ*反键轨道的跃迁 (3)π→π* 跃迁指不饱和键中的π电子吸收光波能量后跃迁到π*反键轨道。 (4)n→π* 跃迁指分子中处于非键轨道上的n电子吸收能量后向π*反键轨道的跃迁。

第五章 配合物反应动力学

第五章配合物反应动力学 研究范围:取代、氧化还原、异构化、加成与消除、配体上进行的反应 本章只讲述:取代反应和氧化还原反应 第一节:取代反应动力学 例:L5M-X+Y L5M-Y+X 一、取代的反应机理 1、离解机理(SN1机理,D) 慢 a.L5M-X = L5M+ X(配位数下降6 5) b.L5M+Y=L5M-Y 速率方程:d[L5M-Y]/dt = k[L5M-X] 速率与Y的浓度无关,是对[L5M-X]的一级反应 2、缔合机理(SN2机理,A) 慢 a、L5M-X+Y = L5MXY(配位数升高6 7) b、L5MXY = L5M-Y + X 反应速率:d[L5M-Y]/dt = k[L5M-X][Y] 动力学上属于二级反应。 * SN1和SN2是两种极限情況,大多数反应都是按照这两种极限情况的中间机理进行的。 3、交换机理(I) 离解机理是旧键断裂,缔合机理是新键形成,前者是先破后立,后者是先立后破,在实际的取代反应中旧键的断裂与新键的形成是同时发生的。取代反应最可能进行的方式是:取代的配体接近的同时,被取代的配体逐渐离去,即配合物发生取代反应时配位数没有变化,新键的生成和旧键断裂同时进行,彼此相互影响,这种机理称交换机理或称I机理。 I机理又可进一步分为I a和I d机理: I d机理是取代反应中离去配体的影响大于进入配体的影响。 I a机理是取代反应中进入配体的影响大于离去配体的影响。

D ML n X + Y ML n + X +Y ML n Y + X (1) (3) X (7) I ML n ML n X …… Y (4) Y ML n Y …… X (2) A X (6) MLn (5) Y D 机理:途径(1)→(3)→(7) A 机理:途径(1)→(2)→(5)→(6)→(7) I 机理:途径(1)→(2)→(4)→(6)→(7) 二、活性与惰性配合物及取代机理的理论解释 配离子发生配位体交换反应的能力, 是用动力学稳定性的概念来描述的, 配体交换反应进行得很快的配合物称为活性的配合物, 而那些交换反应进行得很慢或实际上观察不到交换的配合物则称为惰性配合物。 事实上, 这两类配合物之间并不存在明显的界限。 1、活性与惰性配合物 1)定义:配体可被快速取代的配合物,称为活性配合物;配体取代缓慢的配合物,称为惰性配合物 0.1M )在25℃时反应,t 1/2>1min ,称为惰性配合物;t 1/2<1min ,称为活性配合物。 2)与热力学稳定常数的关系 活性与惰性是动力学上的概念,不可与稳定性混为一谈。 惰性配合物也可能是热力学不稳定的配合物。 如:[Co(NH 3)6]3+,在室温的酸性水溶液中为一惰性配合物,H 2O 取代NH 3需几周时间,但 [Co(NH 3)6]3+ +6H 3O +=[Co(H 2O)6]3++6NH 4+ 反应平衡常数K=1025, 极不稳定。

紫外吸收光谱的基本原理

紫外吸收光谱的基本原理,应用与其特点 紫外吸收光谱的基本原理 吸收光谱的产生 许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 紫外光谱的表示方法 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的许多无色透明的有机化合物,虽不吸收可见光,但往往能吸收紫外光。如果用一束具有连续波长的紫外光照射有机化合物,这时紫外光中某些波长的光辐射就可以被该化合物的分子所吸收,若将不同波长的吸收光度记录下来,就可获的该化合物的紫外吸收光谱. 通常以波长λ为横轴、吸光度A(百分透光率T%)为纵轴作图,就可获的该化合物的紫外吸收光谱图。 吸光度A,表示单色光通过某一样品时被吸收的程度A=log(I0/I1), I0入射光强度,I1透过光强度; 透光率也称透射率T,为透过光强度I1与入射光强度I0之比值,T= I1/I0透光率T与吸光度A的关系为A=log(1/T) 根据朗伯-比尔定律,吸光度A与溶液浓度c成正比A=εbc ε为摩尔吸光系数,它是浓度为1mol/L的溶液在1cm的吸收池中,在一定波长下测得的吸光度,它表示物质对光能的吸收强度,是各种物质在一定波长下的特征常数,因而是检定化合物的重要数据;c为物质的浓度,单位为mol/L;b为液层厚度,单位为cm。 在紫外吸收光谱中常以吸收带最大吸收处波长λmax和该波长下的摩尔吸收系数εmax来表征化合物吸收特征。吸收光谱反映了物质分子对不同波长紫外光的吸收能力。吸收带的形状、λmax和εmax与吸光分子的结构有密切的关系。各种有机化合形状、λmax 和εmax与吸光分子的结构有密切的关系。各种有机化合物的λmax和εmax都有定值,同类化合物的εmax比较接近,处于一个范围。 紫外吸收光谱是由分子中价电子能级跃迁所产生的。由于电子能级跃迁往往要引起分子中核的运动状态的变化,因此在电子跃迁的同时,总是伴随着分子的振动能级和转动能级的跃迁。考虑跃迁前的基态分子并不是全是处于最低振动和转动能级,而是分布在若干不同的

5紫外可见吸收光谱法习题答案

紫外可见光谱习题答案 1.名词解释:吸光度、透光率、吸光系数(摩尔吸光系数、百分吸光系数)、生色团、助色团、红移、蓝移。 解答:吸光度:表示光束通过溶液时被吸收的程度。 透过率:表示透过光占入射光的比例。 吸光系数:与吸光物质性质及入射光波长有关的常数,是吸光物质的重要特征值。 生色团:分子中决定电子吸收带波长的原子团及相关的化学键。 助色团:本身不能显色但能够加强生色团显色能力的基团。 红移:有机化合物的吸收谱带因引入取代基或改变溶剂使最大吸收波长向长波方向移动、吸收强度增大的现象。 蓝移:有机化合物的吸收谱带因引入取代基或改变溶剂使最大吸收波长向短波方向移动、吸收强度减小的现象。 2.有机化合物的紫外吸收光谱的电子跃迁有哪几种类型?跃迁所需的能量大小顺序如何?具有什么样结构的化合物产生紫外吸收光谱?紫外吸收 光谱有何特征? 解答:有机化合物的紫外吸收光谱的电子跃迁有4种,包括 n→π*、π→π*、n→σ*、和σ→σ*跃迁。 4种跃迁所需的能量大小顺序为:n→π*<π→π*

通过紫外吸收光谱能够了解吸收物质的性质与结构,通过吸收光谱的波长和吸光强度可以对许多有机化合物进行定性和定量。 3. Lambert-Beer定律的物理意义是什么?发生偏离的主要因素有哪些? 解答:Lambert-Beer定律揭示了当用一适当波长的单色光照射被吸收物质的溶液时,其吸光度与溶液的浓度和透光层厚度的乘积成正比。 发生偏离的主要因素有:入射光非单色光;溶液本身的化学因素,折射率变化以及散射等原因。 4. 符合朗伯-比尔定律的一有色溶液,当有色物质的浓度增加时,最大吸收波长和吸光度分别如何变化? 答:最大吸收波长不变,吸光度增加。 5. 下列化合物中,(1) 一氯甲烷、 (2) 丙酮、(3) 1,3-丁二烯、(4) 甲醇,同时有 n→ *, → *, → *跃迁的化合物是? 答:(2) 丙酮 6. 是否可用紫外吸收光谱法区分沸点仅差 0.6℃的苯与环己烷,为什么?答:可以。苯环在紫外-可见区有其特征吸收,而环己烷在紫外-可见区没有吸收。 7. 简述紫外-可见分光光度计的主要部件、类型。 解答:紫外-可见分光光度计主要部件有:光源、单色器、吸收池、检测器以及记录显示系统。 目前分光光度计按波长范围分为紫外-可见和可见分光光度计;按照光路有单光束和双光束;按照单位时间内通过溶液的波长数分为单波长和双波长分光光度计。

11第七章配合物反应动力学19页

第七章配合物反应动力学 研究范围:取代、氧化还原、异构化、加成与消除、配体上进行的反应 本章只讲述:取代反应和氧化还原反应 第一节:取代反应动力学 定义:配离子中一个配体被另一个自由配体取代的反应。 例:L5M-X+Y L5M-Y+X 一、取代的反应机理 1、离解机理(SN1机理) 慢 a.L5M-X = L5M+Y(配位数下降6 5) b.L5M+Y=L5M-Y 速率方程:d[L5M-Y]/dt = k[L5M-X] 速率与Y的浓度无关,是对[L5M-X]的一级反应。 2、缔合机理(SN2机理) 慢 a、L5M-X+Y = L5MXY(配位数升高6 7) b、L5MXY = L5M-Y + X 反应速率:d[L5M-Y]/dt = k[L5M-X][Y] 动力学上属于二级反应。

* SN1和SN2是两种极限情況,大多数反应都是按照这两种极限情况的中间机理进行的。 二、活性与惰性配合物及理论解释 1、活性与惰性配合物 1)定义:配体可被快速取代的配合物,称为活性配合物;配体取代缓慢的配合物,称为惰性配合物划分标准:配合物与反应试剂(浓度均为0.1M)在25℃时反应,t1/2>1min,称为惰性配合物;t1/2<1min,称为活性配合物。 2)与热力学稳定常数的关系 活性与惰性是动力学上的概念,不可与稳定性混为一谈。 惰性配合物也可能是热力学不稳定的配合物。 如:[Co(NH3)6]3+,在室温的酸性水溶液中为一惰性配合物,H2O取代NH3需几周时间,但 [Co(NH3)6]3+ +6H3O+=[Co(H2O)6]3++6NH4+ 反应平衡常数K=1025, 极不稳定。 而活性配合物也可能是热力学极其稳定的,例: [Ni(CN)4]2- + CN-* = [Ni(CN)3(CN)*]2- + CN- 反应速度极快。 但:[Ni(CN)4]2- + 6H2O = [Ni(H2O)6]2+ + 4CN- 反应平衡常数K=10-22 ,极其稳定。

紫外可见光谱分析技术

紫外可见光谱分析技术及其发展和应用 医学院宋宗辉2016201632 紫外-可见吸收光谱法概述 分子的紫外-可见吸收光谱法是基于分子内电子跃迁产生的吸收光谱进行分析的一种常用的光谱分析法。分子在紫外-可见区的吸收与其电子结构紧密相关。紫外光谱的研究对象大多是具有共轭双键结构的分子。紫外-可见以及近红外光谱区域的详细划分如下图所示。紫外-可见光区一般用波长(nm)表示。其研究对象大多在200-380 nm的近紫外光区和/或380-780 nm的可见光区有吸收。紫外-可见吸收测定的灵敏度取决于产生光吸收分子的摩尔吸光系数。该法仪器设备简单,应用十分广泛。如医院的常规化验中,95%的定量分析都用紫外-可见分光光度法。在化学研究中,如平衡常数的测定、求算主-客体结合常数等都离不开紫外-可见吸收光谱。 紫外可见区域 1.1分子结构与吸收光谱 1.1电子能级和跃迁 从化学键性质考虑,与有机物分子紫外-可见吸收光谱有关的电子是:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的n电子。有机物分子内各种电子的能级高低次序下图所示,σ*>π*>n>π>σ。标有*者为反键电子。

电子能级及电子跃迁示意图 可见,σ→σ*跃迁所需能量最大,λmax<170 nm,位于远紫外区或真空紫外区。一般紫外-可见分光光度计不能用来研究远紫外吸收光谱。如甲烷,λmax =125 nm。饱和有机化合物的电子跃迁在远紫外区。 1.2生色团 π→π*所需能量较少,并且随双键共轭程度增加,所需能量降低。若两个以上的双键被单键隔开,则所呈现的吸收是所有双键吸收的叠加;若双键共轭,则吸收大大增强,波长红移,λmax和εmax均增加。如单个双键,一般λmax为150-200nm,乙烯的λmax = 185nm;而共轭双键如丁二烯λmax = 217nm,己三烯λmax = 258nm。 n→π*所需能量最低,在近紫外区,有时在可见区。但π→π*跃迁几率大,是强吸收带;而n→π*跃迁几率小,是弱吸收带,一般εmax<500。许多化合物既有π电子又有n 电子,在外来辐射作用下,既有π→π*又有n→π*跃迁。如-COOR基团,π→π*跃迁λmax=165 nm,εmax=4000;而n→π*跃迁λmax=205nm,εmax=50。π→π*和n→π*跃迁都要求有机化合物分子中含有不饱和基团,以提供π轨道。含有π键的不饱和基团引入饱和化合物中,使饱和化合物的最大吸收波长移入紫外-可见区。这类能产生紫外-可见吸收的官能团,如一个或几个不饱和键,C=C,C=O,N=N,N=O等称为生色团(chromophore)。某些生色团的吸收特性见下表。 某些生色团及相应化合物的吸收特性

相关文档
最新文档