氮含量对钒微合金钢组织性能的影响

氮含量对钒微合金钢组织性能的影响
氮含量对钒微合金钢组织性能的影响

氮含量对钒微合金钢组织性能的影响

张开华1雍岐龙2

(1. 攀枝花钢铁研究院,攀枝花617000;2.钢铁研究总院结构所,北京100081)

摘要为了研究钒的析出形式对微合金组织和性能的影响,检验了实验室轧制的不同氮含量的两种钒微合金钢的组织和性能,结果表明,在轧后水冷条件下,V钢的组织中仅有极少量的铁素体,而V-N钢有大量的晶界铁素体。在轧后空冷条件下,两种钢的组织均为铁素体+珠光体,V-N钢的铁素体晶粒比V钢细小,由于V-N钢中V(C,N)析出温度高,析出粒子粗大,对强度贡献较小,V-N钢的屈服强度和抗拉强度比V钢低,延伸率比V钢高。

关键词钒微合金钢组织性能氮含量

The Effect of Nitrogen on Micro-structure and Mechanical Properties

of V-bearing Micro-alloying Steel

Zhang Kaihua1 Yong Qilong2

(1.Panzhihua Iron and Steel Research Institute, Panzhihua, 617000;

2.Central Iron and Steel Research Institute ,Beijing,100081)

Abstract The microstructure and mechanical properties of V-bearing micro-alloying steel of different nitrogen content have been studied at laboratory. The results show that the ferrite exists scarcely in V steel, and the grain boundary ferrite exists in V-N steel with water-cooling after rolling. With air-cooling after rolling, the temperature of V(C,N) presentation in V-N steel is higher that in V steel, the ferrite grain size of V-N steel is finer than that of V steel, the yield strength and tensile strength of V steel is higher than that of V-N steel, the elongation is lower than that of V-N steel.

Key words vanadium, micro-alloying steel, structure, mechanical properties, nitrogen

1 引言

高强度微合金钢中,加入微合金元素的目的是产生晶粒细化和沉淀强化,提高钢材的性能。钒作为重要的微合金元素,其主要作用是强烈的沉淀强化作用以及易于控制。

在钒微合金化钢中,氮被认为是一种廉价的有效的微合金化元素,钒在钢中作用的大小与钢中的氮含量有很大的关系,有研究表明,在长棒材生产中,每增加0.001%的氮可提高强度约10MPa[1],在现在,钒氮合金主要应用于以下几个方面:(1)高强度焊接钢筋等长棒材,在这类钢的生产中,一般终轧温度比较高(1000℃以上),冷却速度比较快,钒高温时析出很少甚至基本不析出,氮的加入增加了V(C,N)在铁素体低温析出的驱动力,随钢中氮含量的增加,V(C,N)析出相数量增加、颗粒尺寸和间距明显减小[2]。氮还改变了钒在相间的分布,低氮钢中近60%的钒固溶于基体,有约35%的钒以V(C,N)形式析出;而高氮钢中则完全相反,70%的钒以V(C,N)形式析出,仅剩20%的钒固溶于基体中[3]。(2)非调质钢,氮在非调质钢中的主要作用是:1)促进钒的析出,提高沉淀强化效果;2)细化晶粒;3)提高TiN的稳定性。(3)CSP高强度带钢,因为钒氮钢可以避免Nb钢铸坯裂纹问题,同时也可以通过析出强化提高强度。四是采用V-N微合金化技术与第三代TMCP工艺结合生产的高强度钢板,利用VN形成晶内铁素体(IGF)的技术来细化组织的方法,并与再结晶控轧工艺(RCR)相结合,细化铁素体晶粒。综上所述,钒氮合金的应用主要是:(1)利用钒的低温析出的沉淀强化。(2)利用钒的高温析出,促进晶内铁素体形核。

为了充分发挥钒在钢板的作用,研究V的不同析出形式对钢板的组织和性能的影响是必要的。本文研究了在空冷条件下不同氮含量的中厚板的金相组织和力学性能,分析钒的析出形式对微合金钢组织和性能的影响。

2 试验材料及试验方法

试验采用50kg真空感应炉冶炼的低碳含钒钢,化学成分见表1。钢锭锻成40mm厚的坯料后,在箱式电阻炉中加热到1200℃,保温1h,在实验室轧机上经过3道次轧制,轧成8.6mm厚的钢板,实验室轧制工艺方案见表2。

表1试验钢化学成分(%)

Tab.1 Chemical composition of tested steels(%)

序号 C Si Mn S P V N

V钢0.12 0.25 1.10 0.009 0.016 0.150 0.0028 V-N钢0.13 0.24 1.04 0.009 0.015 0.157 0.0190

表2实验工艺方案

Tab.2 Process parameters of experiment

编号第一道次开轧温度/℃第一道次变形量/% 第二道次变形量/% 第三道次变形量/% 冷却

1 900 40 40 40 水冷到室温

2 900 40 40 40 空冷到室温

3 900 40 40 40 空冷到600℃后炉冷

在钢板上制取金相和力学试样。金相试样经研磨抛光后,用3%的硝酸酒精腐蚀,在NeophotⅡ光学显微镜下观察试验钢的显微组织。采用拉伸试验测量试验钢的屈服强度、抗拉强度和延伸率。

3 试验结果

3.1金相组织

试验钢金相组织见图1~图3,图1为水冷到室温时的金相组织,从图1可见,在轧后水冷条件下,V 钢的组织中仅有极少量的铁素体组织,而V-N钢存在较多的晶界铁素体,部分铁素体组织已经从晶界向晶内扩展。

图1 工艺1的金相组织(a为V钢,b为V-N钢)

Fig.1 The typical microstructure of process 1(a: V steel,b: V-N steel)

图2 工艺2的金相组织(a为V钢,b为V-N钢)

Fig 2 The typical microstructure of process 2(a: V steel,b: V-N steel)

图3 工艺3的金相组织(a为V钢,b为V-N钢)

Fig.3 The typical microstructure of process 3(a: V steel,b: V-N steel)

图2为轧后空冷到室温时的金相组织,图3是轧后空冷到600℃后炉冷的金相组织。从图2、图3可见,在这两种工艺条件下,两种钢的金相组织均为铁素体+珠光体,而且V钢的晶粒比V-N钢粗,在V-N钢中有部分细小的铁素体晶粒。无论是V钢,还是V-N钢,轧后空冷到室温的晶粒比轧后空冷到600℃后炉冷的晶粒细小,特别是V-N钢,轧后空冷到600℃后炉冷的细小的铁素体晶粒明显比轧后空冷到室温的少。

3.2力学性能

试验钢力学性能见图4,从图4可见,无论在工艺2还是工艺3的条件下,V钢的屈服强度比V-N钢高,抗拉强度也比V-N钢高,延伸率比V-N钢低。

无论是V钢还是V-N钢,轧后空冷到室温的屈服强度比轧后空冷到600℃后炉冷的屈服强度高,延伸率也比轧后空冷到600℃后炉冷的延伸率高。但是,在两种工艺条件下,无论是V钢还是V-N钢,抗拉强度基本一致。

图4 试验钢的力学性能

Fig.4 The mechanical properties for different process

4 分析和讨论

虽然V在奥氏体中的溶解度较大,但是,热力学计算结果显示[4],含钒钢中增氮提高了碳氮化钒的析出温度,并增加了其析出的驱动力,氮含量的增加使钒在奥氏体中的析出成为可能。钒在奥氏体中的析出有三种方式,(1)是在已经存在的夹杂物(如MnS)上生长[5];(2)是在奥氏体晶界析出;(3)在位错线上析出。特别是在有变形存在的情况下,变形储能,为钒的析出提供了更为有利的条件。本试验的试验钢中S含量很低,第一类析出很少,因此,在奥氏体晶界和在位错线上析出是主要的析出方式。

按照森影康等的模型计算结果,具有铁素体形核能力的第二相粒子尺寸应该在41 nm 以上,对于高氮钢,40%左右的变形就足以产生高密度的20~80nm大的VN粒子[6]。因此,在晶界析出的V(C,N)作为铁素体的析出形核核心,促进了铁素体的相变,已形成的晶界铁素体与奥氏体的界面又成为晶内铁素体优先形核的有利位置。由于晶界铁素体是沿晶界形成的,新形成的晶内铁素体又必然沿晶界铁素体成排列状形成,并向晶内扩展。同时由于晶内又有大量弥散分布的V(C,N)存在,晶界铁素体与V(C,N)碰撞时又能形成新的界面,为晶内铁素体的形核也创造了条件。V(C,N)粒子越多,这种界面形核的几率就越大,晶粒也就越细小。在V-N钢中由于有大量细小弥散分布的V(C,N)的存在,大大增加了这种形核的几率,而且另一方面由于粒子钉扎作用的影响,还可有效阻止已形成的铁素体晶粒长大,而V钢中显然不具备形成这样有利于形核位置的条件。因此,在轧后水冷条件下,V钢中只有极少量的铁素体,而V-N钢的奥氏体晶界全是铁素体组织,并有部分已经向晶内发展。在轧后空冷条件下,V-N钢的铁素体晶粒比V钢更细。

对于铁素体—珠光体钢,其强度的关系式为

R el(MPa)=A+32[Mn]+83[Si] +22D-1/2+Δσs

R m(MPa)=B+26[Mn]+83[Si] +15.7D-1/2+280f PE+Δσb

上式中sσ?是沉淀强化、位错强化等其他强化方式对屈服强度的贡献,而bσ?则为其他强化方式对抗拉强度的贡献。

沉淀强化作用的强弱与第二相粒子的量、弥散程度以及第二相粒子的尺寸有关,第二相粒子尺寸越小,强化效果越大,在微合金钢中,VN粒子尺寸大约在6~8nm时才具有最大的强化效果[7],虽然氮含量的增加,V(C,N)的析出量必然增加,但是,氮含量的增加,也必然提高V(C,N)的析出温度,从而导致析出的第二相粒子粗大,虽然V钢中V(C,N)的析出量比V-N钢少,但由于析出温度低,析出的第二相粒子细小弥散,对强度的贡献反而增大,弥散细小的析出物在提高强度的同时,会略微降低其塑性。因此,在本试验中相同的工艺条件下,虽然V-N钢的铁素体晶粒比V钢细,但强度反而比V钢低。

要将钒的两种析出有机结合起来,最大限度地提高材料的性能,不仅要严格控制终轧温度,保证部分钒在奥氏体中析出,细化铁素体晶粒,而且对冷却方式也有要求,保证在奥氏体中没有析出的钒在较低的温度弥散析出,充分发挥其沉淀强化作用。

5 结论

(1)在轧后水冷条件下,V钢的组织中仅有极少量的铁素体,而V-N钢存在较多的晶界铁素体。

(2)V-N钢中的V在奥氏体中析出,促进了铁素体形核,细化了铁素体晶粒,因此,在轧后空冷条件下,V-N钢的铁素体晶粒比V钢细小。

(3)高温析出的V(C,N)粒子粗大,对强度贡献较小,因此,在轧后空冷条件下,V钢的屈服强度和抗拉强度比V-N钢高,延伸率比V-N钢低。

参考文献

1 Liu Shuping, Yang Caifu, Zhang Yongquan. Effect of Nitrogen on Property and Precipitation Phase in Vanadium Steel. Metal Heat

Treatment. 2001(10):7~9

(柳书平,杨才福,张永权. 氮对钒钢性能及析出相的影响. 金属热处理. 2001(10):7~9)

2 Lagneborg R.Siwecki T.Zajac S,et al.The Role of Vanadium in Microalloyed Steels.Scandinavian Journal of Metallurgy. 1999,

28(5):186~241

3 Yang Caifu,Zhang Yongquan,Liu Shuping.Precipitation Behavior of Vanadium in V-N Microalloyed rebars Steels.HSLA

Steels’2000,Xi’an China,2000.152~157

4 Russwiurm D.W ille P.High Strength W eldable Reinforcing Bars.Microalloying’95,Pittsburgh,PA,ISS,1995,377

5 STANISLAW Zajac. PRECIPI TA TION AND GRAIN REFINEMENT IN VANADIUM—CONTAINING STEELS. IRON

STEEL VANADIUM TITANIUM,2002(1):35~48

(斯坦尼什洛·扎雅克.含钒钢的沉淀和晶粒细化.钢铁钒钛,2002(1):35~48)

6 Wang Zhaodong, Liu Xianghua, Wang Guodong, et al. STRENGTHENING OF V-BEARING MICROALLOYED STEEL IN

HOT ROLLING AND ACCELERATED COLLING. IRON AND STEEL, 1996(11):39~41

(王昭东,刘相华,王国栋等.热轧含钒微合金钢在加速冷却条件下的强化因素.钢铁,1996(11):39~41)

7 Yong Qilong, Ma Mingtu, Wu Baorong. Microalloyed Steel—Physical and Mechanical Metallurgy[M]. Beijing: Mechanical

Engineering Press,1989.12

(雍岐龙,马鸣图,吴宝榕. 微合金钢—物理和力学冶金[M]. 北京:机械工业出版社,1989.12)

钛微合金化CM690三级船用锚链钢的开发

钛微合金化CM690三级船用锚链钢的开发* 刘丽霞1,孔凡杰2,王世俊1,周云1,彭军3 (1 安徽工业大学冶金与资源学院,安徽马鞍山 243002; 2 南京钢铁联合有限公司,江苏南京 210035; 3 北京科技大学冶金与生态学院,北京 100083) 摘要:为提高三级锚链钢的各项机械性能,改善钢的质量,将钛微合金化技术应用于CM690三级船用锚链钢的生产试验中。结果表明,在钛含量为0.020%~0.030%时,所生产的CM690三级船用锚链钢各项机械性能指标不仅达到了国家标准要求,而且其抗拉强度远高于国家标准要求。提高了钢的质量,同时开发出钛微合金化CM690三级船用锚链钢新钢种。 关键词:CM690;锚链钢;钛;微合金化;机械性能 中图分类号:TG142;TG335.6+2 文献标识码:A 文章编号:1004-4620(2007)06-0026-03 Development of Ti Microalloyed CM690 Grade Three Anchor Chain Steel for Ship LIU Li-xia1, KONG Fan-jie2, WANG Shi-jun1, ZHOU Yun1, PENG Jun3 (1 School of Metallurgy and Resource, Anhui University of Technology, Maanshan 243002, China; 2 Nanjing Iron and Steel Unite Co., Ltd., Nanjing 210035, China; 3 Metallurgy and Ecology School, University of Science and Technology Beijing, Beijing 100083, China) Abstract: In order to increase the mechanical properties of grade three anchor chain steel for ship and to improve the quality of steel, the technology of Ti micro-alloying was applied in producing grade three anchor chain steel. The industrial practice shown that all mechanical properties of produced anchor chain steel, especially the tensile strength, meet the requirement of national standards when the content of Ti is between 0.020%~0.030%. So producing high quality new type Ti micro-alloying

钢材中各元素对性能性的影响

钢材中各元素对性能性的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和 冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此 用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高 还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀; 此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢 含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就 算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度, 故广泛用于作弹簧钢。在调质结构钢中加入 1.0-1.2%的硅, 强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀 性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具 有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低 钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢 中含锰0.30-0.50%,在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度, 提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点 高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性 能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,

使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求 钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降 低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性 能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改 善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐 磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐 腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍 对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但 由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬 钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高 温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发 生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以 抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化 晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18 镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶

钛合金特性及加工办法

精心整理 钛合金特性及加工方法 钛合金以其强度高、机械性能及抗蚀性良好而成为飞机及发动机理想的制造材料,但由于其切削加工性差,长期以来在很大程度上制约了它的应用。随着加工工艺技术的发展,近年来,钛合金已广泛应用于飞机发动机的压气机段、发动机罩、排气装置等零件的制造以及飞机的大梁隔框等结构框架件的制造。我公司某新型航空发动机的钛合金零件约占零件总数的11%。本文是在该新机试制过程中积累的对钛合金材料切削特性以及在不同加工方法下表现出的具体特点的认识及所应采取工艺措施的经验总结。 1钛合金的切削加工性及普遍原则 钛合金按金属组织分为a 相、b 相、a+b 相,分别以TA ,TB ,TC 表示其牌号和类型。我公司某新型发动 600 损严重。 要保持刀刃锋利,以保证排屑流畅,避免粘屑崩刃。 切削速度宜低,以免切削温度过高;进给量适中,过大易烧刀,过小则因刀刃在加工硬化层中工作而磨损过快;切削深度可较大,使刀尖在硬化层以下工作,有利于提高刀具耐用度。 加工时须加冷却液充分冷却。 切削钛合金时吃刀抗力较大,故工艺系统需保证有足够的刚度。由于钛合金易变形,所以切削夹紧力不能大,特别是在某些精加工工序时,必要时可使用一定的辅助支承。 以上是钛合金加工时需考虑的普遍原则,事实上,用不同的加工方法时及在不同的条件下存在着不同的矛盾突出点和解决问题的侧重点。 2钛合金切削加工的工艺措施

车削 钛合金车削易获得较好的表面粗糙度,加工硬化不严重,但切削温度高,刀具磨损快。针对这些特点,主要在刀具、切削参数方面采取以下措施: 刀具材料:根据工厂现有条件选用YG6,YG8,YG10HT。 刀具几何参数:合适的刀具前后角、刀尖磨圆。 较低的切削速度。 适中的进给量。 较深的切削深度。 选用的具体参数见表1。 表1车削钛合金参数表工序车刀前角go ° ° mm m/min mm mm/r 粗车56 精车56 铣削 了3 此外,为使钛合金顺利铣削,还应注意以下几点: 相对于通用标准铣刀,前角应减小,后角应加大。 铣削速度宜低。 尽量采用尖齿铣刀,避免使用铲齿铣刀。 刀尖应圆滑转接。 大量使用切削液。 为提高生产效率,可适当增加铣削深度与宽度,铣削深度一般粗加工为 1.5~3.0mm,精加工为0.2~0.5mm。 磨削 磨削钛合金零件常见的问题是粘屑造成砂轮堵塞以及零件表面烧伤。其原因是钛合金的导热性差,使磨削区产生高温,从而使钛合金与磨料发生粘结、扩散以及强烈的化学反应。粘屑和砂轮堵塞导致磨削比显著

各化学元素对钢材的影响

各化学元素对钢材的影响 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。

微合金元素在钢中的作用(精)

为了合金化而加入的合金元素, 最常用的有硅、锰、铬、镍、钼、钨、钒,钛,铌、硼、铝等。现分别说明它们在钢中的作用。 1、硅在钢中的作用 : (1提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。 (2 硅能显著地提高钢的弹性极限、屈服极限和屈强比 , 这是一般弹簧钢。 (3耐腐蚀性。硅的质量分数为 15%-20%的高硅铸铁,是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层 SiO 2薄膜,从而提高钢在高温时的抗氧化性。 缺点:(4使钢的焊接性能恶化。 2、锰在钢中的作用 (1锰提高钢的淬透性。 (2锰对提高低碳和中碳珠光体钢的强度有显著的作用。 (3锰对钢的高温瞬时强度有所提高。 锰钢的主要缺点是,①含锰较高时,有较明显的回火脆性现象; ②锰有促进晶粒长大的作用, 因此锰钢对过热较敏感 t 在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钼、钒、钛等来克服:⑧当锰的质量分数超过 1%时,会使钢的焊接性能变坏,④锰会使钢的耐锈蚀性能降低。 3、铬在钢中的作用 (1铬可提高钢的强度和硬度。 (2铬可提高钢的高温机械性能。 (3使钢具有良好的抗腐蚀性和抗氧化性

(4阻止石墨化 (5提高淬透性。 缺点:①铬是显著提高钢的脆性转变温度②铬能促进钢的回火脆性。4、镍在钢中的作用 (1可提高钢的强度而不显著降低其韧性。 (2镍可降低钢的脆性转变温度,即可提高钢的低温韧性。 (3改善钢的加工性和可焊性。 (4镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。 5、钼在钢中的作用 (1钼对铁素体有固溶强化作用。 (2提高钢热强性 (3抗氢侵蚀的作用。 (4提高钢的淬透性。 缺点:钼的主要不良作用是它能使低合金钼钢发生石墨化的倾向。 6、钨在钢中的作用 (1 提高强度 (2提高钢的高温强度。 (3提高钢的抗氢性能。 (4是使钢具有热硬性。因此钨是高速工具钢中的主要合金元素。

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点与抗拉强度升高,但塑性与冲击性降低,当碳量0、23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0、20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性与时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂与脱氧剂,所以镇静钢含有0、15-0、30%的硅。如果钢中含硅量超过0、50-0、60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点与抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1、0-1、2%的硅,强度可提高15-20%。硅与钼、钨、铬等结合,有提高抗腐蚀性与抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰就是良好的脱氧剂与脱硫剂,一般钢中含锰0、30-0、50%。在碳素钢中加入0、70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度与硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷就是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0、045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也就是有害元素。使钢产生热脆性,降低钢的延展性与韧性,在锻造与轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0、055%,优质钢要求小于0、040%。在钢中加入0、08-0、20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢与工具钢中,铬能显著提高强度、硬度与耐磨性,但同时降低塑性与韧性。铬又能提高钢的抗氧化性与耐腐蚀性,因而就是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性与韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈与耐热能力。但由于镍就是较稀缺的资源,故应尽量采用其她合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性与热强性能,在高温时保持足够的强度与抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛就是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性与冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒就是钢的优良脱氧剂。钢中加0、5%的钒可细化组织晶粒,提高强度与韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,就是贵生的合金元素。钨与碳形成碳化钨有很高的硬度与耐磨性。在工具钢加钨,可显著提高红硬性与热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒与降低钢的过热敏感性及回火脆性,提高强度,但塑性与韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴就是稀有的贵重金属,多用于特殊钢与合金中,如热强钢与磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度与韧性,特别就是大气腐蚀性能。缺点就是在热加工时容易产生热脆,铜含量超过0、5%塑性显著降低。当铜含量小于0、50%对焊接性无影响。 15、铝(Al):铝就是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性与抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能与耐高温腐蚀的能力。铝的缺点就是影响钢的热加工性能、焊接性能与切削加

微合金钢

微合金钢 微合金化是一个笼统的概念,通常指在原有主加合金元素的基础上再添加微量的Nb、V、Ti 等碳氮物形成元素,或对力学性能有影响、或对耐蚀性、耐热性起有利作用、添加量随微合金化的钢类及品种的不同而异,相对于主加合金元素是微量范围的,如非调质结构钢中一般加入量在0.02—0.06%,在耐热钢和不锈钢中加入量在0.5%左右,而在高温合金中加入量高达1—3%。 微合金化钢的基本属性:(1)添加的碳氮化物形成元素,在钢的加热和冷却过程中通过溶解一析出行为对钢的力学性能发挥作用。 (2)这些元素加进量很少,钢的强化机制主要是细晶强化和沉淀强化。 (3)钢的控轧控冷工艺对微合金化钢有重要意义,也是微合金化钢叫作新型低合金高强度钢的依据。钢的微合金化和控轧控冷技术相辅相承,是微合金化钢设计和生产的重要条件。 因此说,微合金化钢是指化学成分规范上明确列进需加进一种或几种碳氮化物形成元素的钢。如GB/T 1591—94中Q295一Q460的钢,对其中Nb、V、Ti的含量通常有以下规定: (1)Nb,0.015%~0.06%; (2)V,0.02%~0.15%(0.20%); (3)Ti,0.02%~0.20%。 同时规定Nb+V+Ti≤0.15%。微合金化的高强度低合金钢。 它是在普通软钢和普通高强度低合金钢基体化学成分中添加了微量合金元素(主要是强烈的碳化物形成元素,如Nb、V、Ti、Al等)的钢,合金元素的添加量不多于0.20%。添加微量合金元素后,使钢的一种或几种性能得到明显的变化。 典型的微合金钢有15MnVN和06MnNb。微合金钢中含有一种或几种微合金元素,其含量大约在0.01%~0.20%之间。 微合金钢由于屈服强度高、韧性好、焊接性和耐大气腐蚀性好,可用于大型桥梁建筑,制造各类车辆的冲压构件、安全构件、抗疲劳零件及焊接件,它也是锅炉、高压容器、输油和输气管线,以及工业和民用建筑的理想材料。 关于微合金钢中Nb的析出对变形诱导铁素体相变的影响有两种不同观点:一是认为在变形过程Nb通过动态析出消耗形变储能而抑制变形诱导铁素体相变; 微合金钢就是这些“高技术钢材”中用量最大的一种。 处理办法:微处理可有效地提高16Mn原规格钢板、20MnSi大规格螺纹钢筋的屈服强度约10—20Mpa,改善A、B级一般强度板和X42—X46级管线钢的低温韧性,还可使16Mnq、15MnVNq 桥梁钢板的时效敏感比降低或消除。据不完全统计,1998年我国微合金化钢的产量为346万吨,占年全低合金高强度钢总产量55.1%。微处理钢(主要是Nb处理和Ti处理,还包括稀土处理钢在内)产量大致也在300万吨左右。 近20年来,世界钢铁工业最富活力和创造性进展,莫过于低合金高强度钢生产装备和工艺技术前所未有的变革,几乎使低合金高强度钢的所有品种领域更新了一代,甚至两代。微合金化钢属于低合金高强度钢范畴,或者说是新型的低合金高强度钢。 我国80年代以来的钢材生产及近年的钢材品种结构调整同样表明了: ①低合金高强度钢的新发展,借助了钢铁生产工艺技术的一切进步和最新成就。 ②低合金高强度钢的产量大,使用面广,适应了方方面面特殊性能要求,支持了各行各业产品的升级,增加了我国的机电产品和成套装备生产的竞争力。 ③微合金化带动了我国富有合金资源的生产和综合利用,微合金化钢生产促进了钢铁企业结构调整和流程优化。 所以,形成了一个崭新的观点,发展微合金化钢就是抓住了基础原材料工业发展的关键,通

钛合金材料

钛合金材料 《新型工程材料应用》课程论文

摘要:随着新技术革命浪潮的推进,继合金钢和金属铝之后,新崛起的第三金属——钛,越来越多地渗透到工业、技术和科学的各个领域,它的魅力向人类展示了它的美好前景。本文介绍了钛合金的合金化原理、性能特性,综述近年来国内外钛合金材料的发展应用和研发状况,对钛合金材料的发展前景进行了展望。 关键词:钛合金、合金化、特性、发展 概述: 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/cm3,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。而钛合金是以钛为基加入其他元素组成的合金。 合金化原理: 钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:(1)稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。(2)稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。应用了钛合金的产品前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。(3)对相变温度影响不大的元素为中性元素,有锆、锡等。氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。 TA是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。TB是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。TC是双相合金,具有良好的综合

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

微合金元素在钢中作用

微合金元素在钢中溶解析出及影响因素? 在奥氏体中,氮化物通常比碳化物更加稳定。微合金化元素不同,其碳化物和氮化物的溶解度绝对值有很大差异:V、Ti的碳化物与氮化物的溶解度差值较大,而Nb的碳化物与氮化物的溶解度比较接近,尽管NbN的溶解度仍然低于NbC的溶解度。ALN的溶解度与NbN 接近,说明其溶解度比VC还要大。多数微合金碳化物和氮化物在奥氏体中的溶解度比较接近,虽然多数微合金元素的碳化物或氮化物在钢水中的溶解度还不确定,数据显示,TiN在钢水中的溶解度要比在同温度奥氏体中高10~100倍;因此TiN在1600℃钢水中的溶解度与其它微合金化元素在1200℃奥氏体中的溶解度接近。热力学计算表明,Nb的碳化物和氮化物在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。实验和热力学计算均证实,VC在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。 碳化物和氮化物的溶解度差导致碳氮化物中富集低溶解度化合物(氮化物)。在通常的复合微合金化钢中,碳化物和氮化物的溶解度差按铌、钒、钛的次序增大。合金碳氮化物中富集的氮化物的分数比例按钛、钒、铌的次序递减。合金碳氮化物中碳化物和氮化物的分数比例取决于钢中C和N的含量,在大多数钢中,远高于氮含量的碳含量在一定程度上抵销了碳化物和氮化物在溶解度上的差异。合金碳氮化物中碳化物和氮化物的分数比例还受合金元素含量的影响,合金元素含量升高降低氮化物的分数比例,尤其是在合金元素含量超过氮在钢中化学计量比的情况下。提高温度会增加氮化物的分数比例。钢中未溶解合金碳氮化物的数量高于从不互相溶解的析出模型所预期的值,更为重要的是,合金碳氮化物能够在独立碳化物或氮化物的溶解度曲线以上温度存在。 1、应变诱导析出:未变形材料中除了在晶界和相界上形核外,沉淀相在晶粒内主要是以均匀形核机制生成;而在变形材料中,沉淀相主要在位错和各种晶体缺陷上非均匀形核。由于在位错上形核的激活能低,因此形核率很高,可得到很高的沉淀相粒子密度和很小的沉淀相尺寸。变形使析出过程的孕育时间大大缩短。 2、钢的成分偏聚:由于钢液在凝固过程中发生溶质元素的偏聚,在枝晶间隙区的浓度要明显高于钢的平均含量,即使经过高温的固溶处理,在微米尺度上溶质元素在钢中仍然是不均匀分布的 3、Ostwald 熟化:Ostwald熟化过程在析出相体积分数不变的条件下,通过颗粒的粗化使基体和析出相的界面能明显降低。在熟化过程中,第二相颗粒被一定厚度的基体所分离,为了确保相互分离的大颗粒长大而小颗粒缩小乃至消失以降低系统的总界面能,颗粒通过基体一定存在一种非接触式的感知。 微合金元素在钢对钢中组织元素及相转变的影响? 当钒单独加入时,并不抑制铁素体的形成;相反,它加速珠光体的形成。然而,当钒和铌同时存在时,易于形成贝氏体组织,而钒在贝氏体内沉淀析出。正是这种钒与铌的差别,导致了在热轧交货的小型材中多倾向于加钒。这些轧态小型材冷却快,如果有铌存在的话,则形成导致脆性的贝氏体组织,而含钒钢中则不会形成这种脆性组织。钒能促进珠光体的形成,还能细化铁素体板条,因此钒能用来增加重轨的强度和汽车用锻件的强度。碳化钒也能在珠光体的铁素体板条内析出沉淀,从而进一步提高了材料的硬度和强度。钒像大多数溶质合金一样能抑制贝氏体的形成。因此,如果它是溶解而不是以碳化钒和氮化钒的形式沉淀析出,则可用来增加淬透性。当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能有效地提高淬透性。与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了元素钼后,可固溶的钒含量明显增加,可达0.06%左右。 微合金对钢铁强度韧性热塑性的影响及强韧化机理? 钒通过在铁素体中的沉淀析出,来增加钢的强度,它可使钢的强度增加150MPa以上。碳氮化物在轧制过程和轧制以后形成,而且在正火过程中,当钢被加热时,它们将溶解,并

各元素对钢材的影响

( a )碳;含碳量越高,刚的硬度就越高,但是它的可塑性和韧性就越差. ( b )硫;是钢中的有害杂物,含硫较高的钢在高温进行压力加工时,容易脆裂,通常叫作热脆性. ( c )磷;能使钢的可塑性及韧性明显下降,特别的在低温下更为严重,这种现象叫作冷脆性.在优 质钢中,硫和磷要严格控制.但从另方面看,在低碳钢中含有较高的硫和磷,能使其切削易断,对改 善钢的可切削性是有利的. ( d )锰;能提高钢的强度,能消弱和消除硫的不良影响,并能提高钢的淬透性,含锰量很高的高合 金钢(高锰钢)具有良好的耐磨性和其它的物理性能. ( e)硅;它可以提高钢的硬度,但是可塑性和韧性下降,电工用的钢中含有一定量的硅,能改善软 磁性能. ( f)钨;能提高钢的红硬性和热强性,并能提高钢的耐磨性. 冷镦钢成型用钢,冷镦是在室温下采用一次或多次冲击加载,广泛用于生产螺钉,销钉,螺母等标准件.冷镦 工艺可节省原料,降成本,而且通过冷作硬化提高工作的抗拉强度,改善性能,冷镦用钢必须其有良好的冷 顶锻性能,钢中S和P等杂质含量减少,对钢材的表面质量要求严格,经常采用优质碳钢,若钢的含碳钢大 于0.25%,应进行球化退火热处理,以改善钢的冷镦性能. 力学性能要求 1.屈服强度σs及变形抗力尺可能的小,这样可使单位变形力相应减小,以延长模具寿命。 2.钢材的冷变形性能要好,即材料应有较好的塑性,较低的硬度,能在较大的变形程度下不致引起产品开裂。3.钢材的加工硬化敏感性尽可能的低,这样不致使冷镦变形过程中的变形力太大。 二、化学成份要求冷镦钢 1.碳(C)碳是影响钢材冷塑性变形的最主要元素。含碳量越高,钢的强度越高,而塑性越低。实践证明,含碳量每提高0.1%,其屈服强度σs约提高27.4Mpa;抗拉强度σb提高58.8~78.4Mpa;而伸 长率δ则降低4.3%,断面收缩率ψ降低7.3%。由此可见,钢中含碳量对于钢材的冷塑性变形性能的 影响是很大的。在生产实际中,冷镦,冷挤用钢的含碳量大于0.25%时,要求钢材在拉拔前要进行球 化退火。对于变形程度为65%~80%的冷镦件,不经过中间退火而进行三次镦锻变形时,其含碳量不应超过0.4%。2.锰(Mn)锰在钢的冶炼中与氧化铁作用(Mn+FeO→MnO+Fe),主要是为钢脱 氧而加入。锰在钢中硫化铁作用(Mn+FeS→MnS+Fe),能减少硫对钢的有害作用。所形成的硫化锰,可改善钢的切削性能。锰使钢的抗拉强度σb和屈服强度σs有所提高,塑性有所降低,对于钢的冷塑 性变形是不利的。但是锰对变形力的影响仅为碳的1/4左右。所以,除特殊要求外,碳钢的含锰量,不宜超过0.9%。3.硅(Si)硅是钢在冶炼时脱氧剂的残余物。当钢中含硅量增加0.1%时,抗拉 强度σb提高13.7Mpa。经验表明,含硅量超过0.17%且含碳量较高时,对钢材的塑性降低有很大的影响。在钢中适当增加硅的含量,对钢材的综合力学性能,特别是弹性极限有利,还可增加钢的耐蚀性。但是钢中含硅量超过0.15%时,使钢急剧形成非金属夹杂物。高硅钢即使退火,也不会软化,降低钢 的冷塑性变形性能。因此,除了产品有高强度性能要求外,冷镦钢总是尽量要求减少硅的含量。 4.硫(S)硫是有害杂质。钢中的硫在冷镦时会使金属的结晶颗粒彼此分离引起裂纹,硫的存在还促使钢产生热脆和生锈,因此,含硫量应小于0.055%。优质钢应小于0.04%,由于硫、磷和锰的化合物能改善切削性能、冷镦螺母用钢的含硫量可放宽到0.08~0.12%,以有利于攻螺纹。但一般没有专为螺

化学成分对钢材性能的影响

列表整理化学成分对钢材性能的影响 钢是以铁和碳为主要成分的合金,虽然碳和其他元素所占比例甚少,但却左右着钢材的性能。 1、碳 碳时各种钢中的重要元素之一,在碳素结构钢中则是铁以外的最主要元素。碳是形成钢材强度的主要成分,随着含碳量的提高,钢的强度逐渐增高,而塑性和韧性下降,冷弯性能、焊接性能和抗锈性能等也变劣。碳素钢按碳含量区分,小于0.25%的为低碳钢,介于0.25%和0.6%之间的为中碳钢,大于0.6%的为高碳钢。含碳量超过0.3%时,钢材的抗拉强度很高,但却没有明显的屈服点,且塑性很小,含碳量超过0.2%时,钢材的焊接性能开始恶化。因此,规范推荐的钢材,含碳量均不超过0.22%,对于焊接结构则严格控制在0.2%以内。 2、硫 硫是有害元素,常以硫化铁形式夹杂于钢中。当温度达800~1000℃时,硫化铁会熔化使钢材变脆,因而在进行焊接或热加工时,有可能引发热裂纹,称为热脆。此外,硫还会降低钢材的冲击韧性、疲劳强度、抗锈蚀性能和焊接性能等。非金属硫化物夹杂经热轧加工后还会在厚钢板中形成局部分层现象,在采用焊接连接的节点中,沿板厚方向承受拉力时,会发生层状撕裂破坏。因而应严格限制

钢材中的含硫量,随着钢材牌号和质量等级的提高,含硫量的限制值由0.05%依次降至0.025%,厚度方向性能钢板(抗层状撕裂钢板)的含硫量更限制在0.01以下。 3、磷 磷可提高钢的强度和抗锈蚀能力,但却严重地降低钢的塑性、韧性、冷弯性能和焊接性能,特别是在温度较低时促使钢材变脆,称为冷脆。因此,磷的含量也要严格控制,随着钢材牌号和质量等级的提高,含磷量的限值由0.045%依次降至0.025%。但是当采用特殊的冶炼工艺时,磷可作为一种合金元素来制造含磷的低合金钢,此时其含量可达0.12%~0.13%。 4、锰 锰是有益元素,在普通碳素钢中,它是一种弱脱氧剂,可提高钢材强度,消除硫对钢的热脆影响,改善钢的冷脆倾向,同时不显著降低塑性和韧性。锰还是我国低合金钢的主要合金元素,其含量为0.8%~1.8%。但锰对焊接性能不利,因此含量也不宜过多。 5、硅 硅是有益元素,在普通碳素钢中,它是一种强脱氧剂,常与锰共同除氧,生产镇静钢。适量的硅,可以细化晶粒,提高钢的强度,而对塑性、韧性、冷弯性能和焊接性能无显著不良影响。硅的含量在一般镇静钢中为0.12%~0.3%,

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。 5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。 15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削

钛合金是什么材料

钛合金是以钛为基础加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。 合金元素根据它们对相变温度的影响可分为三类: ①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提 高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。 ②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、 锰、铜、铁、硅等。 ③对相变温度影响不大的元素为中性元素,有锆、锡等。 氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。 通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。 性能 编辑 钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/立方厘米,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。 强度高 钛合金的密度一般在4.51g/cm3左右, 仅为钢的60%,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零部件。飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。 热强度高 使用温度比铝合金高几百度,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。 抗蚀性好

钢材性能有影响

钢材性能有影响? 1.化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度标准值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的标准值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。 6.为什么薄钢板的强度比厚钢板的强度高(或钢材的强度按其厚度或直径分

各种元素对钢材性能的影响

各种元素对钢材性能的影响

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如

资源,故应尽量采用其他合金元素代用镍铬钢。 8、钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。 9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。 10、钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。 11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀

相关文档
最新文档