半导体工艺及芯片制造技术问题答案全

半导体工艺及芯片制造技术问题答案全
半导体工艺及芯片制造技术问题答案全

常用术语翻译

active region 有源区

2.active component有源器件

3.Anneal退火

4.atmospheric pressure CVD (APCVD) 常压化学气相淀积

5.BEOL(生产线)后端工序

6.BiCMOS双极CMOS

7、bonding wire 焊线,引线

8、BPSG 硼磷硅玻璃

9、channel length沟道长度

10、chemical vapor deposition (CVD) 化学气相淀积

11、chemical mechanical planarization (CMP)化学机械平坦化

12、damascene 大马士革工艺

13、deposition淀积

14、diffusion 扩散

15、dopant concentration掺杂浓度

16、dry oxidation 干法氧化

17、epitaxial layer 外延层

18、etch rate 刻蚀速率

19、fabrication制造

20、gate oxide 栅氧化硅

21、IC reliability 集成电路可靠性

22、interlayer dielectric 层间介质(ILD)

23、ion implanter 离子注入机

24、magnetron sputtering 磁控溅射

25、metalorganic CVD(MOCVD)金属有机化学气相淀积

26、pc board 印刷电路板

27、plasma enhanced CVD(PECVD) 等离子体增强CVD

28、polish 抛光

29、RF sputtering 射频溅射

30、silicon on insulator绝缘体上硅(SOI)

第一章半导体产业介绍

1、什么叫集成电路?写出集成电路发展的五个时代及晶体管的数

量?(15分)

集成电路:将多个电子元件集成在一块衬底上,完成一定的电路或系统功能。

集成电路芯片/元件数产业周期

无集成 1 1960年前

小规模(SSI) 2到50 20世纪60年代前期

中规模(MSI) 50到5000 20世纪60年代到70年代前期

大规模(LSI) 5000到10万 20世纪70年代前期到后期

超大规模(VLSI) 10万到100万 20世纪70年代后期到80年代后期

甚大规模(ULSI) 大于100万 20世纪90年代后期到现在

2、写出IC 制造的5个步骤?(15分)

Wafer preparation(硅片准备)

Wafer fabrication (硅片制造)

Wafer test/sort (硅片测试与拣选)

Assembly and packaging (装配与封装)

Final test(终测)

3、写出半导体产业发展方向?什么就是摩尔定律?(15分)

发展方向:提高芯片性能——提升速度(关键尺寸降低,集成度提高,研发采用新材料),降低功耗。提高芯片可靠性——严格控制污染。

降低成本——线宽降低、晶片直径增加。

摩尔定律指:IC 的集成度将每隔一年翻一番。

1975年被修改为: IC 的集成度将每隔一年半翻一番。

4、什么就是特征尺寸CD?(10分)

最小特征尺寸,称为关键尺寸(Critical Dimension,CD)CD常用于衡量工艺难易的标志。

5、什么就是More moore定律与More than Moore定律?(10分)

“More Moore”指的就是芯片特征尺寸的不断缩小。

从几何学角度指的就是为了提高密度、性能与可靠性在晶圆水平与垂直方向上的特征尺寸的继续缩小。

与此关联的3D结构改善等非几何学工艺技术与新材料的运用来影响晶圆的

电性能。

“More Than Moore”指的就是用各种方法给最终用户提供附加价值,不一定要缩小

特征尺寸如从系统组件级向3D集成或精确的封装级(SiP)或芯片级(SoC)转移。

6、名词解释:high-k; low-k; Fabless; Fablite; IDM;

Foundry;Chipless(20分)

high-k:高介电常数。

low-k:低介电常数。

Fabless:IC 设计公司,只设计不生产。

Fablite:轻晶片厂,有少量晶圆制造厂的IC公司。

IDM:集成器件制造商 (IDM-Integrated Device Manufactory Co、),从晶圆之设

计、制造到以自有品牌行销全球皆一手包办。

Foundry:标准工艺加工厂或称专业代工厂商。

Chipless:既不生产也不设计芯片,而就是设计IP内核,授权给半导体公司使用。

7、例举出半导体产业的8种不同职业并简要描述、(15分)

1、硅片制造技师:负责操作硅片制造设备。一些设备维护以及工艺与设备的基本

故障查询。

2、设备技师:查询故障并维护先进设备系统,保证在硅片制造过程中设备能正确

运行。

3、设备工程师:从事确定设备设计参数与优化硅片生产的设备性能。

4、工艺工程师:分析制造工艺与设备的性能以确定优化参数设置。

5、实验室技师:从事开发实验室工作,建立并进行试验。

6:成品率/失效分析技师:从事与缺陷分析相关的工作,如准备待分析的材料并操

作分析设备以确定在硅片制造过程中引起问题的根源。

7、成品率提高工程师:收集并分析成品率及测试数据以提高硅片制造性能。

8、设施工程师:为硅片制造厂的化学材料、净化空气及常用设备的基础设施提供

工程设计支持。

第二章半导体材料特性第五章半导体制

造中的化学品第六章硅片制造中的玷污

控制

1、最通常的半导体材料就是什么?该材料使用最普遍的原因就是什么?(第二章)(10分)

答:最通常的半导体材料就是硅。原因:1、硅的丰裕度;2、更高的融化温度允许更高的工艺容限;3、更宽的工作温度范围;4、氧化硅的自然生成、

2、砷化镓相对于硅的优点就是什么?(第二章)(5分)

答:砷化镓具有比硅更高的电子迁移率,因此多数载流子也移动得比硅中的更快。砷化镓也有减小寄生电容与信号损耗的特性。这些特性使得集成电路的速度比由硅制成的电路更快。GaAs器件增进的信号速度允许它们在通信系统中响应高频微波信号并精确地把它们转换成电信号。硅基半导体速度太慢以至于不能响应微波频率。砷化镓的材料电阻率更大,这使得砷化镓衬底上制造的半导体器件之间很容易实现隔离,不会产生电学性能的损失。

3、描述在硅片厂中使用的去离子水的概念。(第五章)(5分)

答:去离子水:在半导体制造过程中广泛使用的溶剂,在它里面没有任何导电的离子。DI Water的PH值为7,既不就是酸也不就是碱,就是中性的。它能够溶解其她物质,包括许多离子化合物与供价化合物。当水分子(H2O)溶解离子化合物时,它们通过克服离子间离子键使离子分离,然后包围离子,最后扩散到液体中。

4、例举出硅片厂中使用的五种通用气体。(第五章)(5分)

答:氧气(O2)、氩气(Ar)、氮气(N2)、氢气(H2)与氦气(He)

集成电路制造技术原理与技术试题库样本

填空题( 30分=1分*30) (只是答案)半导体级硅、 GSG 、电子级硅。CZ法、区熔法、硅锭、wafer 、硅、锗、单晶生长、整型、切片、磨片倒角、刻蚀、 ( 抛光) 、清洗、检查和包装。 100 、110 和111 。融化了的半导体级硅液体、有正确晶向的、被掺杂成p型或n型、实现均匀掺杂的同时而且复制仔晶的结构, 得到合适的硅锭直径而且限制杂质引入到硅中、拉伸速率、晶体旋转速率。去掉两端、径向研磨、硅片定位边和定位槽。制备工业硅、生长硅单晶、提纯) 。卧式炉、立式炉、快速热处理炉。干氧氧化、湿氧氧化、水汽氧化。工艺腔、硅片传输系统、气体分配系统、尾气系统、温控系统。局部氧化LOCOS、浅槽隔离STI。掺杂阻挡、表面钝化、场氧化层和金属层间介质。热生长、淀积、薄膜。石英工艺腔、加热器、石英舟。APCVD常压化学气相淀积、 LPCVD低压化学气相淀积、 PECVD等离子体增强化学气相淀积。晶核形成、聚焦成束、汇聚成膜。同质外延、异质外延。膜应力、电短路、诱生电荷。导电率、高黏附性、淀积、平坦化、可靠性、抗腐蚀性、应力等。CMP设备、电机电流终点检测、光学终点检测。平滑、部分平坦化、局部平坦化、全局平坦化。磨料、压力。使硅片表面和石英掩膜版对准并聚焦, 包括图形) ; ( 经过对光刻胶曝光, 把高分辨率的投影掩膜版上图形复制到硅片上) ; ( 在单位时间内 生产出足够多的符合产品质量规格的 硅片) 。化学作用、物理作用、化 学作用与物理作用混合。介质、金 属。在涂胶的硅片上正确地复制掩膜 图形。被刻蚀图形的侧壁形状、各 向同性、各向异性。气相、液相、固 相扩散。间隙式扩散机制、替代式扩 散机制、激活杂质后。一种物质在另 一种物质中的运动、一种材料的浓度 必须高于另一种材料的浓度) 和 ( 系统内必须有足够的能量使高浓 度的材料进入或经过另一种材料。热 扩散、离子注入。预淀积、推进、 激活。时间、温度。扩散区、光刻 区、刻蚀区、注入区、薄膜区、抛 光区。硅片制造备 ) 、 ( 硅片制 造 ) 、硅片测试和拣选、 ( 装配 和封装、终测。微芯片。第一层 层间介质氧化物淀积、氧化物磨抛、 第十层掩模、第一层层间介质刻蚀。 钛淀积阻挡层、氮化钛淀积、钨淀 积、磨抛钨。 1.常见的半导体材料为何选择硅? ( 6分) ( 1) 硅的丰裕度。硅是地球上第二丰 富的元素, 占地壳成分的25%; 经合 理加工, 硅能够提纯到半导体制造所 需的足够高的纯度而消耗更低的成 本; ( 2) 更高的熔化温度允许更宽的工 艺容限。硅1412℃>锗937℃ ( 3) 更宽的工作温度。用硅制造的半 导体件能够用于比锗更宽的温度范围, 增加了半导体的应用范围和可靠性; ( 4) 氧化硅的自然生成。氧化硅是一 种高质量、稳定的电绝缘材料, 而且 能充当优质的化学阻挡层以保护硅不 受外部沾污; 氧化硅具有与硅类似的 机械特性, 允许高温工艺而不会产生 过度的硅片翘曲; 2.晶圆的英文是什么? 简述晶圆 制备的九个工艺步骤。( 6分) Wafer。 (1)单晶硅生长: 晶体生长是把半导 体级硅的多晶硅块转换成一块大的单 晶硅。生长后的单晶硅被称为硅锭。 可用CZ法或区熔法。 (2)整型。去掉两端, 径向研磨, 硅 片定位边或定位槽。 (3)切片。对200mm及以上硅片而言, 一般使用内圆切割机; 对300mm硅片 来讲都使用线锯。 (4)磨片和倒角。切片完成后, 传统 上要进行双面的机械磨片以去除切片 时留下的损伤, 达到硅片两面高度的 平行及平坦。硅片边缘抛光修整, 又 叫倒角, 可使硅片边缘获得平滑的半 径周线。 (5)刻蚀。在刻蚀工艺中, 一般要腐 蚀掉硅片表面约20微米的硅以保证 所有的损伤都被去掉。 (6)抛光。也叫化学机械平坦化 ( CMP) , 它的目标是高平整度的光滑 表面。抛光分为单面抛光和双面抛光。 (7)清洗。半导体硅片必须被清洗使 得在发给芯片制造厂之前达到超净的 洁净状态。 (8)硅片评估。 (9)包装。

《半导体物理学》期末考试试卷参考答案(A卷)-往届

赣 南 师 范 学 院 第1页 共2页 2010–2011学年第一学期期末考试参考答案(A 卷) 开课学院:物电学院 课程名称:半导体物理学 考试形式:闭卷,所需时间:120分钟 注意事项:1、教师出题时请勿超出边界虚线; 2、学生答题前将密封线外的内容填写清楚,答题不得超出密封线; 3、答题请用蓝、黑钢笔或圆珠笔。 一、填空题(共30分,每空1分) 1、 电子 空穴 电子 2、 替位式 间隙式 3、 01 ()1exp() F f E E E k T = -+ 在热平衡状态下,电子在允许的量子态上如何分布 0()F E E k T B f E e --= 前者受泡利不相容原理的限制 4、 电子 空穴 00n p 电子-空穴对 n p = 多数 少数 多数 注入的非平衡多数载 流子浓度比平衡时的多数载流子浓度小得多 少数 注入的非平衡少数载流子浓度比 平衡时的少数载流子浓度大得多 5、 电子在导带和价带之间的直接跃迁,引起电子和空穴的直接复合 电子和空穴通过禁 带的能级(复合中心)进行复合 发射光子 发射声子 将能量给予其它载流子,增加它们的动能 6、 半导体表面非平衡载流子浓度比内部高 扩散 扩散 漂移 漂移 二、选择题(共10分,每题2分) 1、A 2、B 3、D 4、C 5、B 三、计算题(共60分) 一、1、解:(1)因为n p nq pq σμμ=+,又2 i np n =,所以 22i n p i n nq q n n σμμ=+≥= 根据不等式的性质,当且仅当n nq μ=2 i p n q n μ时,上式取等。 解得:1/2 ( )p i n n n μμ=,即此时电导率σ最小。 相应地,此时21/2 ()i n i p n p n n μ μ== ( 2)对本征Ge : 13 19 2() 2.510 1.610 (19003800)2.2810(/) i i n p n q S cm σμμ--=+ =????+ =? 在最小电导率条件下: min 1319((2(2.510)(1.610)/n p i n q n q n S cm σμμ--2=+ =2 =???? =2.12?10() (3)当材料的电导率等于本征电导率时,有: 00()n p i n p n q p q n q μ μμμ+=+ 即:2 00 ()i n p i n p n n q q n q n μμμμ+=+ 整理得:2 2 00()0n i n p i p n n n n μμμμ-++= 解得:0n n = 带入数据得:00()2i i n n n n ==舍或

半导体工艺及芯片制造技术问题答案(全)

常用术语翻译 active region 有源区 2.active ponent有源器件 3.Anneal退火 4.atmospheric pressure CVD (APCVD) 常压化学气相淀积 5.BEOL(生产线)后端工序 6.BiCMOS双极CMOS 7.bonding wire 焊线,引线 8.BPSG 硼磷硅玻璃 9.channel length沟道长度 10.chemical vapor deposition (CVD) 化学气相淀积 11.chemical mechanical planarization (CMP)化学机械平坦化 12.damascene 大马士革工艺 13.deposition淀积 14.diffusion 扩散 15.dopant concentration掺杂浓度 16.dry oxidation 干法氧化 17.epitaxial layer 外延层 18.etch rate 刻蚀速率 19.fabrication制造 20.gate oxide 栅氧化硅 21.IC reliability 集成电路可靠性 22.interlayer dielectric 层间介质(ILD) 23.ion implanter 离子注入机 24.magnetron sputtering 磁控溅射 25.metalorganic CVD(MOCVD)金属有机化学气相淀积 26.pc board 印刷电路板 27.plasma enhanced CVD(PECVD) 等离子体增强CVD 28.polish 抛光 29.RF sputtering 射频溅射 30.silicon on insulator绝缘体上硅(SOI)

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

芯片制造-半导体工艺教程

芯片制造-半导体工艺教程 Microchip Fabrication ----A Practical Guide to Semicondutor Processing 目录: 第一章:半导体工业[1][2][3] 第二章:半导体材料和工艺化学品[1][2][3][4][5]第三章:晶圆制备[1][2][3] 第四章:芯片制造概述[1][2][3] 第五章:污染控制[1][2][3][4][5][6] 第六章:工艺良品率[1][2] 第七章:氧化 第八章:基本光刻工艺流程-从表面准备到曝光 第九章:基本光刻工艺流程-从曝光到最终检验 第十章:高级光刻工艺 第十一章:掺杂 第十二章:淀积 第十三章:金属淀积 第十四章:工艺和器件评估 第十五章:晶圆加工中的商务因素 第十六章:半导体器件和集成电路的形成 第十七章:集成电路的类型 第十八章:封装 附录:术语表

#1 第一章半导体工业--1 芯片制造-半导体工艺教程点击查看章节目录 by r53858 概述 本章通过历史简介,在世界经济中的重要性以及纵览重大技术的发展和其成为世界领导工业的发展趋势来介绍半导体工业。并将按照产品类型介绍主要生产阶段和解释晶体管结构与集成度水平。 目的 完成本章后您将能够: 1. 描述分立器件和集成电路的区别。 2. 说明术语“固态,” “平面工艺”,““N””型和“P”型半导体材料。 3. 列举出四个主要半导体工艺步骤。 4. 解释集成度和不同集成水平电路的工艺的含义。 5. 列举出半导体制造的主要工艺和器件发展趋势。 一个工业的诞生 电信号处理工业始于由Lee Deforest 在1906年发现的真空三极管。1真空三极管使得收音机, 电视和其它消费电子产品成为可能。它也是世界上第一台电子计算机的大脑,这台被称为电子数字集成器和计算器(ENIAC)的计算机于1947年在宾西法尼亚的摩尔工程学院进行首次演示。 这台电子计算机和现代的计算机大相径庭。它占据约1500平方英尺,重30吨,工作时产生大量的热,并需要一个小型发电站来供电,花费了1940年时的400, 000美元。ENIAC的制造用了19000个真空管和数千个电阻及电容器。 真空管有三个元件,由一个栅极和两个被其栅极分开的电极在玻璃密封的空间中构成(图1.2)。密封空间内部为真空,以防止元件烧毁并易于电子的====移动。 真空管有两个重要的电子功能,开关和放大。开关是指电子器件可接通和切断电流;放大则较为复杂,它是指电子器件可把接收到的信号放大,并保持信号原有特征的功能。 真空管有一系列的缺点。体积大,连接处易于变松导致真空泄漏、易碎、要求相对较多的电能来运行,并且元件老化很快。ENIAC 和其它基于真空管的计算机的主要缺点是由于真空管的烧毁而导致运行时间有限。 这些问题成为许多实验室寻找真空管替代品的动力,这个努力在1947年12月23曰得以实现。贝尔实验室的三位科学家演示了由半导体材料锗制成的电子放大器。

半导体物理期末试卷(含部分答案

一、填空题 1.纯净半导体Si 中掺错误!未找到引用源。族元素的杂质,当杂质电离时释放 电子 。这种杂质称 施主 杂质;相应的半导体称 N 型半导体。 2.当半导体中载流子浓度的分布不均匀时,载流子将做 扩散 运动;在半导体存在外加电压情况下,载流子将做 漂移 运动。 3.n o p o =n i 2标志着半导体处于 平衡 状态,当半导体掺入的杂质含量改变时,乘积n o p o 改变否? 不变 ;当温度变化时,n o p o 改变否? 改变 。 4.非平衡载流子通过 复合作用 而消失, 非平衡载流子的平均生存时间 叫做寿命τ,寿命τ与 复合中心 在 禁带 中的位置密切相关,对于强p 型和 强n 型材料,小注入时寿命τn 为 ,寿命τp 为 . 5. 迁移率 是反映载流子在电场作用下运动难易程度的物理量, 扩散系数 是反映有浓度梯度时载 q n n 0=μ ,称为 爱因斯坦 关系式。 6.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射 和 晶格振动散射 。前者在 电离施主或电离受主形成的库伦势场 下起主要作用,后者在 温度高 下起主要作用。 7.半导体中浅能级杂质的主要作用是 影响半导体中载流子浓度和导电类型 ;深能级杂质所起的主要作用 对载流子进行复合作用 。 8、有3个硅样品,其掺杂情况分别是:甲 含铝1015cm -3 乙. 含硼和磷各1017 cm -3 丙 含镓1017 cm -3 室温下,这些样品的电阻率由高到低的顺序是 乙 甲 丙 。样品的电子迁移率由高到低的顺序是甲丙乙 。费米能级由高到低的顺序是 乙> 甲> 丙 。 9.对n 型半导体,如果以E F 和E C 的相对位置作为衡量简并化与非简并化的标准,那么 T k E E F C 02>- 为非简并条件; T k E E F C 020≤-< 为弱简并条件; 0≤-F C E E 为简并条件。 10.当P-N 结施加反向偏压增大到某一数值时,反向电流密度突然开始迅速增大的现象称为 PN 结击穿 ,其种类为: 雪崩击穿 、和 齐纳击穿(或隧道击穿) 。 11.指出下图各表示的是什么类型半导体? 12. 以长声学波为主要散射机构时,电子迁移率μn 与温度的 -3/2 次方成正比 13 半导体中载流子的扩散系数决定于其中的 载流子的浓度梯度 。 14 电子在晶体中的共有化运动指的是 电子不再完全局限在某一个原子上,而是可以从晶胞中某一点自由地运动到其他晶胞内的对应点,因而电子可以在整个晶体中运动 。 二、选择题 1根据费米分布函数,电子占据(E F +kT )能级的几率 B 。 A .等于空穴占据(E F +kT )能级的几率 B .等于空穴占据(E F -kT )能级的几率 C .大于电子占据E F 的几率 D .大于空穴占据 E F 的几率 2有效陷阱中心的位置靠近 D 。 A. 导带底 B.禁带中线 C .价带顶 D .费米能级 3对于只含一种杂质的非简并n 型半导体,费米能级E f 随温度上升而 D 。 A. 单调上升 B. 单调下降 C .经过一极小值趋近E i D .经过一极大值趋近E i 7若某半导体导带中发现电子的几率为零,则该半导体必定_D _。 A .不含施主杂质 B .不含受主杂质 C .不含任何杂质 D .处于绝对零度

半导体工艺复习题剖析

填空20’ 简答20’ 判断10’ 综合50’ 第一单元 1.一定温度,杂质在晶体中具有最大平衡浓度,这一平衡浓度就称为什么? 固溶度 2.按制备时有无使用坩埚分为两类,有坩埚分为?无坩埚分为?(P24) 有坩埚:直拉法、磁控直拉法 无坩埚:悬浮区熔法 3.外延工艺按方法可分为哪些?(P37) 气相外延、液相外延、固相外延和分子束外延 4.Wafer的中文含义是什么?目前常用的材料有哪两种? 晶圆;硅和锗 5.自掺杂效应与互扩散效应(P47-48) 左图:自掺杂效应是指高温外延时,高掺杂衬底的杂质反扩散进入气相边界层,又从边界层扩散掺入外延层的现象。自掺杂效应是气相外延的本征效应,不可能完全避免。 自掺杂效应的影响: ○1改变外延层和衬底杂质浓度及分布 ○2对p/n或n/p硅外延,改变pn结位置 右图:互(外)扩散效应:指高温外延时,衬底中的杂质与外延层中的杂质互相扩散,引起

衬底与外延层界面附近的杂质浓度缓慢变化的现象。 不是本征效应,是杂质的固相扩散带来(低温减小、消失) 6.什么是外延层?为什么在硅片上使用外延层? 1)在某种情况下,需要硅片有非常纯的与衬底有相同晶体结构的硅表面,还要保持对杂质类型和浓度的控制,通过外延技术在硅表面沉积一个新的满足上述要求的晶体膜层,该膜层称为外延层。 2)在硅片上使用外延层的原因是外延层在优化pn 结的击穿电压的同时降低了集电极电阻,在适中的电流强度下提高了器件速度。外延在CMOS 集成电路中变得重要起来,因为随着器件尺寸不断缩小它将闩锁效应降到最低。外延层通常是没有玷污的。 7.常用的半导体材料为何选择硅? 1)硅的丰裕度。硅是地球上第二丰富的元素,占地壳成分的25%;经合理加工,硅能够提纯到半导体制造所需的足够高的纯度而消耗更低的成本。 2)更高的熔化温度允许更宽的工艺容限。硅 1412℃>锗 937℃。 3)更宽的工作温度。用硅制造的半导体件可以用于比锗 更宽的温度范围,增加了半导体的应用范围和可靠性。 4)氧化硅的自然生成。氧化硅是一种高质量、稳定的电绝缘材料,而且能充当优质的化学阻挡层以保护硅不受外部沾污;氧化硅具有与硅类似的机械特性,允许高温工艺而不会产生过度的硅片翘曲。 8.液相掺杂浓度计算(P29) 第二单元 1.二氧化硅结构中的氧原子可分为哪几种?(P66) 桥键氧原子和非桥键氧原子 2.SiO 2的掩蔽作用 硅衬底上的SiO2作掩膜要求杂质在SiO2层中的扩散深度X j 小于SiO2本身的厚度X SiO2 2 2j SiO SiO j 'j Si x D x x x D >=2Si SiO D 1D ?>

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

半导体制造技术

Semiconductor Manufacturing Technology 半导体制造技术 Instructor’s Manual Michael Quirk Julian Serda Copyright Prentice Hall

Table of Contents 目录 Overview I. Chapter 1. Semiconductor industry overview 2. Semiconductor materials 3. Device technologies—IC families 4. Silicon and wafer preparation 5. Chemicals in the industry 6. Contamination control 7. Process metrology 8. Process gas controls 9. IC fabrication overview 10. Oxidation 11. Deposition 12. Metallization 13. Photoresist 14. Exposure 15. Develop 16. Etch 17. Ion implant 18. Polish 19. Test 20. Assembly and packaging II. Answers to End-of-Chapter Review Questions III. Test Bank (supplied on diskette) IV. Chapter illustrations, tables, bulleted lists and major topics (supplied on CD-ROM) Notes to Instructors: 1)The chapter overview provides a concise summary of the main topics in each chapter. 2)The correct answer for each test bank question is highlighted in bold. Test bank questions are based on the end-of-chapter questions. If a student studies the end-of-chapter questions (which are linked to the italicized words in each chapter), then they will be successful on the test bank questions. 2

先进半导体设备制造技术及趋势_图文(精)

先进半导体设备制造技术及趋势 张云王志越 中国电子科技集团公司第四十五研究所 摘要:本文首先介绍了国内外半导体设备市场,认为市场虽有起伏,但前景良好。从晶圆处理和封装的典型设备入手介绍了当前最先进半导体设备技术,之后总结出半导体设备技术发展的四大趋势

。 1国内外半导体设备市场 根据SEMI的研究,2006年全球半导体设备市场为388.1亿美元,较2005年增长18%,主要原因是各地区投资皆有一定程度的成长,少则20%(日本),多则229%(中国大陆),整体设备订单成长率则较2005年成长51%,比2005年底预测值多出28.4亿美元。 SEMI在SEMICONJapan展会上发布了年终版半导体资本设备共识预测(SEMICapitalEquipmentCon-sensusForecast),预计2007年全球半导体制造设备市场销售增长减缓为3%,达到416.8亿美元;2008年全球半导体设备市场将出现衰退,下滑1.5%;而到2009年及2010年恢 长6%达到306.1亿美元,封装设备领域增长11%至27.2亿美元,而测试设备领域预计将出现15%下滑 了12.4%。表二为按地区划分的市场销售额,包括往年的实际销售额和未来的预测。

虽然半导体设备市场有一定的起伏,但是很明显,市场的前景非常好,总体一直是稳中有升。中国大陆2006年半导体设备销售额超过23亿美元,比2005年增长了74.4%,中国大陆的市场销售额一直呈上升趋势,国内半导体设备具有非常诱人的市场前景。这和中国半导体产业的快速发展有着直接关系,中国的市场也越来越引起国际半导体设备厂商的重视,投资的力度会越来越大,对我们国内半 复增长,预计实现高个位数增速,至54.7亿美元。表一为按设备类型2010年销售额达到479.9亿美元。 SEMI总裁兼CEOStanleyT.Myers表示,2007年半导体制造、封 划分的市场销售额,包括往年的实际销售额和未来的预测。 从区域市场分析,北美、日本及 下降装及测试设备销售情况略高于去年,欧洲半导体设备市场出现下滑,成为业界历史上销售额第二高的一年。SEMI成员将继续推进半导体制造设备的强势增长,预计到2010年市场销售额达到480亿美元。 从设备类型分析,占有最大份额的晶圆处理设备领域2007年将增 幅度分别为8.9%、3.1%及11.7%;而台湾和中国大陆销售增长幅度最大,分别为28.9%和23.8%,台湾地区销售额达到94.2亿美元,有史以来第二次超过日本;南韩市场略微增长5.2%,其余地区市场也下降 40半导体行业

半导体制造技术题库答案

1.分别简述RVD和GILD的原理,它们的优缺点及应用方向。 快速气相掺杂(RVD, Rapid Vapor-phase Doping) 利用快速热处理过程(RTP)将处在掺杂剂气氛中的硅片快速均匀地加热至所需要的温度,同时掺杂剂发生反应产生杂质原子,杂质原子直接从气态转变为被硅表面吸附的固态,然后进行固相扩散,完成掺杂目的。 同普通扩散炉中的掺杂不同,快速气相掺杂在硅片表面上并未形成含有杂质的玻璃层;同离子注入相比(特别是在浅结的应用上),RVD技术的潜在优势是:它并不受注入所带来的一些效应的影响;对于选择扩散来说,采用快速气相掺杂工艺仍需要掩膜。另外,快速气相掺杂仍然要在较高的温度下完成。杂质分布是非理想的指数形式,类似固态扩散,其峰值处于表面处。 气体浸没激光掺杂(GILD: Gas Immersion Laser Doping) 用准分子激光器(308nm) 产生高能量密度(0.5—2.0J/cm2)的短脉冲(20-100ns)激光,照射处于气态源中的硅表面;硅表面因吸收能量而变为液体层;同时气态掺杂源由于热解或光解作用产生杂质原子;通过液相扩散,杂质原子进入这个很薄的液体层,溶解在液体层中的杂质扩散速度比在固体中高八个数量级以上,因而杂质快速并均匀地扩散到整个熔化层中。 当激光照射停止后,已经掺有杂质的液体层通过固相外延转变为固态结晶体。由液体变为固态结晶体的速度非常快。在结晶的同时,杂质也进入激活的晶格位置,不需要近一步退火过程,而且掺杂只发生在表面的一薄层内。 由于硅表面受高能激光照射的时间很短,而且能量又几乎都被表面吸收,硅体内仍处于低温状态,不会发生扩散现象,体内的杂质分布没有受到任何扰动。 硅表面溶化层的深度由激光束的能量和脉冲时间所决定。因此,可根据需要控制激光能量密度和脉冲时间达到控制掺杂深度的目的。 2.集成电路制造中有哪几种常见的扩散工艺?各有什么优缺点? 扩散工艺分类:按原始杂质源在室温下的相态分类,可分为固态源扩散,液态源扩散和气态源扩散。 固态源扩散 (1). 开管扩散优点:开管扩散的重复性和稳定性都很好。 (2). 箱法扩散优点;箱法扩散的硅表面浓度基本由扩散温度下杂质在硅中的固溶度决 定,均匀性较好。 (3). 涂源法扩散缺点:这种扩散方法的表面浓度很难控制,而且又不均匀。 (4). 杂质源也可以采用化学气相淀积法淀积,这种方法的均匀性、重复性都很好,还可以把 片子排列很密,从而提高生产效率,其缺点是多了一道工序。 液态源扩散液态源扩散优点:系统简单,操作方便,成本低,效率高,重复性和均匀性都很好。扩散过程中应准确控制炉温、扩散时间、气体流量和源温等。源瓶的密封性要好,扩散系统不能漏气。 气态源扩散气态杂质源多为杂质的氢化物或者卤化物,这些气体的毒性很大,且易燃易爆,操作上要十分小心。 快速气相掺杂(RVD) 气体浸没激光掺杂(GILD)

集成电路制造技术原理与工艺[王蔚][习题答案(第2单元)

第二单元习题解答 1.SiO 2膜网络结构特点是什么?氧和杂质在SiO 2 网络结构中的作用和用途是什 么?对SiO 2 膜性能有哪些影响? 二氧化硅的基本结构单元为Si-O四面体网络状结构,四面体中心为硅原子,四个顶角上为氧原子。对SiO2网络在结构上具备“长程无序、短程有序”的一类固态无定形体或玻璃体。半导体工艺中形成和利用的都是这种无定形的玻璃态SiO2。 氧在SiO2网络中起桥联氧原子或非桥联氧原子作用,桥联氧原子的数目越多,网络结合越紧密,反之则越疏松。在连接两个Si-O四面体之间的氧原子 掺入SiO2中的杂质,按它们在SiO2网络中所处的位置来说,基本上可以有两类:替代(位)式杂质或间隙式杂质。取代Si-O四面体中Si原子位置的杂质为替代(位)式杂质。这类杂质主要是ⅢA,ⅤA元素,如B、P等,这类杂质的特点是离子半径与Si原子的半径相接近或更小,在网络结构中能替代或占据Si原子位置,亦称为网络形成杂质。 由于它们的价电子数往往和硅不同,所以当其取代硅原子位置后,会使网络的结构和性质发生变化。如杂质磷进入二氧化硅构成的薄膜称为磷硅玻璃,记为PSG;杂质硼进入二氧化硅构成的薄膜称为硼硅玻璃,记为BSG。当它们替代硅原子的位置后,其配位数将发生改变。 具有较大离子半径的杂质进入SiO2网络只能占据网络中间隙孔(洞)位置,成为网络变形(改变)杂质,如Na、K、Ca、Ba、Pb等碱金属、碱土金属原子多是这类杂质。当网络改变杂质的氧化物进入SiO2后,将被电离并把氧离子交给网络,使网络产生更多的非桥联氧离子来代替原来的桥联氧离子,引起非桥联氧离子浓度增大而形成更多的孔洞,降低网络结构强度,降低熔点,以及引起其它性能变化。 2.在SiO 2 系统中存在哪几种电荷?他们对器件性能有些什么影响?工艺上如何降低他们的密度? 在二氧化硅层中存在着与制备工艺有关的正电荷。在SiO2内和SiO2-Si界面上有四种类型的电荷:可动离子电荷:Q m;氧化层固定电荷:Q f;界面陷阱电荷:Q it;氧化层陷阱电荷:Q Ot。这些正电荷将引起硅/二氧化硅界面p-硅的反型层,以及MOS器件阈值电压不稳定等现象,应尽量避免。 (1)可动离子电荷(Mobile ionic charge)Q m主要是Na+、K+、H+等荷正电的碱金属离子,这些离子在二氧化硅中都是网络修正杂质,为快扩散杂质,电荷密度在1010~1012/cm2。其中主要是Na+,因为在人体与环境中大量存在Na+,热氧化时容易发生Na+沾污。 Na+离子沾污往往是在SiO2层中造成正电荷的一个主要来源。这种正电荷将影响到SiO2层下的硅的表面势,从而,SiO2层中Na+的运动及其数量的变化都将影响到器件的性能。进入氧化层中的Na+数量依赖于氧化过程中的清洁度。现在工艺水平已经能较好地控制Na+的沾污,保障MOS晶体管阈值电压V T的稳定。 存在于SiO2中的Na+,即使在低于200℃的温度下在氧化层中也具有很高的扩散系数。

半导体制造技术必看考点

1、问答题说明影响氧化速率的因素。 2、问答题个投影曝光系统采用ArF光源,数值孔径为0.6,设 k1=0.6,n=0.5,计算其理论分辨率和焦深。 3、填空题研究细胞结构和功能异常与疾病关系的细胞生物学分支称为()。 4、问答题什么是扩散效应?什么是自掺杂效应?这两个效应使得衬底/外延界面杂质分布有怎样的变化?

5、问答题说明SiO2的结构和性质,并简述结晶型SiO2和无定形SiO2的区别。 6、问答题典型的光刻工艺主要有哪几步?简述各步骤的作用。 7、问答题什么是溅射产额,其影响因素有哪些?简述这些因素对溅射产额产生的影响。 8、问答题分别简述RVD和GILD的原理,它们的优缺点及应用方向。

9、问答题简述常规热氧化办法制备SiO2介质薄膜的动力学过程,并说明在什么情况下氧化过程由反应控制或扩散控制。 10、问答题 下图为一个典型的离子注入系统。(1)给出1~6数字标识部分的名称,简述其作用。(2)阐述部件2的工作原理。 11、问答题 采用CF4作为气体源对SiO2进行刻蚀,在进气中分别加入O2或H2对刻蚀速率有什么影响?随着O2或H2进气量的增加,对Si和SiO2刻蚀选择性怎样变化?为什么?

12、问答题离子在靶内运动时,损失能量可分核阻滞和电子阻滞,解释什么是核阻滞、电子阻滞?两种阻滞本领与注入离子能量具有何关系? 13、问答题 下图是硅烷反应淀积多晶硅的过程,写出发生反应的方程式,并简述其中1~5各步的含义。 14、问答题MEMSSi加工工艺主要分为哪两类,它们最基本的区别是什么? 15、问答题什么是光刻中常见的表面反射和驻波效应?如何解决?

半导体工艺半导体制造工艺试题库1 答案

一、填空题(每空1分,计31分) 1、工艺上用于四氯化硅的提纯方法有 吸附法 和 精馏法 。 2、在晶片表面图形形成过程中,一般通过腐蚀的方法将抗蚀膜图形转移到晶片上,腐蚀的方法有 湿法腐蚀 和 干法腐蚀 。 3、直拉法制备单晶硅的过程是:清洁处理——装炉——加热融化——拉晶,其中拉晶是最主要的工序,拉晶包括 下种 、 缩颈 、放肩、 等径生长 和收尾拉光等过程。 3、抛光是晶片表面主要的精细加工过程,抛光的主要方式有 化学抛光 、 机械抛光 和 化学机械抛光 。 4、掺杂技术包括有 热扩散 、 离子注入 、合金和中子嬗变等多种方法。 5、晶片中的锂、钠、钾等碱金属杂质,通常以 间隙式 (空位式或间隙式)扩散方式在晶片内部扩散,并且这类杂质通常称为 快扩散 (快扩散或慢扩散)杂质。 6、在有限表面源扩散中,其扩散后的杂质浓度分布函数符合 高斯分布函数 ; 而在恒定表面源扩散中,其扩散后的杂质浓度分布函数符合 余误差分布函数 。 7、在离子注入法的掺杂过程中,注入离子在非晶靶中的浓度分布函数满足对称的高斯分布,其浓度最大位于 R P 处。 8、在离子注入后,通常采用退火措施,可以消除由注入所产生的晶格损伤,常用的退火方式有 电子束退火 、 离子束退火 、 激光退火 。 9、根据分凝现象,若K 0>1,则分凝后杂质集中在 尾部 (头部或尾部);若K 0<1,则杂质分凝后集中在 头部 (同上)。 10、把硅片置于氯化氢和氧气的混合气体中进行的氧化,称为 掺氯氧化 。 11、在二氧化硅的热氧化方法中,氧化速度最快的是 干氧氧化 方法。 12、氢氧合成氧化设备中,两个重要的保险装置是 氢气流量保险装置 和 温度保险装置 。 13、工艺中常用的测量二氧化硅厚度的方法有 比色法 和 椭圆偏振光法 。 14、固态源硼扩散中常用的硼源是 氮化硼 ,常用的液态磷源是 三氯氧磷 。 15、箱法扩散在工艺中重要用来进行TTL 电路 隐埋层 的锑扩散。 二、选择题(每题2分,单项多项均有,计12分) 1、 在SiO 2网络中,如果掺入了磷元素,能使网络结构变得更( A ) (A )疏松 (B )紧密 (C )视磷元素剂量而言 2、 在微电子加工环境中,进入洁净区的工作人员必须注意以下事项(A 、B 、C 、D ) (A ) 进入洁净区要先穿戴好专用净化工作服、鞋、帽。 (B ) 进入洁净区前先在风淋室风淋30秒,然后才能进入。 (C ) 每周洗工作服,洗澡、理发、剪指甲,不用化妆品。 (D ) 与工作无关的纸张、书报等杂物不得带入。 3、离子注入设备的组成部分有(A 、B 、C 、D ) (A )离子源 (B )质量分析器 (C )扫描器 (D )电子蔟射器 4、CVD 淀积法的特点有(A 、C 、D ) (A )淀积温度比较低 (B )吸附不会影响淀积速度 (C )淀积材料可以直接淀积在单晶基片上 (D )样品本身不参与化学反应 5、 工艺中消除沟道效应的措施有(A 、B 、C 、D ) (A )增大注入剂量 (B )增大注入速度 (C )增加靶温 (D )通过淀积膜注入 6、液态源硼扩散所选用的硼源有(A 、B 、C ) (A )硼酸三甲脂 (B )硼酸三丙脂 (C )三溴化硼 (D )三氯氧磷 三、判断(每题1分,计10分) 1、Ⅰ号液是碱性过氧化氢清洗液。 ( R ) 2、筛选器是用来去除杂质离子的设备。 ( R ) 3、石墨基座的清洁处理,首先用王水煮沸,再用去离子水冲洗。 ( R ) 4、注入窗口中淀积的二氧化硅薄层是起退沟道的作用。 ( R ) 5、以一般能量注入的重离子,在进入靶片中,以电子阻挡为主。 ( F ) 6、硅烷热分解法淀积中,一旦源变成黄色就不能使用。 ( R ) 7、在二氧化硅氧化膜中,可动钠离子含量要求越高越好。 ( F ) 8、二氧化硅中的宏观缺陷是指用肉眼可以直接观察到的缺陷。 ( R ) 9、氮化硼(BN )是常用的固态硼杂质扩散源。 ( R ) 10、用四探针法可以测试扩散后的结深。 ( R ) 四、名词解释(每题5分,计20分) 1、杂质分凝 答:杂质在晶体中有一定分布,在固态中和液态中的分布又不一样,在晶体提纯时,利用杂质在晶体固态和液态的分布不一样,进行提纯,将杂质集中在晶体的头部或尾部,达到提纯的 装 订 班级 姓名 学号 成绩 - 学年第 学期 半导 第 学期 半导体制造工艺 半 导体制造工艺

《半导体器件物理》试卷(一)答案[1](可编辑修改word版)

《半导体器件物理》试卷(一)标准答案及评分细则 一、填空(共32 分,每空 2 分) 1、PN 结电容可分为扩散电容和过渡区电容两种,它们之间的主要区别在于扩 散电容产生于过渡区外的一个扩散长度范围内,其机理为少子的充放电,而过渡区电容产生于空间电荷区,其机理为多子的注入和耗尽。 2、当MOSFET 器件尺寸缩小时会对其阈值电压V T产生影响,具体地,对 于短沟道器件对V T的影响为下降,对于窄沟道器件对V T的影响为上升。 3、在NPN 型BJT 中其集电极电流I C受V BE电压控制,其基极电流I B受V BE 电压控制。 4、硅-绝缘体SOI 器件可用标准的MOS 工艺制备,该类器件显著的优点是 寄生参数小,响应速度快等。 5、PN 结击穿的机制主要有雪崩击穿、齐纳击穿、热击穿等等几种,其中发 生雪崩击穿的条件为V B>6E g/q。 6、当MOSFET 进入饱和区之后,漏电流发生不饱和现象,其中主要的原因 有沟道长度调制效应,漏沟静电反馈效应和空间电荷限制效应。 二、简述(共18 分,每小题6 分) 1、Early 电压V A; 答案: 2、截止频率f T; 答案:截止频率即电流增益下降到 1 时所对应的频率值。

3、耗尽层宽度W。 答案:P 型材料和N 型材料接触后形成PN 结,由于存在浓度差,就会产生空间电荷区,而空间电荷区的宽度就称为耗尽层宽度W。 三、分析(共20 分,每小题10 分) 1、对于PNP 型BJT 工作在正向有源区时载流子的输运情况; 答案:对于PNP 型晶体管,其发射区多数载流子空穴向集电区扩散,形成电流 I EP,其中一部分空穴与基区的电子复合,形成基极电流的I B的主要部分,集 电极接收大部分空穴形成电流I CP,它是I C的主要部分。 2、热平衡时突变PN 结的能带图、电场分布,以及反向偏置后的能带图和相 应的I-V 特性曲线。(每个图2 分) 答案:热平衡时突变PN 结的能带图、电场分布如下所示, 反向偏置后的能带图和相应的I-V 特性曲线如下所示。

半导体制造技术总结教学文案

第一章 2、列出20世纪上半叶对半导体产业发展做出贡献的4种不同产业。P2 答:真空管电子学、无线电通信、机械制表机及固体物理。 3、什么时间、什么地点、由谁发明了固体晶体管?P3 答:1947年12月16日在贝尔电话实验室由威廉·肖克利、约翰·巴丁和沃尔特·布拉顿发明了固体晶体管。5、列出5个集成时代,指出每个时代的时间段,并给出每个时代每个芯片上的元件数。P4 6、什么是硅片?什么是衬底?什么是芯片? 答:芯片也称为管芯(单数和复数芯片或集成电路),硅圆片通常被称为衬底 8、列出集成电路制造的5个重要步骤,简要描述每个步骤。P4 10、列出提高微芯片制造技术相关的三个重要趋势,简要描述每个趋势。P8 11、什么是芯片的关键尺寸?这种尺寸为何重要?P9 13、什么是摩尔定律?它预测了什么?这个定律正确吗?P10 14、自1947年以来靠什么因素使芯片价格降低?给出这种变化的两个原因。 16、描述硅片技师和设备技师的职责。P16 第三章 11.解释pn结反偏时发生的情况。P45 答:导致通过二极管的电流很小,甚至没有电流。 12.解释pn结正偏时发生的情况。P45 答:将一正偏施加于pn结,电路中n区电子从偏压电源负极被排斥。多余的电子从负极注入到充满空穴的p区,使n区中留下电子的空穴。同时,p区的空穴从偏压电源正极被排斥。由偏压电源正极提供的空穴中和由偏压电源负极提供的电子。空穴和电子在结区复合以及克服势垒电压大大的减小了阻止电流的行为。只要偏压对二极管能维持一个固定的空穴和电子注入,电流就将持续的通过电路。 13.双极晶体管有多少个电极、结和类型?电极的名称分别是什么?类型名称分别是什么?P46 答:有三电极和两个pn结、两种类型。电极名称:发射极、基极、集电极。类型名称:pnp、npn. 16.BJT是什么类型的放大器器件?它是怎么根据能量要求影响它的应用的?P47 答:驱动电流的电流放大器件。发射极和集电极都是n型的重掺杂,比如砷或磷。基极是p型杂质硼的轻掺杂。基极载流子减少,基极吸引的电流将明显地比集电极吸引的电流小。这种差别说明了晶体管从输入到输出电流的增益。晶体管能线性地将小的输入信号放大几百倍来驱动输出器件。 18.双极技术有什么显著特征?双极技术的最大缺陷是什么?P48 答:高速、耐久性、功率控制能力。缺陷:功耗高。19.场效应晶体管(FET)有什么优点?P49 答:利于提高集成度和节省电能。 22.FET的最大优势是什么?P49 答:低电压和低功耗。 25.FET的两种基本类型是什么?他们之间的主要区别是什么?P50 答:结型(JFET)和金属-氧化物型(MOSFET)半导体。区别是:MOSFET作为场效应晶体管输入端的栅极由一层薄介质与晶体管的其他两极绝缘。JFET的栅极实际上同晶体管其他电极形成物理的pn结。 26.MOSFET有哪两种类型?它们怎么区分?P50 答:nMOS(n沟道)和pMOS(p沟道)。每种类型可由各自器件的多数载流子来区分。 第四章 1.列举得到半导体级硅的三个步骤。半导体级硅有多纯?P64 4.描述非晶材料。为什么这种硅不能用于硅片?P65 9.为什么要用单晶进行硅片制造?P67 14.什么是CZ单晶生长法?P68 22.为什么要用区熔法生长硅晶体?P71 23.描述区熔法。P71 25.给出更大直径硅片的三大好处。P72 26.什么是晶体缺陷?P73 37.在直径为200mm及以上硅片中切片是怎么进行的?P77 41.为什么要对硅片表面进行化学机械平坦化?P78 43.列举硅片的7种质量要求。P79 第五章 1.什么是物质的四种形态?试分别描述之。P87 6.描述三种温标,哪一种是科学工作中最常用的温标?P89 8.给出真空的定义。什么是最常用的真空单位,它是怎么定义的?P91 9.给出冷凝和蒸发的定义。吸收和吸附之间有什么不同?P91-92 11.给出升华和凝华的定义。P92 13.什么是表面张力?P93 14.给出材料的热膨胀系数P94。 20.什么是酸?列出在硅片厂中常用的三种酸。P95 21.什么是碱?列出在硅片厂中常用的三种碱。P96 23.什么是溶剂?列出在硅片厂中常用的三种溶剂。P97 24.描述在硅片厂中使用的去离子水的概念。P97 31.什么是处理特殊气体所面临的最大挑战?P99 38.描述三种特殊气体并分别举例。P101 第六章

相关文档
最新文档