激光传感器特性及应用

激光传感器特性及应用
激光传感器特性及应用

东北电力大学

仪器仪表新技术作业

激光传感器特性及应用

学生姓名:应力

班级:测控071班

专业名称:测控技术与仪器

任课教师:曹生现

论文提交日期:

总得分:

1、论文内容

1)论文内容与题目要求相关程度

2)论文字数

3)内容论述思路、语言简练程度

4)个人总结观点

5)论文内容新颖性

2、论文格式

1)摘要、关键词、主要内容、结论、参考文献2)排版格式

3)论文内容序号编排

目录

摘要 (1)

关键词 (1)

1.引言 (1)

2.激光传感器基本工作原理 (2)

3.特性及应用 (2)

个人感受 (6)

参考文件 (7)

激光传感器特性及应用

摘要:激光是在20世纪60年代初问世的。由于其具有方向性强、亮度高、单色性好等特点,广泛用于工农业生产、国防军事、医学卫激光传感器生、科学研究等方面,如用来测距、精密检测、定位等,还用做长度基准和光频基准。其基本方法是将光信号转化成电信号。虽然高精密激光距离传感器已上市多年,但是由于其价格太高,一直不能获得广泛应用。最近,由于其价格的大幅度下降,使其成为长距离检测场合一种最经济有效的方法。本文介绍其原理、特性及应用。Abstract: Laser is in the early 20th century came out of 60. Because of its directive, the high brightness and good color characteristics, widely used in industrial and agricultural production, national defense, military, medical satellite laser sensor health, research in this regard, such as in distance, precision detection, location, etc. length is also used as benchmarks and optical frequency reference. The basic approach is to convert light signals into electrical signals. Although the high-precision laser distance sensor has been listed for years, but because of its price is too high, has not widely applied. Recently, because of its sharp drop in prices, making it one of the most long-distance detection of occasions, cost-effective way. This paper describes the principles, characteristics and application.

关键词:激光传感器激光传感器技术激光传感器应用单频激光干涉仪

引言:激光传感器一般是由激光器,光学零件,和光电器件所构成的,它能把

被测物理量(如长度,流量,速度等)转换成光信号,然后应用光电转换器把光信号变成电信号,通过相应电路的过滤,放大,整流得到输出信号,从而算出被测量。

激光式传感器具有以下优点:结构,原理简单可靠,抗干扰能力强,适应于各种恶劣的工作环境,分辨率较高(如在测量长度时能达到几个纳米),示值误差小,稳定性好,宜用于快速测量。

2.激光传感器的基本工作原理:

激光和激光器激光是20世纪60年代出现的最重大的科学技术成就之一。它发展迅速,已广泛应用于国防、生产、医学和非电测量等各方面。激光与普通光不同,需要用激光器产生。激光器的工作物质,在正常状态下,多数原子处于稳定的低能级E1,在适当频率的外界光线的作用下,处于低能级的原子吸收光子能量受激发而跃迁到高能级E2。光子能量E=E2-E1=hv,式中h为普朗克常数,v为光子频率。反之,在频率为v的光的诱发下,处于能级 E2的原子会跃迁到低能级释放能量而发光,称为受激辐射。激光器首先使工作物质的原子反常地多数处于高能级(即粒子数反转分布),就能使受激辐射过程占优势,从而使频率为v的诱发光得到增强,并可通过平行的反射镜形成雪崩式的放大作用而产生强大的受激辐射光,简称激光。激光具有3个重要特性:①高方向性(即高定向性,光速发散角小),激光束在几公里外的扩展范围不过几厘米;②高单色性,激光的频率宽度比普通光小10倍以上;③高亮度,利用激光束会聚最高可产生达几百万度的温度。激光器按工作物质可分为 4种。①固体激光器:它的工作物质是固体。常用的有红宝石激光器、掺钕的钇铝石榴石激光器 (即YAG激光器)和钕玻璃激光器等。它们的结构大致相同,特点是小而坚固、功率高,钕玻璃激光器是目前脉冲输出功率最高的器件,已达到数十兆瓦。

②气体激光器:它的工作物质为气体。现已有各种气体原子、离子、金属蒸气、气体分子激光器。常用的有二氧化碳激光器、氦氖激光器和一氧化碳激光器,其形状如普通放电管,特点是输出稳定,单色性好,寿命长,但功率较小,转换效率较低。③液体激光器:它又可分为螯合物激光器、无机液体激光器和有机染料激光器,其中最重要的是有机染料激光器,它的最大特点是波长连续可调。④半导体激光器:它是较年轻的一种激光器,其中较成熟的是砷化镓激光器。特点是效率高、体积小、重量轻、结构简单,适宜于在飞机、军舰、坦克上以及步兵随身携带。可制成测距仪和瞄准器。但输出功率较小、定向性较差、受环境温度影响较大

3.激光传感器特性及应用

激光测长——精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度计量多是利用光波的干涉现象来进行的,其精度主要取决于光的单色性的好坏。激光是最理想的光源,它比以往最好的单色光源(氪-86灯)还纯10万倍。因此激光测长的量程大、精度高。由光学原理可知单色光的最大可测长度L与波长λ和谱线宽度δ之间的关系是L=λ2/δ。用氪-86灯可测最大长度为38.5厘米,对于较长物体就需分段测量而使精度降低。若用氦氖气体激光器,则最大可测几十公里。一般测量数米之内的长度,其精度可达0.1微米。

激光测距——它的原理与无线电雷达相同,将激光对准目标发射出去后,测量它的往返时间,再乘以光速即得到往返距离。由于激光具有高方向性、高单色性和高功率等优点,这些对于测远距离、判定目标方位、提高接收系统的信噪比、保

证测量精度等都是很关键的,因此激光测距仪日益受到重视。在激光测距仪基础上发展起来的激光雷达不仅能测距,而且还可以测目标方位、运运速度和加速度等,已成功地用于人造卫星的测距和跟踪,例如采用红宝石激光器的激光雷达,测距范围为500~2000公里,误差仅几米。目前常采用红宝石激光器、钕玻璃激光器、二氧化碳激光器以及砷化镓激光器作为激光测距仪的光源。

激光测厚——利用三角测距原理,上位于C型架的上、下方分割有一个精密激光测距传感器,由激光器发射出的调制激光打到被测物的表面,通过对线阵CCD的信号进行采样处理,线阵CCD摄像机在控制电路的控制下同步得到被测物到C型架之间的距离,通过传感器反馈的数据来计算中间被测物的厚度。由于检测是连续进行的,因此就可以得到被测物的连续动态厚度值。

影响激光测厚精度的安装因素:

和其它传感器测厚一样,要实现精密测厚需要注意以下条件,否则再好的传感器也测不准。精密测厚,选精密激光位移传感器很重要,但如果两个传感器不能同步工作,安装不同轴,则根本测不准:

(1)单激光位移传感器测厚

被测体放在测量平台上,测量出传感器到平台表面距离,然后再测出传感器到被测体表面间距,经计算后测出厚度。要求被测体与测量平台之间无气隙,被测体无翘起。这些严格要求只有在离线情况能实现。

(2)双激光位移传感器测厚

在被测体上方和下方各安装一个激光位移传感器,被测体厚度D=C-(A+B)。其中,C是两个传感器之间距离,A是上面传感器到被测体之间距离,B是下面传感器到被测体之间距离。在线厚度测量用这种方法优点是可消除被测体振动对测量结果的影响。但同时对传感器安装和性能有要求。保证测量准确性的条件是:两个传感器发射光束必须同轴,以及两个传感器扫描必须同步。同轴是靠安装实现,而同步要靠选择有同步端激光传感器。

不同步将代来很大误差:如果被测体存在振动频率20HZ,振幅1mm,如果信号不同步延迟1ms,那么就会带来125μm误差。

安装使两个激光同轴,不但确保被测体同一位置上的厚度,同时降低了被测体倾斜带来的误差。以被测体运动方向不同轴为例,当不同轴1mm,被测体倾斜2°可带来35μm误差。

激光三角漫反射位移传感器用于测厚有明显优点:

(1)非常小的测量光斑,是点光斑面积,它比面积型非接触电容、电涡流传感器需要的面积小很多,对被测体面积几乎无要求,适合测量非常小面积尺寸厚度;(2)较远的测量范围起始间距。它比非接触电容、电涡流传感器起始间距大很多。这样传感器可以远离被测体,免受碰坏,及被测体热辐射影响;

(3)有很大的测量范围,这是其它传感器很难做到的;

(4)与被测体材料无关,即金属非金属体,非透明有漫反射条件表面都能测。(5)用激光测厚取代同位素测厚,可以消除对用户的放射性损害。

激光测振——它基于多普勒原理测量物体的振动速度。多普勒原理是指:若波源或接收波的观察者相对于传播波的媒质而运动,那么观察者所测到的频率不仅取决于波源发出的振动频率而且还取决于波源或观察者的运动速度的大小和方向。所测频率与波源的频率之差称为多普勒频移。在振动方向与方向一致时多普

频移fd=v/λ,式中v 为振动速度、λ为波长。在激光多普勒振动速度测量仪中,由于光往返的原因,fd =2v/λ。这种测振仪在测量时由光学部分将物体的振动转换为相应的多普勒频移,并由光检测器将此频移转换为电信号,再由电路部分作适当处理后送往多普勒信号处理器将多普勒频移信号变换为与振动速度相对应的电信号,最后记录于磁带。这种测振仪采用波长为6328埃(┱)的氦氖激光器,用声光调制器进行光频调制,用石英晶体振荡器加功率放大电路作为声光调制器的驱动源,用光电倍增管进行光电检测,用频率跟踪器来处理多普勒信号。它的优点是使用方便,不需要固定参考系,不影响物体本身的振动,测量频率范围宽、精度高、动态范围大。缺点是测量过程受其他杂散光的影响较大。

激光测速——它也是基多普勒原理的一种激光测速方法,用得较多的是激光多普勒流速计(见激光流量计),它可以测量风洞气流速度、火箭燃料流速、飞行器喷射气流流速、大气风速和化学反应中粒子的大小及汇聚速度等。

多普勒测速系统(Doppler velocity-measuring system)原理:

从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。

检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速

驾驶的可能性也越大。

激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前

世界上速度测量精度最高的仪器。

多普勒测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以某角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。多普勒测速系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。

光学测速测长系统相对于传统的测速测长系统(编码器或测速电机)的优势是:(1)编码器或测速马达测量都是依靠测速辊与被测量物体的摩擦来实现的,存在摩擦的地方就会有相对滑动的存在,尤其是在速度变化的过程中滑动更明显,此时会产生较明显的误差;而多普勒测量系统是非接触测量,从原理上消除了这

个误差。

(2)接触式测量过程中,当生产的产品为对表面光洁度要求非常高的产品时,比如不锈钢板带,容易对表面产生损伤,而采用多普勒测量系统完全避免。(3)编码器或测速马达是机械类产品,长期的运转存在机械磨损,从而影响到测量精度,而多普勒测量系统属于光学仪器,内部没有机械磨损,不存在随运行

时间而测量精度变化的问题。

(4)在钢铁的轧机或平整机运行过程中,由于在板带上有巨大的张力,在高速运行中会产生高频振动,对接触式的测速系统影响非常大。比如在平整机上,采用编码器对平整机的延长率进行控制时,实际测量的结果是板带平整后的延长率是在3%-15%之间变化,升速或降速时编码器信号由于摩擦打滑的影响无法参与控制。冷轧板带的延长率直接影响的是深冲性能,延长率控制不好,生产的成品板带的质量级别无法提高,无法满足比如家电生产企业,汽车生产企业等对深冲成型性能要求非常高的企业的要求。采用多普勒测量系统进行控制时,延长率一般可以控制在目标值的0.25%左右波动,优势非常明显。而且轧机的升速,降速对其性能无任何影响,所以整卷钢带的成材率可以高达97%以上,效益非常明显。而采用编码器时,由于受到诸多限制,成材率一般低于85%。

3.1材料表面反射系数对激光传感器的影响

激光漫反射位移传感器正常工作的前提是要求被测物体表面具有漫反射条件,出厂时厂家是用白陶瓷作为标准面。

反射系数是光输入到表面能量与返回能量之比。光亮表面反射系数高,例如白纸就高,粗糙或黑色表面反射系数低,例如黑橡胶就低。并不是反射系数愈大愈好,当反射系数100%时,例如镜面时,激光成像光斑被100%反射回到激光光源,而接受漫反射的CCD端无成像光,所以镜面就不能正常工作。反之当反射系数为0%时绝对黑体,入射光被百分百吸收,无反射光,传感器也不能工作。只有反射系数<100%,和>0%之间,激光漫反射传感器才能可靠工作。

各种材料表面反射系数:

白陶瓷约95%

白纸约75-80%

金属材料约55-60%

黑纸约5%

黑橡胶约3-5%

黑绒布约0.5%

3.2激光传感器所能解决其它技术无法解决的问题

激光传感器可用于其它技术无法应用的场合。例如,当目标很近时,计算来自目标反射光的普通光电传感器也能完成大量的精密位置检测任务。但是,当目标距离较远内或目标颜色变化时,普通光电传感器就难以应付了。

虽然先进的背景噪声抑制传感器和三角测量传感器在目标颜色变化的情况下能较好地工作,但是,在目标角度不固定或目标太亮时,其性能的可预测性变差。此外,普通光电三角测量传感器一般量程只限于0.5m以内。

超声波传感器虽然也经常用于检测距离较远的物体,而且由于它不是光学装置,所以不受颜色变化的影响。

4.个人观点总结

目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。

新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。它发展迅速,已广泛应用于国防、生产、医学和非电测量等各方面。激光与普通光不同,需要用激光器产生。大力发展激光传感器技术有利于国家在科技、经济及军事等多个领域独领风骚。

参考文献

[1] 王君凌振宝主编,《传感器原理及应用》,吉林大学出版社,2002年

[2] 刘广玉陈明.新型传感器技术及应用. 北京:北京航空航天大学出版

社.2004

[3] 谢文和主编,《传感器技术及应用》,高等教育出版社,2004年7月一版

[4] 樊尚春主编,《传感器技术及应用》,北京航空航天大学出版社,2004

简述光的特性及其应用

简述光的特性及其应用 姓名:期班:学号: 当我们开始感知,便发现这个世界丰富多姿、五彩斑斓。这是因为我们拥有一双雪亮的眼睛吗?不是,美丽大自然的伴侣——光,才是美丽世界的缔造者。 红橙黄绿蓝靛紫——彩虹的出现总是让人喜悦。然而作为一名大学生,对事物的了解当然不能局限于表面。通过初高中的科学学习,我们知道彩虹是气象中的一种光学现象。造成彩虹的光学原理是因为阳光射到空中接近圆形的小水滴,造成折射与反射而成。阳光射入水滴时会同时以不同角度入射,在水滴内亦以不同的角度反射。造成这种反射时,阳光进入水滴,先折射一次,然后在水滴的背面反射,最后离开水滴时再折射一次。因为水对光有色散的作用,不同波长的光的折射率有所不同,蓝光的折射角度比红光大。由于光在水滴内被反射,所以观察者看见的光谱是倒过来的,红光在最上方,其他颜色在下。 类似的例子还有很多,比如月光是月球表面反射到地球上的太阳光;南北两极的极光由来自地球磁层或太阳的高能带电粒子流(太阳风)使高层大气分子或原子激发(或电离)而产生;朝霞与晚霞是日出或日落前后,阳光通过厚厚的大气层,被大量的空气分子散射的结果……因为光的存在,我们的世界显得美妙多姿。 那么光究竟是什么东西呢? 【光是人类眼睛可以看见的一种电磁波,也称可见光谱。在科学上的定义,光是指所有的电磁波谱。光是由光子为基本粒子组成,具有粒子性与波动性,称为波粒二象性。】①光可以在真空、空气、水等透明的物质中传播。对于可见光的范围没有一个明确的界限,一般人的眼睛所能接受的光的波长在380~760nm之间。380nm以下的为红外光谱,760nm以上的为紫外光谱。 如右下图所示: 其中可见光为我们五彩缤纷的世界做出了很大贡献。 【光在介质中传播时产生的干涉、衍射和偏振等波动 现象,以及麦克斯韦电磁理论和赫兹实验,证实了光是一 定频率范围内的电磁波,而在热辐射、光电效应和康普顿 效应等现象中,普朗克和爱因斯坦关于光的微粒性质的理 论又取得了极大的成功。因此,光具有“波粒二象性”这 一结论,全面揭示了光的本性。】② 而光除了给我们以美妙的视觉体验之外,还在生活的其他方面造福人类。在电磁波谱中,各种电磁波的性质不同,因而它们就具有不同的用途。 红外线主要特点是热效应,一切物体都在不停地辐射红外线,并且不同的物体辐射红外线的波长和强度不同. 我们可以利用红外线的热效应对物体进行烘干;利用红外线波长较长、容易发生衍射的特点进行远距离和高空摄影;利用不同物体辐射红外线的波长和强度的不同可以对物体进行远距离探测,这种技术叫红外线遥感。 紫外线的主要作用是化学作用。一切高温物体发出的光都含有紫外线,紫外线的波长比紫光还短,紫外线有很强的荧光效应,紫外线有杀菌消毒的作用,广泛应用于医院手术室、手术器具的消毒。 X射线是比紫外线波长还短的电磁波,它的穿透本领很大,广泛应用于医学诊断和治疗。如X射线透视、摄影与造影技术均能得到相关影像以达到诊断的目的。另外,数字外X射线影像技术能将数字化图像信息传输给图像存储与通讯系统,实现远程诊断和远程医学。而远程技术正日益凸显期优越性,对医学的发展起着重要的推动作用。最后,现代医学成像技术还包括X射线计算机体层成

激光主要有四大特性

激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性 激光的高亮度:固体激光器的亮度更可高达1011W/cm2Sr。不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。 激光的高方向性:激光的高方向性使其能在有效地传递较长的距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件 激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 激光的高相干性:相干性主要描述光波各个部分的相位关系。正是激光具有如上所述的奇异特性因此在工业加工中得到了广泛地应用。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 激光加工的特点 由于激光具有高亮度、高方向性、高单色性和高相干性的特性,因此就给激光加工带来如下一些其它方法所不具备的可贵特点 ● 由于它是无接触加工,对工件无直接冲击,因此无机械变形; ● 激光加工过程中无"刀具"磨损,无"切削力"作用于工件; ● 激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小。因此,其热影响的区小工件热变形小后续加工最小; ● 由于激光束易于导向、聚焦、实现方向变换,极易与数控系统配合、对复杂工件进行加工因此它是一种极为灵活的加工方法; ● 生产效率高,加工质量稳定可靠,经济效益和社会效益好激光加工的优势 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。 ②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。 ③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。 ④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。 ⑤它可以通过透明介质对密闭容器内的工件进行各种加工。 ⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。 ⑦使用激光加工,生产效率高,质量可靠,经济效益好。

浅谈激光雷达技术在林业上的应用

浅谈激光雷达技术在林业上的应用 摘要:近年来激光雷达在很多领悟非常受欢迎,更值得一提的是这种技术非常 受森林工作者的欢迎,在森林参数测量方面发挥着非常重要的作用。激光雷达的 成像机理和一般的光学遥感大不相同,它对森林地形以及森林植被分布形式的勘 测能力极强。在对森林高度进行探测时这种优势呗发挥的淋漓尽致,更重要的是 激光雷达具有的这种优势是很多遥感设备无法比拟的。 关键字:林业应用;激光雷达技术;遥感技术 引言 自然界的所有结构中没有比森林更大,更复杂的结构了,森林拥有着自然界 中的很多资源,这些自然资源包括碳水化合物和森林植被所需的所有营养。不管 人类发展到什么程度森林结构都不可能会被其他结构所替代,因为只有森林结构 完整,才能够保证自然界的生态平衡。在通常情况下,要想更好的保证生态平衡,就必须要对森林的很多参数就行测量和分析,但是运用普通的参数测量方法只能 够获得一些简单的数据,这些数据在对大片森林的研究上并不能发挥太大作用。 因此,要想获得大片森林的区域数据,就必须运用远程传感器来实现。另外,激 光技术可以说是一种新的探测技术,它的能力非常强。激光技术不仅可以帮助科 研人员获得所需研究物体或者结构的高度信息,而且可以给出精准的数据信息。 正因如此,在军事研究领悟激光技术也不可或缺。 一、激光雷达技术的测量工具和系统介绍 在数据研究领领域有一种最基本的测量工具,这种测量工具就是激光测距仪。这种仪器在使用时必须要使用激光,而且它的工作频率比家中微波炉的工作频率 高出很多倍。 平常的雷达系统,它的高度都不会超过70英尺,另外,对每一个雷达系统而言,它们都具有一个激光系统,并且这个激光系统是连续的。激光在使用的过程中,它的细节其实是时间决定的,每一刻都代表一个不同的时间。在森林参数测 量过程中运用激光技术可以不仅可以得到树木花草的结构,而且激光还可以凭借 其信号远远大于木材信号的优势来得到整个森林的结构,这也给森林研究人员在 森林结构研究方面带来了极大的便利。 一个大的激光雷达系统是由很多小的激光探测系统组成的,而每一个激光探 测系统就是一个小的激光雷达系统。另外,激光的大小并不是固定不变得,它会 随着飞行高度的变化而不断变化,但是一般情况下激光的大小最大不会超过0.9m。有的时候激光之所以能感觉到树叶,是因为最小的激光非常小,也正因为这个特点,激光雷达系统必须要增加方向上的频率。 二、激光雷达技术在林业上的应用 林业研究领域的很多数据都是靠激光测量出来的,这些数据小到森林中一棵 树的枝干结构信息,大到一个森林的整体结构信息。由此可见激光技术对林业研 究的重要性。另外,雷达激光系统不仅受到国内多数研究领域的欢迎,而且雷达 激光系统在国外也广受商业企业的欢迎。 虽然雷达可以再特定的时间内记录信息,但是对于信号边界的信息可能没有 办法完整记录。要想解决这个问题就必须要运用技术来穿越激光的边界,虽然在 穿越激光边界的过程中会遇到各种各样的问题,但是通过这种方法却可以有效的 获得信号边界信息。

激光传感器特性及应用

东北电力大学 仪器仪表新技术作业 激光传感器特性及应用 学生姓名:应力 班级:测控071班 专业名称:测控技术与仪器 任课教师:曹生现 论文提交日期:

总得分: 1、论文内容 1)论文内容与题目要求相关程度 2)论文字数 3)内容论述思路、语言简练程度 4)个人总结观点 5)论文内容新颖性 2、论文格式 1)摘要、关键词、主要内容、结论、参考文献2)排版格式 3)论文内容序号编排

目录 摘要 (1) 关键词 (1) 1.引言 (1) 2.激光传感器基本工作原理 (2) 3.特性及应用 (2) 个人感受 (6) 参考文件 (7)

激光传感器特性及应用 摘要:激光是在20世纪60年代初问世的。由于其具有方向性强、亮度高、单色性好等特点,广泛用于工农业生产、国防军事、医学卫激光传感器生、科学研究等方面,如用来测距、精密检测、定位等,还用做长度基准和光频基准。其基本方法是将光信号转化成电信号。虽然高精密激光距离传感器已上市多年,但是由于其价格太高,一直不能获得广泛应用。最近,由于其价格的大幅度下降,使其成为长距离检测场合一种最经济有效的方法。本文介绍其原理、特性及应用。Abstract: Laser is in the early 20th century came out of 60. Because of its directive, the high brightness and good color characteristics, widely used in industrial and agricultural production, national defense, military, medical satellite laser sensor health, research in this regard, such as in distance, precision detection, location, etc. length is also used as benchmarks and optical frequency reference. The basic approach is to convert light signals into electrical signals. Although the high-precision laser distance sensor has been listed for years, but because of its price is too high, has not widely applied. Recently, because of its sharp drop in prices, making it one of the most long-distance detection of occasions, cost-effective way. This paper describes the principles, characteristics and application. 关键词:激光传感器激光传感器技术激光传感器应用单频激光干涉仪 引言:激光传感器一般是由激光器,光学零件,和光电器件所构成的,它能把 被测物理量(如长度,流量,速度等)转换成光信号,然后应用光电转换器把光信号变成电信号,通过相应电路的过滤,放大,整流得到输出信号,从而算出被测量。 激光式传感器具有以下优点:结构,原理简单可靠,抗干扰能力强,适应于各种恶劣的工作环境,分辨率较高(如在测量长度时能达到几个纳米),示值误差小,稳定性好,宜用于快速测量。

不同波长激光的特性

不同波长激光的特性 蓝绿激光:穿透深度最浅,作用与视网膜内层和外层,主要被RPE吸收,如氩激光。 绿色激光:组织穿透力比蓝光强,被血红蛋白和RPE吸收,57%被RPE吸收,47%被脉络膜吸收。 黄激光:视网膜神经纤维层的弥散很少,穿透力强,黄色激光被RPE层和脉络膜内层的吸收各占50%。 红光和红外激光:穿透力最强,主要作用于脉络膜中、外层的激光。红色激光随波长的增加被脉络膜的吸收逐渐增加。 不同组织的吸光波长 1.激光波长从400~950nm在眼内的穿透性可以达到95%。RPE和脉络膜在波长450~630nm是 吸收率可以达到70%。随着波长的增加,吸收率很快下降,因而氩激光(蓝绿)激光和532激光是眼内最常使用的激光光谱。 2.血红蛋白对光的吸收特性: 在波长400~600nm(蓝到黄的部分),血红蛋白有较高的吸收率,而600nm以上(红和接近红外)的波长很受被血红蛋白吸收,所以有视网膜下出血时可选用600nm(红)以上的激光。 3.叶黄素的吸收特性: 叶黄素是锥体细胞的感光色素,对480nm一下的波长有较高的吸收峰,容易造成叶黄素的破坏,为了避免损伤,用绿色以上的波长对视锥细胞较安全,其中810激光对其损伤最小。 眼科激光的分类 眼科激光分气体、液体和固体激光三大类 ,其中气体激光又分分子(CO2 分子) 、原子(氦氖原子)和离子(氩离子及氪离子)激光三种。液体激光有染料激光。固体激光有红宝石激光 ,Nd:YAG激光 ,半导体激光。应用途径有眼内和眼外 2种途径。眼内激光是在玻璃体手术时眼内使用。眼外激光使用途径有2 种, 一种为经过瞳孔的,另一种是经巩膜的。 眼底光凝治疗的原理 眼底病进行光凝治疗的原理是: 激光被眼底之色素吸收后产生热能。热能使它作用的组织发生变化, 从而达到治疗目的。眼底吸收激光的物质主要为黑色素, 其次为叶黄素的血红蛋白。眼底含有黑色素的组织为视网膜色素上皮和脉络膜。这些色素和血红蛋白对不同波长光的吸收曲线是激光光凝的依据。眼底色素吸收激光后产生的热能可以使组织凝固、坏死及发生炎症, 继而机化从而达到使组织粘连, 还可以直接使视网膜上的新生血管和微血管瘤封闭, 直接破坏产生新生血管生长因子的视网膜组织和视网膜及脉络膜上的肿瘤组织。 激光光凝四要素 激光技术四要素是指波长,光斑大小,曝光时间和输出功率 ,这是完成眼底激光治疗技中十分重要且不能忽视的问题 ,是与治疗效果十分相关的因素,是保证实现视网膜有效光斑的关键。 波长选择的原则 波长的选择主要由病变部位和性质决定 ,当具有多种波长激光时 ,可以选择最合适的激光波长但当只有单波长激光时 ,选择的余地不存在,可发挥其他参数的功能. 氩激光(蓝绿激光):主要作用于视网膜内层和外层。如糖网,静脉阻塞,EALES,视网膜裂孔等选择绿色以上的波长,临床多使用绿光。

激光雷达技术的应用现状及应用前景

光电雷达技术 课程论文 题目激光雷达技术的应用现状及应用前景 专业光学工程 姓名白学武 学号2220140227 学院光电学院 2015年2月28日

摘要:激光雷达无论在军用领域还就是民用领域日益得到广泛的应用。介绍了激光雷达的工作原理、工作特点及分类,介绍了它们的研究进展与发展现状,以及应用现状与发展前景。 引言 激光雷达就是工作在光频波段的雷达。与微波雷达的T作原理相似,它利用光频波段的电磁波先向目标发射探测信号,然后将其接收到的同波信号与发射信号相比较,从而获得目标的位置(距离、方位与高度)、运动状态(速度、姿态)等信息,实现对飞机、导弹等目标的探测、跟踪与识别。 激光雷达可以按照不同的方法分类。如按照发射波形与数据处理方式,可分为脉冲激光雷达、连续波激光雷达、脉冲压缩激光雷达、动目标显示激光雷达、脉冲多普勒激光雷达与成像激光雷达等:根据安装平台划分,可分为地面激光雷达、机载激光雷达、舰载激光雷达与航天激光雷达;根据完成任务的不同,可分为火控激光雷达、靶场测量激光雷达、导弹制导激光雷达、障碍物回避激光雷达以及飞机着舰引导激光雷达等。 在具体应用时,激光雷达既可单独使用,也能够同微波雷达,可见光电视、红外电视或微光电视等成像设备组合使用,使得系统既能搜索到远距离目标,又能实现对目标的精密跟踪,就是目前较为先进的战术应用方式。 一、激光雷达技术发展状况 1、1关键技术分析 1、1、1空间扫描技术 激光雷达的空间扫描方法可分为非扫描体制与扫描体制,其中扫描体制可以选择机械扫描、电学扫描与二元光学扫描等方式。非扫描成像体制采用多元探测器,作用距离较远,探测体制上同扫描成像的单元探测有所不同,能够减小设备的体积、重量,但在我国多元传感器,尤其就是面阵探测器很难获得,因此国内激光雷达多采用扫描工作体制。 机械扫描能够进行大视场扫描,也可以达到很高的扫描速率,不同的机械结构能够获得不同的扫描图样,就是目前应用较多的一种扫描方式。声光扫描器采用声光晶体对入射光的偏转实现扫描,扫描速度可以很高,扫描偏转精度能达到微弧度量级。但声光扫描器的扫描角度很小,光束质量较差,耗电量大,声光晶体

激光原理及应用实验讲义 -4个实验

实验一CO2激光器及激光扫描实验 一、实验目的 1、了解CO2激光器的工作原理及典型结构; 2、掌握CO2激光器的输出特性; 3、掌握CO2激光器的使用方法; 4、掌握激光扫描及F-Theta镜的工作原理。 二、实验器材 CO2激光管1支,激光电源1台,功率计1台,水冷系统1套,扫描系统1套,控制器1套,计算机1台 三、实验原理 1、CO2激光器工作原理 CO2激光器的工作气体是CO2、N2和He的混合气体。波长9-11um间,处于大气传输窗口(吸收小,2-2.5um;3-5um;8-14um)。利用同一电子态的不同振动态(对称、弯曲和反对称振动)的转动能级间的跃迁。 图1 CO2激光器典型结构 CO2激光器由工作气体、放电管、谐振腔和电源等组成。放电管大多采用硬质玻璃(如GG)制成,放电管的内径和长度变化范围很大。为了防止内部气压和气压比的变化而影响17 器件寿命,放电管外加有贮气管。为了防止发热而降低输出功率,加有水冷装置。激光器的 输出功率随着放电管长度加长而增大。 CO2激光器中与激光跃迁有关的能级是由CO2分子和N2分子的电子基态的低振动能级构成的。CO2振动模型如图1所示。 激光跃迁主要发生在0001→1000和0001→0200两个过程,分别输出10.6um和9.6um。激光低能级100和020都可以首先通过白发辐射到达0l0,再次通过自发辐射到达基态000,但由于自发辐射的几率不大,远不如碰撞驰豫过程快,其主要的驰豫过程如图2。

分子反对称振动 CO 2 分子振动模型 图1 CO 2 图2 CO2分子能级跃迁过程 其中前两个过程进行得很快,而后两个过程进行得很慢,故分子堆积在010能级上,形成瓶颈效应,而使粒子数反转减小,特别是温度升高时,由热激发而使010能级上分子增加,造成粒子数反转的严重下降,甚至停振,最后一个式子中的M代表辅助气体。如果选择恰当的气体(常见的如H2O和H2)作为辅助气体,可促进010能级上分子的弛豫过程。另外由于010能级上的分子扩散到管壁上会引起消激发,这就使器件的管壁不能太粗。另外,为了增加气体的热导率,通过在气体中加入He气,可实现对放电管的冷却,同样使气体流动,都是降低温的好办法。 气体中一般还需要加入N2气,利用其v=1能级与CO2分子的001能级相差较小,可以实现共振转移,选择性激励co2分子进入001态,特别由于N2气的v=1态不能通过自发

激光的发展与应用

激光的发展与应用 摘要:激光作为20世纪的新发明,从1960年第一台激光器问世以来,激光技术与应用发展迅猛。它不仅在产业上有了飞速发展,而且还为科学技术、国民经济和国防建设做出了积极贡献。本文综述性描写激光的发展与应用,首先简要的介绍激光的发展史,其次介绍激光的特性,最后结合激光的特性和发展史以典型的实例来简要的说明激光在各个方面的主要应用。 关键词:激光;发展;应用;特性;实例 1.引言 激光,作为高新技术的研究成果,它不仅广泛应用于科学技术研究的各个前沿领域,而且已经在人类生活和生产的许多方面得到了大量的应用,与激光相关的产业已在全球形成了超过千亿美元的年产值,可见它对人类社会的影响之深刻而广泛。 2.激光的发展简史 1916年,爱因斯坦在研究黑体辐射的普朗克公式时曾寓言了受激辐射的存在,从而提出受激辐射的概念,并预见到受激辐射光放大器诞生,也就是激光产生的可能性[1]。 20世纪50年代美国科学家汤斯及前苏联科学家普罗克霍洛夫等人分别独立发明了一种底噪声微波放大器,即一种在微波波段的受激辐射放大器(Microwave amplification by stimulate emission of radiation),并以其英文的第一个

字母缩写命名为maser[1]。1958年美国科学家汤斯和肖洛提出在一定的条件下,可将这种微波受激辐射放大器的原理推广到光波波段,制成受激辐射光放大器(Light amplification by stimulated emission of radiation,缩写为laser)。1960年7月美国的梅曼宣布制成了第一台红宝石激光器[2]。1961年我国科学家邓锡铭、王之江制成我国第一台红宝石激光器,在1961年11期《科学通报》上发表了相关论文,称其为“光量子学放大器”。其后在我国科学家钱学森的建议下,统一翻译为“激光”或“激光器”[3]。1962年雅文等人在美国贝尔实验室制成了氦氖激光器[1]。自此新的激光器不断的被研制出来,激光开始走上了高速发展的道路。 3.激光的特性 由于激光产生的机制与普通光不同,因此,它具有许多与普通光不同的特性。 3.1.单色性好。激光几乎是严格的单色光。通常所谓的单色光,实际上其波长并不只为某一数值,而是由许多波长相近的光所组成,其波长取值范围,称为谱线宽度[2]。不同光源发出的光有不同的谱线宽度。过去作为长度基准的单色性最好的氪灯,它的谱线宽度为,而氦氖激光器所发的632.8nm的激光,它的谱线宽度可达,由此可见其单色性之好[4]。正是由于激光单色性好,目前国际上采用甲烷稳定的氦氖激光器(激光波长为3392.23140nm)作为体现米定义的标准辐射源[4]。 3.2.方向性好。与普通光源以立体角不同,激光发射限定在很小的立体角内。它大致等于激光器通过光孔径的圆孔衍射的发散角因此是几乎平行的光

Nd∶YAG激光器的特性及应用

激光是60 年代初出现的一种新型光源,激光以其高亮度、高单色性、高方向性和高相干性,引起普遍重视,并很快在工农业生产、科学技术、医疗、国防等各个领域得到广泛应用。激光医学是激光技术与医疗科学有机结合的产物,激光在70 年代开始广泛用于临床;90 年代,随着新型激光器的研制成功,激光与医疗、生物组织科学紧密结合,研究范围日益扩大。 Nd:YAG 激光器以其增益高、阈值低、量子效率高、热效应小、机械性能良好、适合各种工作模式(连续、脉冲) 等特点,在当今各种固体激光器中应用物质相互作用的效果是不同的, 不同波长的Nd:YAG激光器采用连续、脉冲等方式工作使激光与不同部位的生物组织相互作用,可以获得良好的疗效。医用Nd:YAG 激光器在外科手术、眼科、牙科、口腔科、耳鼻喉科、皮肤科、美容等方面应用广泛,特别是治疗皮肤色素性疾病,有创伤小、愈合好、无疤痕等独特优点,本文主要介绍Nd:YAG 激光器的特性以及在治疗皮肤疾病方面的应用,使读者了解各种激光器的性能及不同种类激光治疗仪的治疗效果。 一、Nd:YAG 激光器的特性 能产生激光的系统,称为激光器。一台简单的激光器通常由工作物质、泵浦源和谐振腔三部分组成。自1960 年第一台激光器诞生以来,已有上百种激光器问世。形形色色的激光器彼此之间差异极大,根据产生激光的工作物质,有气体、液体、固体和半导体激光器等。固体激光器是以固态基质中掺入少量激活元素为工作物质的激光器,工作物质的物理化学性能主要取决于基质材料,而其光谱特性主要由发光粒子的能级结构决定。但发光粒子受基质材料的影响,其光谱特性将有所变化,有的甚至变化很大。用作基质的主要有刚玉、石榴石晶体及各种玻璃等。发光粒子称为激活离子,最常用的激活离子为钕、铬等稀土元素离子。例如世界上第一台激光器所用工作物质为红宝石,就是掺入极少量铬离子的刚玉。以掺有一定量钕离子(Nd3 + ) 的钇铝石榴石( YAG) 晶体为工作物质的激光器,称为掺钕钇铝石榴石(Nd:YAG) 激光器。掺钕激光器是当前应用最广泛的固体器件之一,在激光加工、医疗、军事等领域应用广泛。

超强超快激光的特点及发展方向

超强超快激光的特点及发展方向 ?激光作为20世纪人类最重要的科技发明之一,经过40年的发展,直接推动了一批新兴学科与高新技术的发展,如非线性光学、激光光谱学、强场物理、光通信、光计算、光信息存储、激光化学、激光医学、激光生物学、激光核聚变、激光分离同位素、激光全息术、激光加工等等。同时,激光技术也已经走进了人们的日常生活,如随处可见的CD唱机、VCD影碟机、超市收银机的条形码扫描仪、激光打印机等,无不采用先进的激光技术。激光的发展开拓了激光技术的应用,激光技术的应用又推动了激光科学技术的进一步发展。 激光科技的最新前沿之一是超强超快激光。超强即超高的功率和功率密度(指单位面积上的功率),目前一个激光系统甚至可产生高达1015瓦的峰值功率,而全世界电网的平均功率只不过1012瓦数量级;超快即极短的时间尺度,目前激光脉冲最短不过几个飞秒(10-15秒),光在1飞秒内仅仅传播 0.3微米。 近年来新型小型化超强超快激光技术的迅猛发展,为人类提供了全新的实验手段与极端的物理条件。这种在实验室中创造的极端物理条件,目前还只有在核爆中心、恒星内部、或是黑洞边缘才能找到。 在当今超强超快激光技术已经提供并将由于其进一步发展而能提供的越来越强并越来越快的光场条件下,激光与各种形态物质之间的相互作用,将进入到前所未有的高度非线性与相对论性起主导作用的强场超快范围,并将进一步把光与物质的相互作用研究深入到更深的物质层次,甚至光与真空的相互作用,由此开创了超强超快激光这一全新的现代科学技术前沿领域。 超强超快激光物理与技术 输出功率大于1太瓦,脉宽小于1皮秒,可聚焦激光功率密度大于1017瓦/厘米2的小型化超强超快激光的发展研究,是超强超快激光研究广泛深入开展的基础和推动力。 近十几年来,由于啁啾脉冲放大(chirped pulse amplification, 简称CPA)技术的提出和应用,宽带激光晶体材料(如掺钛蓝宝石)的出现,以及克尔透镜锁模技术的发明,使超强超快激光技术得到迅猛发展。小型化飞秒太瓦(1012瓦)甚至更高数量级的超强超快激光系统已在各国实验室内建成并发挥重要作用。https://www.360docs.net/doc/2011718984.html,/最近,更短脉冲和更高功率的激光输出,如直接由激光振荡器产生的短于5飞秒的激光脉冲,小型化飞秒100太瓦级超强超快激光系统,以及CPA技术应用到传统大型钕玻璃激光装置上获得1拍瓦(1015瓦)级激光输出已有报道,激光功率密度达到1019~1020瓦/厘米2的超强超快激光与物质相互作用研究也已开始进行。 ?传统的激光放大采用直接的行波放大,而对超短激光脉冲来说,随着能量的提高,其峰值功率将很快增加,并出现各种非线性效应及增益饱和效应,从而限制了能量的进一步放大。 CPA技术的原理是,在维持光谱宽度不变的情况下通过色散元件将脉冲展宽好几个数量级,形成所谓的啁啾脉冲。这样,在放大过程中,即使激光脉冲的能量增加很快,其峰值功率也可以维持在较低水平,从而避免出现非线性效应及增益饱和效应,保证激光脉冲能量的稳定增长。当能量达到饱和放大可获得的能量之后,借助与脉冲展宽时色散相反的元件将脉冲压缩到接近原来的宽度,即可使峰值功率大大提高。深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机 为了突破CPA技术的一些局限性,目前国际上正在积极探索发展新一代超强超快激光的新原理与新方法,如啁啾脉冲光学参量放大(OPCPA)原理,目标是创造更强更快的强场超快极端物理条件,特别是获得大于(等于)1021瓦/厘米2的可聚焦激光光强。OPCPA充分发挥了啁啾脉冲放大与光学参量放大各自的优点,是国际上近年来提出的发展超强超快激光的全新技术途径。

激光的特点

1、单色性好:普通光源发射的光子,在频率上是各不相同的,所以包含有各种颜色。而激光发射的各个光子频率相同,因此激光是最好的单色光源。 由于光的生物效应强烈地依赖于光的波长,使得激光的单色性在临床选择性治疗上获得重要应用。此外,激光的单色特性在光谱技术及光学测量中也得到广泛应用,已成为基础医学研究与临床诊断的重要手段。 2、相干性好:由于受激辐射的光子在相位上是一致的,再加之谐振腔的选模作用,使激光束横截面上各点间有固定的相位关系,所以激光的空间相干性很好(由自发辐射产生的普通光是非相干光)。激光为我们提供了最好的相干光源。正是由于激光器的问世,才促使相干技术获得飞跃发展,全息技术才得以实现。 3、方向性好:激光束的发散角很小,几乎是一平行的光线,激光照射到月球上形成的光斑直径仅有1公里左右。而普通光源发出的光射向四面八方,为了将普通光沿某个方向集中起来常使用聚光装置,但即便是最好的探照灯,如将其光投射到月球上,光斑直径将扩大到1 000公里以上。 激光束的方向性好这一特性在医学上的应用主要是激光能量能在空间高度集中,从而可将激光束制成激光手术刀。另外,由几何光学可知,平行性越好的光束经聚焦得到的焦斑尺寸越小,再加之激光单色性好,经聚焦后无色散像差,使光斑尺寸进一步缩小,可达微米级以下,甚至可用作切割细胞或分子的精细的“手术刀”。 4、亮度高:激光的亮度可比普通光源高出1012-1019倍,是目前最亮的光源,强激光甚至可产生上亿度的高温。激光的高能量是保证激光临床治疗有效的最可贵的基本特性之一。利用激光的高能量还可使激光应用于激光加工工业及国防事业等。

(1)激光通讯 用光传送信息,在今天非常普遍。比方,舰船用灯语通讯,交通灯用红、黄、绿三色彩度。但是一切这些用普通光传送信息的方式,都只能局限在短间隔内。要想把信息经过光直接传送到悠远的中央,就不能用普通光,而只能动用激光。 (2)材料加工 钻孔、切割、焊接以及淬火,是加工金属资料时最常用的操作。自从引进了激光后,在加工的强度、质量以及范围等方面创始了全新的场面。除了金属资料外,激光还能加工许多非金属资料。 激光钻孔的原理,是应用激光束汇集使金属外表焦点温度疾速上升,温升可达每秒l00万度。当热量尚未发散之前,光束就烧熔金属,直至汽化,留下一个个小孔。激光钻孔不受加工资料的硬度和脆性的限制,而且钻孔速度异常快,快到能够在几千分之一秒,乃至几百万分之一秒内钻出小孔。(3)激光照相排版 与利用普通光源进行照相排版相比,激光排版省时省力。由于激光亮度高,颜色浅,能够大大改善图像的明晰度,印出来的书质量自然就高。它的原理是怎样的呢?首先经过计算机把文字变成一个个点,然后用点来控制激光扫描感光底片,才真正拍摄出全息照相。 全息照相与平面照相是两回事。虽然平面彩色照片看上去颜色鲜艳、层次清楚,富有平面感,但它总归仍是单面图像,再好的平面照也替代不了真实的实物。比方,一个正方形木块的平面照,不管我们怎样改动察看角度,只能看到照片上的那个画面,但全息照就不同了,我们只需改动一

激光加工技术的特点及应用

激光加工技术的特点及应用-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

激光加工技术的特点及应用 摘要:“激光(器)”的英语为Laser,它是Light Amplification by Stimulated Emission of Radiation的第一个字母组成的缩写,意思是“光受激辐射放 大”。所谓激光加工技术就是利用激光束与物质相互作用的特性对材料 (包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以 及做为光源,识别物体等的一门技术,它也是涉及到光、机、电、材 料及检测等多门学科的一门综合学科。 关键词:加工原理、特点、加工技术、发展前景 一激光的特点 激光是一种崭新的光源,它除了与其他光源一样是一种电磁波外,还具有其它光源所不具备的特性: 高方向性:激光的发散角很小,接近平行光,可把激光用于定位、准直、导向和测距等 亮度高(光强):聚焦后光斑上的功率密度达1015W/cm2或更高,其亮度比太阳光起码要亮100亿倍,只有氢弹爆炸瞬间产生的闪光才能勉强与激光相比。材料在如此之高的功率密度光照射下,会很快熔化、气化或爆炸,因此,可以来进行材料的加工或是医疗外科手术。 高单色性:其单色性比一般光高108-109倍以上,可把激光波长作为长度的标准进行精密测量,或把其周期用作时间测量标准,应用于激光通讯和等离子体测量。 高相干性:单色性越好的光,相干长度越长。可用于较长工件的高精度测量与校验。 二激光加工的原理及其特点 1.激光加工的原理 激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。 2.激光加工的特点 激光具有的宝贵特性决定了激光在加工领域存在的优势: ①非接触加工,无工具磨损,不需要中途更换工具,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的; ②激光束能量密度高,加工速度快,工件变形小、热影响区小,后续加工量小; ③它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性及高熔点材料,可加工材料范围广泛;

激光雷达的应用

(1)基于激光雷达的移动机器人位姿估计方法综述 位姿估计方法是移动机器人研究的一个核心问题,精确地位姿估计对于机器人的定位、自动地图生成、路径规划等具有重要意义。传统的位姿估计方法在不同程度上都有位移误差较大、成本较高的缺点。而激光雷达刚好解决了这个问题。目前常用的激光雷达为2维脉冲式激光雷达,这种方法有两个重要的步骤:距离数据的表示和距离数据的对应。 数据的表示。利用一对脉冲近红外发射器和接收器,通过测量发射到接受的时间差,即可计算出目标的距离,从而得到关于环境的水平剖面图。对于静态环境的表示方法目前比较好的方法是Gonzalez提出的混合式表达方法,这种方法综合了基于特征的表示方法和占据网格的表示方法而提出的一种同时具有两者各自优点的方法。 距离数据的对应。目前已有的对应方法有特征—特征、点—特征和点—点等。以下主要介绍三类。特征—特征对应方法首先从参考扫描和当前扫描中分别抽取出一组特征,然后是用特征的属性和特征间相对关系对两组特征进行匹配,得到一组特征对,最后使用迭代的方法求解机器人的位姿,使特征对之间的误差最小。点—特征与特征—特征方法的不同主要在于它直接使用当前的原始数据与参考扫描的特征进行匹配,匹配的依据是点到线段的距离。由于这种方法在匹配中直接使用了原始的距离数据,避免了中间的特征抽取过程,因此这种方法的精度略高于特征—特征方法。点对点的方法是利用一个合适的规则直接匹配2个扫描中的数据,从而得到相对位姿的关系,目前这个常用的规则是最近点规则。 (2)激光雷达技术在城市三维建筑模型中的应用 “数字城市”是数字地球技术系统的重要组成部分,而表达城市主要物体的三维模型包括三维地形,三维建筑模型、三维管线模型。这些三维建筑模型是数字城市重要的基础信息之一。 而激光雷达技术可以快速完成三维空间数据采集,它的优点使它有很广阔的应用前景。机载雷达系统的组成包括:激光扫描器、高精度惯性导航仪、应用查分技术的全球定位系统、高分辨率数码相机。通过这四种技术的集成可以快速的完成地面三维空间地理信息的采集,经过处理便可得到具有坐标信息的影像数据。 利用激光进行三维建筑建模的技术。首先,进行数据预处理。就是结合IMUU记录的姿势参数、机载GPS数据、地面基站GPS观察数据、GPS偏心分量、扫描仪和数码相机各自的偏心分量,进行GPS/IMU联合解算,得到扫描仪及相机曝光坐标下的轨迹文件,进而得到外方为元素。其次,使用LIDAR数据商业处理软件将地面数据与非地面数据分离,生成DEM,在利用纯地表数据对影像外方位元素通过寻找同名像点的方式进行校正快速生成DOM。DEM 和DOM叠加在一起就形成了三维地形模型。最后,为了表达真实的城市面貌对三维建筑模型进行纹理贴图。纹理粘贴的方法常见的有手动粘贴和纹理映射两种。常用的纹理获取方法也有两种,第一种方法是对建筑顶部纹理采用航空影像,侧面纹理信息为手持相机实地拍摄。第二种方法为倾斜航空摄影。得到纹理后利用专业软件进行纹理面的选择、匀光处理等将反应建筑现状的影像信息映射在对应的模型上就达到了反映城市现状的目的。 (3)激光雷达技术的发展及其在大气环境监测中的应用 激光雷达由于探测波长短、波束定向性强,能量密度高,因此具有高空间分辨率、高的

各功率激光的特点

常见激光技术总结 目前常见的激光器按工作介质分气体激光器、固体激光器、半导体激光器、光纤激光器和染料激光器5大类,近来还发展了自由电子激光器。大功率激光器通常都脉冲方式输出已获得较大的峰值功率。 单脉冲激光指的是几分钟才输出一个脉冲的激光,重频激光指的是每分钟输出几次到每秒输出数百次甚至更高的激光。 一、气体激光器 1.He-Ne激光器:典型的惰性气体原子激光器,输出连续光,谱线有63 2.8nm(最常用),1015nm,3390nm,近来又向短波延伸。这种激光器输出地功率最大能达到1W,但光束质量很好,主要用于精密测量,检测,准直,导向,水中照明,信息处理,医疗及光学研究等方面。 2.Ar离子激光器:典型的惰性气体离子激光器,是利用气体放电试管内氩原子电离并激发,在离子激发态能级间实现粒子数反转而产生激光。它发射的激光谱线在可见光和紫外区域,在可见光区它是输出连续功率最高的器件,商品化的最高也达30-50W。它的能量转换率最高可达0.6%,频率稳定度在3E-11,寿命超过1000h,光谱在蓝绿波段(488/514.5),功率大,主要用于拉曼光谱、泵浦染料激光、全息、非线性光学等研究领域以及医疗诊断、打印分色、计量测定材料加工及信息处理等方面。 3.CO2激光器:波长为9~12um(典型波长10.6um)的CO2激光器因其效率高,光束质量好,功率范围大(几瓦之几万瓦),既能连续又能脉冲等多优点成为气体激光器中最重要的,用途最广泛的一种激光器。主要用于材料加工,科学研究,检测国防等方面。常用形式有:封离型纵向电激励二氧化碳激光器、TEA二氧化碳激光器、轴快流高功率二氧化碳激光器、横流高功率二氧化碳激光器。 4.N2分子激光器:气体激光器,输出紫外光,峰值功率可达数十兆瓦,脉宽小于10ns,重复频率为数十至数千赫,作可调谐燃料激光器的泵浦源,也可用于荧光分析,检测污染等方面。 5.准分子激光器:以准分子为工作物质的一类气体激光器件。常用电子束(能量大于200千电子伏特)或横向快速脉冲放电来实现激励。当受激态准分子的不稳定分子键断裂而离解成基态原子时,受激态的能量以激光辐射的形式放出。准分子激光物质具有低能态的排斥性,可以把它有效地抽空,故无低态吸收与能量亏损,粒子数反转很容易,增益大,转换效率高,重复率高,辐射波长短,主要在紫外和真空紫外(少数延伸至可见光)区域振荡,调谐范围较宽。它在分离同位素,紫外光化学,激光光谱学,快速摄影,高分辨率全息术,激光武器,物质结构研究,光通信,遥感,集成光学,非线性光学,农业,医学,生物学以及泵浦可调谐染料激光器等方面已获得比较广泛的应用,而且可望发展成为用于核聚变的激光器件。 二、固体激光器 1.YAG激光器:可分为:Nd-YAG晶体、Ce-Nd-YAG晶体、Yb-YAG晶体、Ho-YAG晶体、Er-YAG晶体。 Nd-YAG激光器:固体激光器,1064nm,Nd-YAG目前综合性能最为优异的激光晶体,连续激光器的最大输出功率1000W,广泛用于军事、工业和医疗等行业。若采用连续的方式运转,采用一级振荡可以获得400W的多模输出,若要输出在百瓦级的激光器,采用单灯单棒,200W以上的采用双灯单棒结构。Nd-YAG激光器不仅适合连续,而且在高重频下运转性能也很优越。重频可达100~200次/s,最高平均功率可400w。采用多级串联来实现高功率输出,目前平均功率最高可达到上600~800瓦,重频可达80~200次/s,单脉冲能量可达80J。 Ce-Nd-YAG激光器:在Nd-AG晶体的基础上添加Ce离子形成Ce-Nd-YAG。利用Ce离子能对紫外光谱区光子能量产生很好的吸收,并且将能量以无辐射跃迁的方式传递给Nd离子,从而增加了光谱的利用率,因此效率高、阈值低、重复频率特性好。 Yb-YAG激光器:Yb3+掺入YAG基质中形成的一种产生1.03um近红外激光的激光晶体,其与Nd-YAG属于同一种基质,但由于掺杂不同而导致生长工艺有所不同。掺Yb-YAG由于量子效率高,晶体光谱简单,无激发态吸收和上转换,且无荧光浓度猝灭,掺杂浓度高,有较长的荧光寿命,吸收带带宽比Nd-YAG宽得多,能与二极管的泵浦波长有效耦合。在相同的输入功率下,Yb-YAG泵浦生热仅为Nd-YAG的1/4。而且YAG基质的物化特性综合性能最为优良,所以Yb-YAG已成为最引人注目的固体激光介质之一,LD泵浦的高功率Yb-YAG固体激光器成为新的研究热点,并将其视为发展高效、高功率固体激光器的一个主要方向。

激光雷达技术的发展和应用

激光雷达技术的发展和应用 摘要:根据激光雷达的测距原理及中心投影共线条件方程式,建立了激光雷达测量系统的几何模型及其精度评价模型,对激光雷达在军事、气象、地质、环境与测绘等领域的应用以及激光雷达未来的发展趋势作了详细介绍。 关键词:激光雷达;几何模型;发展;应用。 引言:20世纪60年代初出现了以测距为主要功能的激光雷达(LiDAR),它以高角分辨率、高速度分辨率、高距离分辨率、强抗干扰能力、良好的隐蔽性,以及出色的全天候工作能力在很多领域尤其是军事领域中得到了广泛的应用。LiDAR技术(LightDetectionAndRanging)也称机载激光雷达,它是一种安装在飞机上的机载激光系统,通过量测地面的三维坐标,生成LiDAR数据影像,经过相关软件处理后,可以生成地面的DEM模型、等值线图及DOM正射影像图。LiDAR系统通过扫描装置,沿航线采集地面点三维数据;系统可自动调节航带宽度,使其与航摄宽度精确匹配,在不同的实地条件下,平面精度可达0.1Ill,采样间隔为2~12m。LiDAR是集激光技术、光学技术和微弱信号技术于一体而发展起来的一种现代化光学遥感手段,它使用激光作为探测波段,波长较短而且是单色相干光,凶而呈现出极高的分辨本领和抗干扰能力,为其在各方面的应用奠定了重要基础。LiDAR探测技术不仅可以获得目标地物表面的反射能量的大小,同时还可获取目标反射波谱的幅度、频率和相位等信息,用于测速和识别移动目标,在环境、生态、通信、航天等方面有着广泛的应用。本文重点介绍LiDAR的技术现状和应用领域。 正文: 1.激光雷达的发展过程 第1代激光雷达于1967年由美国国际电话和电报公司研制,用于开发航天飞行器交会对接用的激光雷达,1978年NASA/MFSC研制出了用于同一目的的C02干涉激光雷达-7。1976年用于研究地球科学的星载激光雷达一经问世就得到重视,NASA和NOAA委托美国无线电公司和帕新一爱而莫公司开发用于测量全球对流层风场的C02相干激光雷达I9]。1988年NASA研制出激光大气风探测器,空间分辨率达到1000m左右,利用不同高度背向散射测量水平风场,20世纪90年代,由于全固体激光技术和二极管泵浦全固态技术的发展,较好地解决了制约星载激光雷达的寿命问题,开辟了高精度绘图、远程测距、环境监测、测云、测地被、测目标和非相干测风等应用邻域,发展了基于DPSS技术的差分吸收激光雷达、拉曼散射激光雷达、非相干多普勒激光雷达和生物激光雷达等,显示出巨大的经济效益和军事价值。 2.激光雷达的主要应用 由于激光雷达特有的优势,在国民经济建设中如农林业、军事侦察、水利电力

相关文档
最新文档