正弦余弦均值不等式及其应用

正弦余弦均值不等式及其应用
正弦余弦均值不等式及其应用

正余弦均值不等式及其应用

石嘴山市一中 刘

先看个例子:

在 △ABC 中,分别判断满足下列条件的三角形形状 ?

⑴ sin A + sin B + sin C =

332

⑵ sin A·sin B·sin C = 338

⑶ cos A + cos B + cos C = 32

⑷ cos A·cos B·cos C = 18

⑸ sin A 2+ sin B 2+ sin C 2

= 32 ⑹2sin A +2sin B +2sin C = 94

⑺2cos A + 2cos B + 2cos C = 32 答案:以上各题的三角形均仅为正三角!

对于这样的题目,往往首先想到用三角恒等变形或正余弦定理直接导出 A = B = C 或 a = b = c 。实践证明,这种方法根本行不通! 这些题目一般思路是灵活借用判别式法、不等式法、数形结合法等进行所谓“巧妙变换”来解之。其“巧妙”程度因题而异,没有固定模式,不易掌握。实际上,这些题目属于同一类问题,应有统一解法,本文就此问题进行探讨。

定理1:对于任意角α、β,令 γ = 2αβ

+ ,则

│sinα+ sinβ│≤ 2│sinγ│ ①

sinα·sinβ ≤ 2sin γ ②

│cosα+ cosβ│≤ 2│cosγ│ ③

cosα·cosβ ≤ 2cos γ ④

当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。

定理1 仅是本文的特例,我们可以称:

① 为 正弦和中值最大不等式;

② 为 正弦积中值最大不等式;

③ 为 余弦和中值最大不等式;

④ 为 余弦积中值最大不等式,

也可把它们统称为 正余弦中值定理 或 正余弦中值不等式。

证明:① ∵│sinα+ sinβ│=│2 sin 2αβ

+·cos 2αβ

-│≤│2 sin 2αβ

+│

∴│sinα+ sinβ│≤ 2│sinγ│

当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。

② ∵ sinα·sinβ=

12

[cos(α-β) - cos(α+β)] = 12[cos(α-β) - 1 + 2·sin 2(2αβ+)]≤ sin 2(2αβ+) ∴ sinα·sinβ ≤ sin2γ

当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。 ③、④ 同理可证。

注意:②、④ 没有绝对值符号,比如:α=2π,β=2π

-,得 sinα·sinβ<sin2γ,但│sinα·sinβ│>│sin2γ│。

定理2:对于任意角 α、β、γ ∈[0, 2

π],令δ= 3αβγ++,则 sinα+ sinβ+ sinγ ≤ 3 sinδ

sinα·sinβ·sinγ ≤ sin 3δ

cosα+ cosβ+ cosγ ≤ 3 cosδ

cosα·cosβ·cosγ ≤ cos 3δ

当且仅当 α=β=γ 时,取“=”号。

定理3:对于任意角α1 、α2 、… 、αn ∈[0, 2π],令δ=12

n n ααα+++,

( n ≥ 2 ,且 n ∈N ),则

sinα1 + sinα2 + + sinαn ≤ n sinδ

sinα1 ·sinα2 · ·sinαn ≤ sin n δ

cosα1 + cosα2 + + cosαn ≤ n co sδ

cosα1 ·cosα2 · ·cosαn ≤ cos n δ

当且仅当α1 =α2 ==αn 时,取“=”号。

定理4:对于任意角α1 、α2 、… 、αn ∈[0 ,π],令δ=12n n ααα+++ ,

( n ≥ 2 ,且 n ∈N ),则

sinα1 + sinα2 + + sinαn ≤ n sinδ

sinα1·sinα2 · ·sinαn ≤ sin n δ

当且仅当α1 =α2 ==αn 时,取“=”号。

定理5:对于任意角α1 、α2 、… 、αn ∈[2π-, 2π],令δ=12n n ααα+++,( n ≥ 2 ,且 n ∈N ),则

cosα1 + cosα2 + + cosαn ≤ n cosδ

cosα1 ·cosα2 · ·cosαn ≤ cos n δ

当且仅当α1 =α2 ==αn 时,取“=”号。

定理6:对于任意角α1 、α2 、… 、αn ∈[π,2π],令δ=12n n ααα+++,

( n ≥ 2 ,且 n ∈N ),则

│sinα1 + sinα2 + + sinαn │≤ n │sinδ│ │sinα1 ·sinα2 · ·sinαn │≤│sin n δ│

当且仅当α1 =α2 ==αn 时,取“=”号。

定理7:对于任意角α1 、α2 、… 、αn ∈[

2π, 32π],令δ=12n n ααα+++,( n ≥ 2 ,且 n ∈N ),则

│cosα1 + cosα2 + + cosαn │≤ n │cosδ│ │cosα1 ·cosα2 · ·cosαn │≤│cos n δ│

当且仅当α1 =α2 ==αn 时,取“=”号。

我们不妨统称上述定理为 正余弦均值定理 或 正余弦均值不等式。其中,定理2、定理3、定理6、定理7 的实质可以概括为 定理4 及

定理5 。当然,以上定理可以拓展到任意周期内的相应角,这里不再赘述。

因以上定理的证明大同小异,所以这里我们只给出 定理3 的证明,其它定理的证明类似。

我们知道,有下列著名的Jensen 不等式

若 )(x f 是上凸函数,则对 )(x f 定义域中任何 n x x x ,,,21 ,有

??

? ??+++≤+++n x x x f n x f x f x f n n 2121)()()( 。 当且仅当 n x x x === 21 时,等号成立。

证明:

(1) 当 ]2,0[π

∈x 时,函数 x sin 和 x cos 都是上凸函数,所以根据 Jensen 不等式,当 ]2

,0[,,,221π

ααα∈ 时,必有 n n αααsin sin sin 21+++ ??

? ??+++≤n n ααα 21sin , n n αααcos cos cos 21+++ ??? ??+++≤n n ααα 21cos , 当且仅当 n ααα=== 21 时,取“=”号。

令 n n

αααδ+++= 21 ,则有

δαααsin sin sin sin 21n n ≤+++ ,

δαααcos cos cos cos 21n n ≤+++ 。

(2)当 ]2,0(π

∈x 时,函数 x sin ln 是上凸函数,所以根据 Jensen 不等式,

当 ]2,0(,,,221π

ααα∈ 时,必有 n n αααsin ln sin ln sin ln 21+++ ??? ??+++≤n n ααα 21

sin ln ,

当且仅当 n ααα=== 21 时,取“=”号。

令 n

n

αααδ+++= 21 ,则有

δαααsin ln sin ln sin ln sin ln 21n n ≤+++ , )ln(sin )sin sin ln(sin 21δαααn n ≤??? ,

δαααn n sin sin sin sin 21≤??? 。

如果有某些 0=i α ,由于 00sin sin ==i α ,所以

δαααn n sin 0sin sin sin 21≤=??? ,

这时不等式也成立。

(3)当 )2,0[π

∈x 时,函数 x cos ln 是上凸函数,所以根据 Jensen 不等式,

当 )2,0[,,,221π

ααα∈ 时,必有 n n αααcos ln cos ln cos ln 21+++ ??? ??+++≤n n ααα 21cos ln ,

当且仅当 n ααα=== 21 时,取“=”号。

令 n

n

αααδ+++= 21 ,则有

δαααcos ln cos ln cos ln cos ln 21n n ≤+++ ,

)ln(cos )cos cos ln(cos 21δαααn n ≤??? , δαααn n sin cos cos cos 21≤??? 。

如果有某些 2πα=i ,由于 02

cos cos ==παi ,所以 δαααn n sin 0cos cos cos 21≤=??? ,

这时不等式也成立。

上述证明过程不只是为我们推导了 正余弦均值不等式 ,更重要的是它为我们提供了一个解决本文开头就提出的例子的一般性方法: 其中对于 ⑴、⑵、⑸ 则是 定理4 的特例。

对于 ⑶、⑷ 则可设 角C为最大角,角B为最小角,

令 C'=C B 2+,B'=C B 2

-, A'=A, 由 A+B+C=π,得 A'、B'、C' 均为锐角,并且由正余弦中值定理的证明方法可得,

cos A'+ cos B'+ cos C' ≥ cos A+ cos B+ cos C cos A'·cos B'·cos C' ≥ cos A·cos B·cos C

当且仅当 A=B=C 时,取“=”号。

问题从而转化为 定理2 的特例。

对于 ⑹、⑺ 又可通过正余弦半角公式、和差化积、积化和差公式等变形为 ⑷,便可得出结论。

可以看出,⑴ 题 ─── ⑹ 题表面为等式,其本质为 不等 ! 这是 等 与 不等 的辩证的统一。

正余弦均值不等式 有其重要的应用价值,一般对于诸如:

① 在三角形中,已知 a=10,A=20°,求三角形面积的最大值?

② 定圆中三角形面积的最大值?

③ 定圆中三角形边长的最大值?

④ 平面凸 n 边形 n 个内角满足什么关系时其正弦值之和最大?

⑤ 平面凸 n 边形 n 个内角满足什么关系时其余弦值之和最小? (n ≥5)

等类型的问题可通过简单变形后得出结论或直接得到结论。其中⑤要注意条件(n ≥5),需稍作变换后可由 定理7 直得结果。在现行高中数学教材中这样的题目广泛存在,此处不再一一列举。本文谨此起一抛砖引玉的作用,不妥之处敬请同行们指正。

1.2.2正弦、余弦定理应用

1.2.2解斜三角形 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题, 要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用二:测量高度 例1 如图,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。设计一种测量建筑物高度AB 的方法 分析:由于建筑物的底部B 是不可到达的,所以不能直接测量建筑物的高。由解直角三角形的知识,只要能测出一点C 到建筑物的顶部A 的距离CA ,并测出由点C 观察A 的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA 的长。 解:选择一条水平基线HG , 使H 、G 、B 三点在同一条直线上,由在H, G 两点用测角仪器测得A 的仰角分别为α,β,CD=a. 测角仪器的高为h, 那么,在△ACD 中,根据正弦定理可得: sin sin() a AC βαβ= - sin asin sin = sin(-) AB AE h AC h h ααβαβ=+=++ 例2 如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=54°40′, 在塔底C 处测得A 处的俯角β=50°1′ 。已知铁塔BC 部分的高为27.3m, 求出山高CD (精确到1m ) 分析:根据已知条件,应该设法计算出AB 或AC 的长 解:在△ABC 中, ∠BCA=90°+ β , ∠ABC=90°-α, , ∠BAC= α -β, ∠BAD=α. 根据正弦定理得: E D G H C A B A α β

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

正弦定理和余弦定理

04—正弦定理和余弦定理 利用正弦定理解三角形 (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况. [例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2 b ,且 a > b ,则B =( ) A.π6 B.π3 C.2π3 D.5π 6 (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6,则b =________. [解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cos A =12b 中,得2R sin A ·sin B cos C +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12,即sin(A +C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6 . (2)在△ABC 中,∵sin B =12,0b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°. 由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·????-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B. (2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +3 2 c =b ,化简 整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π 6 利用正、余弦定理解三角形 [例3] 设△ABC 1,A =2B . (1)求a 的值;(2)求sin ??? ?A +π 4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 2 2ac .因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-1 3 .因为0

正弦定理和余弦定理的应用

第二节应用举例 题型一 测量距离问题 A 、 B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点 C ,测出 AC 的距离是55m, 51=∠BAC , 75=∠ACB .求A 、B 两点间的距离(精 确到1.0m ). 分析 所求的边AB 的对角是已知的,又已知三角形的一边AC ,根 据三角形内角和定理可计算出AC 的对角,根据正弦定理,可以计算出边AB . 解答 根据正弦定理,得 ABC AC ACB AB ∠= ∠sin sin ABC ACB ABC ACB AC AB ∠∠= ∠∠=sin sin 55sin sin 76554 sin 75sin 55)7551180sin(75sin 55?≈=--= (m) 点拨 本题是测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决。 本题型的解题关键在于明确:(1)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决。(2)测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化 A B C

为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题。 衍生1★★ 如图所示,客轮以速度v 2由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度V 沿直线匀速航行,将货物送达客轮,已知BC AB ⊥,且50=-BC AB 海里。若两船同时启航出发,则两船相遇之处距C 点 海里。(结果精确到小数点后1位) 解析 AB DB 2< ∴两船相遇点在BC 上,可设为E ,设x CE =,则 V BE AB DE 22+= 故 V x x 45cos 2252)225(22??-+V x 2)50(50-+= 得 3 5000 2= x ,∴8.40≈x 答案 8.40 点拨 本题考查了测量距离问题。 衍生2★★★如图所示,B A ,两点都在河的对岸(不可到达),设计一种测量B A , 两点间距离的方法。 分析 可以先计算出河的这一岸的一点C 到对岸两点的距离, 再测 A B C D α β A γ δ

正弦定理和余弦定理详细讲解

高考风向 1.考查正弦定理、余弦定理的推导; 2.利用正、余弦定理判断三角形的形状和解三角形; 3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.

学习要领 1.理解正弦定理、余弦定理的意义和作用; 2.通 过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识梳理 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可 以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦 定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab .

3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半 径),并可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解 [难点正本 疑点清源] 1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时

需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△AB C的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a-4,a ,a +4,则(a+4)2=(a -4)2+a2-2a (a-4) co s 120°,解得a =10,故S =12×10×6×s in 120°=15错误!. 答案 15错误! 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C间的距离是________海里. 解析 由正弦定理,知 B Csi n 60° =错误!.解得BC =5错误!(海里). 答案 5错误! 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68si n 120°si n 45° =34\r(6)(海里),船的航行速度为错误!=错误!(海里/时). 答案 错误! 4.在△ABC 中,若2错误!abs in C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a2+b 2+c 2,a 2+b2-c 2=2ab cos C 相加,得a 2+b 2=2ab sin 错误!.又a2+b 2≥2ab ,所以 sin 错误!≥1,从而s in 错误!=1,且a =b,C =错误!时等号成立,所以△ABC 是等边三角形. 答案 等边三角形 5.(2010·江苏卷)在锐角△A BC中,角A,B ,C 的对边分别为a ,b ,c.

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

浅谈正弦、余弦定理在中考中的应用.doc

浅谈正弦、余弦定理在中考中的 应用 (1)余弦定理:c2=a2+b2-2ab*cosC 文字表述:三角形任何一边的平方等于其他两边平方的和减去这两边 与它们夹角的余弦的积的两倍。 (2)正弦定理:a/sinA=b/sinB=c/sinC=2r(r 为Z\ABC 外接圆的 半径) 文字表述:在一个三角形中,各边和它所对角的正弦的比值相等。 F面我们来证明: 证明:(1)作BC上的高AD=h,设CD二x,则BD=a-x 贝ij b2=h2+x2=c2- (a~x) 2+x2=c2-a2+2ax-x2+ x2 又x二b*cosC 所以c2=a2+b2-2ab*cosC (2)因为sinB=h/c, sinC=h/b 所以h二b*sinC二c*sinB 所以b/sinB=c/sinC 同理可得:a/si nA二b/s i nB二c/sinC 下面我们来看如何运用正弦、余弦定理解题: 例1: 25-右「/XABC 中,AC-BC. ZACB^90: , D、E 是用线AB 上两点.ZDCE^45c (1)当CE丄AB时,点D与点A晅合?能然DE‘=AD ‘十BE’(不必证明) (2)如图,当点D不与点A直合时,求证:DE2=AD-4-BE2 (3 )当点D衽BA的延L3上时.(2 )中的结论是否成立?训山图形.说明理由? (2)证明:令ZACD二Zl, ZBCE=Z2,则Z1 + Z2=ZACB~ZDCE=45° 因为AD/sinZl=CD/sinZA, BE/sinZ2=CE/sinZB, sinZA= sinZB= sin45° C 所以AD2+ BE2 = (CD:f:sinZl/sinZA) 2+ (CE* sinZ2/sinZB) 2 =(CD2* sin2Z 1+ CE2* sin2Z2)/ sin245°又 CD/sin(45°+Z2)= CE/sin(45°+ Z1 )=DE/sin45°所以AD2+ BE2={[ DE* sin(45°+ Z2) *sinZl/sin450]2 + A [DE* sin(45°+Zl) *sinZ2 /sin450]2}/ sin245°因为sin(45°+Z2) *sinZl = sin(45°+Z2) *sin (Z45°-Z2) =cos2Z2/2, sin(45°+Zl) *sinZ2= sin(45°+Zl) *sin (Z45°-Z1) =cos2Zl/2, 2 (Z1+Z2) =90° 所以AD2+ BE2 =DE2 cos22Z2+ DE2COS22Z1= DE2(cos22Z2+sin22Z2)= DE2 即DE2=

正弦函数余弦函数的图像(附)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象?

答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线. 根据诱导公式sin ????x +π2=cos x ,x ∈R .只需把正弦函数y =sin x ,x ∈R 的图象向左平移π2个单位长度即可得到余弦函数图象(如图). 要画出y =cos x ,x ∈[0,2π]的图象,可以通过描出(0,1),????π2,0,(π,-1),????3 2π,0,(2π,1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y =cos x ,x ∈[0,2π]的图象. 思考 在下面所给的坐标系中如何画出y =cos x ,x ∈[0,2π]的图象? 答案

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

正弦、余弦定理应用

1.2.3正弦、余弦定理应用 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用三:测量角度 例1 如图 一艘海轮从A 出发,沿北偏东75°的方向航行67.5 n mile 后到达海岛C. 如果下次航行直接从A 出发到达C, 此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01 n mile ) 0000 ABC ABC=1807532137∠-+=解:在中, 220 AC AB BC 2AB BC cos 67.554267.554cos137 =113.15 ABC +-??∠+-???22根据余弦定理可知: =BC sin AC CAB ABC =∠∠根据正弦定理可知:sin 0 sin 54sin137sin 0.3255113.15 BC ABC CAB AC ∠∠==≈ 00019 7556CAB CAB ∠=-∠= 答:此船应该沿北偏东56°的方向航行,需要航行113.15 n mile. 应用四:有关三角形计算 知识1:在△ABC 中,边BC,CA,AB 上的高分别记为h a , h b ,h c ,那么容易证明: h a =bsinC=csinB h b =csinA=asinC h c =bsinC=csinB 32C B 0

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

均值不等式的总结与应用

均值不等式总结及应用 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 22b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若 * ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则 2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=” ) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则 2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(2 22 b a b a +≤ +(当且仅当b a =时取“=”) 说明: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值围、证明不等式、解决实际问题方面有广泛的应用

应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+ 12x 2 (2)y =x +1x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 【解题技巧】 技巧一:凑项 例 已知5 4x <,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--?? 231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

专题 正余弦定理的应用

正余弦定理的应用 1、【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________. 2、【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 3、【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b ,cos B =2 3 ,求c 的值; (2)若sin cos 2A B a b =,求sin()2 B π +的值. 4、【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥 AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线 段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径. 已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米). (1)若道路PB 与桥AB 垂直,求道路PB 的长; (2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由; (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 5、【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

正弦余弦均值不等式及其应用

正余弦均值不等式及其应用 石嘴山市一中 刘 先看个例子: 在 △ABC 中,分别判断满足下列条件的三角形形状 ? ⑴ sin A + sin B + sin C = 332 ⑵ sin A·sin B·sin C = 338 ⑶ cos A + cos B + cos C = 32 ⑷ cos A·cos B·cos C = 18 ⑸ sin A 2+ sin B 2+ sin C 2 = 32 ⑹2sin A +2sin B +2sin C = 94 ⑺2cos A + 2cos B + 2cos C = 32 答案:以上各题的三角形均仅为正三角! 对于这样的题目,往往首先想到用三角恒等变形或正余弦定理直接导出 A = B = C 或 a = b = c 。实践证明,这种方法根本行不通! 这些题目一般思路是灵活借用判别式法、不等式法、数形结合法等进行所谓“巧妙变换”来解之。其“巧妙”程度因题而异,没有固定模式,不易掌握。实际上,这些题目属于同一类问题,应有统一解法,本文就此问题进行探讨。 定理1:对于任意角α、β,令 γ = 2αβ + ,则 │sinα+ sinβ│≤ 2│sinγ│ ① sinα·sinβ ≤ 2sin γ ② │cosα+ cosβ│≤ 2│cosγ│ ③ cosα·cosβ ≤ 2cos γ ④ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。

定理1 仅是本文的特例,我们可以称: ① 为 正弦和中值最大不等式; ② 为 正弦积中值最大不等式; ③ 为 余弦和中值最大不等式; ④ 为 余弦积中值最大不等式, 也可把它们统称为 正余弦中值定理 或 正余弦中值不等式。 证明:① ∵│sinα+ sinβ│=│2 sin 2αβ +·cos 2αβ -│≤│2 sin 2αβ +│ ∴│sinα+ sinβ│≤ 2│sinγ│ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。 ② ∵ sinα·sinβ= 12 [cos(α-β) - cos(α+β)] = 12[cos(α-β) - 1 + 2·sin 2(2αβ+)]≤ sin 2(2αβ+) ∴ sinα·sinβ ≤ sin2γ 当且仅当 α=β + 2 kπ( k ∈Z )时,取“=”号。 ③、④ 同理可证。 注意:②、④ 没有绝对值符号,比如:α=2π,β=2π -,得 sinα·sinβ<sin2γ,但│sinα·sinβ│>│sin2γ│。 定理2:对于任意角 α、β、γ ∈[0, 2 π],令δ= 3αβγ++,则 sinα+ sinβ+ sinγ ≤ 3 sinδ sinα·sinβ·sinγ ≤ sin 3δ cosα+ cosβ+ cosγ ≤ 3 cosδ cosα·cosβ·cosγ ≤ cos 3δ 当且仅当 α=β=γ 时,取“=”号。 定理3:对于任意角α1 、α2 、… 、αn ∈[0, 2π],令δ=12 n n ααα+++, ( n ≥ 2 ,且 n ∈N ),则 sinα1 + sinα2 + + sinαn ≤ n sinδ sinα1 ·sinα2 · ·sinαn ≤ sin n δ

数学B版教学设计-第一册第二章第9课时-均值不等式及其应用1

2.2.4 均值不等式及其应用》第1课时 教学课时:2课时 教学目标: 1、使学生学会推导均值不等式; 2、帮助学生理解均值不等式; 3、训练学生初步掌握均值不等式的应用; 4、进一步训练学生的逻辑推理、数学运算、直观想象等数学素养。 教学重点: 学生对均值不等式的推导、理解及初步应用。 教学难点: 学生对均值不等式的理解。 教学过程: 一、新课讲解: (一)相关概念: 1.给定两个正数a,b,数a+b 称为a,b的算术平均数;数√ab称为a,b的几何平均数。 2 2.多个正数的算术平均值和几何平均值的定义。 【设计意图】 学好本节内容的预备知识。 (二)学生活动1: 完成教材P72“尝试与发现”,解决下列问题: 1.算术平均数的几何意义?几何平均值的几何意义? 2.它们的大小关系如何呢? 【设计意图】 从具体事例理解和掌握算术平均值和几何平均值的几何意义以及大小关系。(三)均值不等式: 1.语言表述:两个正数的算术平均值大于或等于它们的几何平均值。 ≥√ab,当且仅当a=b时,等号成立。2.数学表达:如果a,b都是正数,那么a+b 2 证明:教材P73页。 (四)深度分析:

【均值不等式】——又称基本不等式 1.基本不等式中的a,b还可以是零,其实质是:两个正实数的算术平均值不小于它们的几何平均值。 2.均值不等式有什么几何意义呢? 研究:将均值不等式两边平方得,(a+b 2) 2 ≥ab,可以得出:均值不等式的一个几何意义: 所有周长一定的矩形中,正方形的面积最大。 3.【拓展】:请回答教材P73页的“想一想”。 【设计意图】 让学生从多角度来理解和掌握均值不等式。 (五)学生活动2: 师生一起研究教材P73 —“探索与研究”中的问题,可以和你的同桌交流,给出相应的结论。 【设计意图】 让学生看到均值不等式的“美”,感受到数学的几何之美。 二、典型例题: 例1 已知x>0,求y=x+1 x 的最小值,并说明x为何值时y取得最小值。 解:因为x>0,所以根据均值不等式有x+1 x ≥2√x?1 x =2,其中等号成立当且仅当x=1 x , 即x2=1,解得x=1或x=?1(舍)。 因此x=1时,y取得最小值2。 【设计意图】引导学生注意使用均值不等式的条件以及解题的规范性培养。 例2 已知ab>0,求证:b a +a b ≥2,并推导等号成立的条件. 证明:因为ab>0,所以b a >0,a b >0.根据均值不等式,得 b a +a b ≥2√b a ?a b =2,即b a +a b ≥2。 当且仅当b a =a b ,即a2=b2时,等号成立.因为ab>0,所以等号成立的条件是a=b。 【设计意图】让学生习得均值不等式在证明题中的应用。 三、归纳总结: 1.算术平均值和几何平均值

相关文档
最新文档