导热实验讲义

导热实验讲义
导热实验讲义

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2)

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理 七、实验数据处理 1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。 实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。实验装置所用紫铜管的规格162mm mm φ?、 1.2l m =,求得紫铜管的外表面积 200.010.060318576281.o S d l m m m ππ=??=??=。 根据2 4s s V V u A d π= =、0.012d m =,得到流速u ,见下表2: 表2 流速数据 取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示: 表3 查得的数据 t 进/℃ t 出/℃ t 平均/℃ ()p c J kg ????? ℃ Pa s μ? ()W m λ?????℃ ()3 kg m ρ-? 22.1 77.3 49.7 1005 0.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.6 84 59.8 1005 0.0000201 0.029 1.06 根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、 ()()ln m T t T t t T t T t ---?=--进出进出 , 求出Q 序号 ()31s V m h -? ()1u m s -? 1 2.5 6.140237107 2 5 12.28047421 3 7.5 18.42071132 4 10 24.56094843 5 12.5 30.70118553 6 15 36.84142264 7 17.5 42.98165975 8 20 49.12189685

化工原理实验传热实验报告

传热膜系数测定实验(第四组) 一、实验目的 1、了解套管换热器的结构和壁温的测量方法 2、了解影响给热系数的因素和强化传热的途径 3、体会计算机采集与控制软件对提高实验效率的作用 4、学会给热系数的实验测定和数据处理方法 二、实验内容 1、测定空气在圆管内作强制湍流时的给热系数α1 2、测定加入静态混合器后空气的强制湍流给热系数α1’ 3、回归α1和α1’联式4.0Pr Re ??=a A Nu 中的参数A 、a * 4、测定两个条件下铜管内空气的能量损失 二、实验原理 间壁式传热过程是由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热三个传热过程所组成。由于过程复杂,影响因素多,机理不清楚,所以采用量纲分析法来确定给热系数。 1)寻找影响因素 物性:ρ,μ ,λ,c p 设备特征尺寸:l 操作:u ,βg ΔT 则:α=f (ρ,μ,λ,c p ,l ,u ,βg ΔT ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1],λ[ML T -3 Q -1],c p [L 2 T -2 Q -1],l [L] ,u [LT -1], βg ΔT [L T -2], α[MT -3 Q -1]] 3)选基本变量(独立,含M ,L ,T ,Q-热力学温度) ρ,l ,μ, λ 4)无量纲化非基本变量 α:Nu =αl/λ u: Re =ρlu/μ c p : Pr =c p μ/λ βg ΔT : Gr =βg ΔT l 3ρ2/μ2 5)原函数无量纲化 6)实验 Nu =ARe a Pr b Gr c 强制对流圆管内表面加热:Nu =ARe a Pr 0.4 圆管传热基本方程: 热量衡算方程: 圆管传热牛顿冷却定律: 圆筒壁传导热流量:)]/()ln[)()()/ln(11221122121 2w w w w w w w w t T t T t T t T A A A A Q -----?-?=δλ 空气流量由孔板流量测量:54.02.26P q v ??= [m 3h -1,kPa] 空气的定性温度:t=(t 1+t 2)/2 [℃]

气—气传热综合实验操作讲义

气—气传热综合实验讲义 一、实验目的: 1.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 i的测定方法,加 m 0.4中常数 A、m 的值; 2.通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气—水蒸气强化套管换热器的 m 传热的基本理论和基本方式; 3.了解套管换热器的管内压降p和 Nu之间的关系; 二、实验内容: 实验一: ①测定 5~6 个不同流速下简单套管换热器的对流传热系数 i。 m 0.4 ③测定 5~6 个不同流速下简单套管换热器的管内压降p1。 实验二: ①测定 5~6 个不同流速下强化套管换热器的对流传热系数 i。 m ③测定 5~6 个不同流速下强化套管换热器的管内压降p 2。并在同一坐标系下绘制普通管 p1 ~Nu 与强化管p 2 ~Nu 的关系曲线。比较实验结果。 ④同一流量下,按实验一所得准数关联式求得 Nu0,计算传热强化比 Nu/Nu0。 三、实验原理 实验一普通套管换热器传热系数及其准数关联式的测定 1. 对流传热系数 i的测定

对流传热系数 i可以根据牛顿冷却定律,用实验来测定。 深对其概念和影响因素的理解,并应用线性回归分析方法,确定关联式Nu = A * Re * Pr 实验研究,测定其准数关联式Nu = B * Re中常数B、m 的值和强化比Nu / Nu 0,了解强化②对α i的实验数据进行线性回归,求关联式Nu=ARe Pr 中常数A、m 的值。 ②对α i的实验数据进行线性回归,求关联式Nu=BRe 中常数B、m 的值。

i=Q i t m S i (2-1) 2 Q i—管内传热速率,W; 2 t mi—内管壁面温度与内管流体温度的平均温差,℃。 平均温差由下式确定: t mi t w ( )(2-2) 2 式中:t i1,t i2—冷流体的入口、出口温度,℃; t w—壁面平均温度,℃; 因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度 和壁面平均温度近似相等,用 t w来表示。 管内换热面积: S i d i L i(2-3) 式中:d i—内管管内径,m; L i—传热管测量段的实际长度,m; 由热量衡算式: Q i W i c pi (t i 2 t i1)(2-4) 其中质量流量由下式求得: W i(2-5) 3600 3 cp i—冷流体的定压比热,kJ / (kg·℃); 3 cp i和ρi可根据定性温度 t m查得, t m为冷流体进出口平均温度。t i1、t i2、 2 tw、V i可采取一定的测量手段得到。

导热系数实验报告

一、【实验目的】 用稳态法测定金属、空气、橡皮的导热系数。 二、【实验仪器】 导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块 三、【实验原理】 1、良导体(金属、空气)导热系数的测定 根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ?时间内通过面积S 的热量Q ?免租下述表达式: h S t Q ) (21θθλ-=?? (3-26-1) 式中, t Q ??为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ?。 在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为 冰水混合物 电源 输入 调零 数字电压表 FD-TX-FPZ-II 导热系数电压表 T 2 T 1 220V 110V 导热系数测定仪 测1 测1 测2 测2 表 风扇 A B C 图4-9-1 稳态法测定导热系数实验装置

2 21)(B B R h t Q πθθλ-=?? (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。当热传导达到稳定状态时,θ1和θ2的值不变, 遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量 t Q ??。实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。当铜盘P 的温度上升到高于稳定时的θ2值若干摄氏度后,在将A 移开,让P 自然冷却。观察其温度θ随时间t 变化情况,然后由此求出铜盘在θ2的冷却速率 2 θθθ=??t ,而2 θθθ=??t mc ,就是铜盘P 在温度为θ2时的散热速率。 2、不良导体(橡皮)的测定 导热系数是表征物质热传导性质的物理量。材料结构的变化与所含杂质的不同对材料导热系数数值都有明显的影响,因此材料的导热系数常常需要由实验去具体测定。 测量导热系数在这里我们用的是稳态法,在稳态法中,先利用热源对样品加热,样品内部的温差使热量从高温向低温处传导,样品内部各点的温度将随加热快慢和传热快慢的影响而变动;适当控制实验条件和实验参数可使加热和传热的过程达到平衡状态,则待测样品内部可能形成稳定的温度分布,根据这一温度分布就可以计算出导热系数。而在动态法中,最终在样品内部所形成的温度分布是随时间变化的,如呈周期性的变化,变化的周期和幅度亦受实验条件和加热快慢的影响,与导热系数的大小有关。 本实验应用稳态法测量不良导体(橡皮样品)的导热系数,学习用物体散热速率求传导速率的实验方法。 1898年C .H .Le e s .首先使用平板法测量不良导体的导热系数,这是一种稳态法,实验中,样品制成平板状,其上端面与一个稳定的均匀发热体充分接触,下端面与一均匀散热体相接触。由于平板样品的侧面积比平板平面小很多,可以认为热量只沿着上下方向垂直传递,横向由侧面散去的热量可以忽略不计,即可以认为,样品内只有在垂直样品平面的方向上有温度梯度,在同一平面内,各处的温度相同。 设稳态时,样品的上下平面温度分别为 12θθ,根据傅立叶传导方程,在t ?时间内通过 样品的热量Q ?满足下式:S h t Q B 21θθλ-=?? (1) 式中λ为样品的导热系数,B h 为样品的厚度,S 为样品的平面面积,实验中样品为圆盘状。设圆盘样品的直径为B d ,则半径为B R ,则由(1)式得: 2 21B B R h t Q πθθλ-=?? (2) 实验装置如图1所示、固定于底座的三个支架上,支撑着一个铜散热盘P ,散热盘P 可以借助底座内的风扇,达到稳定有效的散热。散热盘上安放面积相同的圆盘样品B ,样品B 上放置一个圆盘状加热盘C ,其面积也与样品B 的面积相同,加热盘C 是由单片机控制的自适应电加热,可以设定加热盘的温度。

传热仿真实习实验指导

基本原理: 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为: (4-1) 对于强制湍流而言,Gr准数可以忽略,故 (4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数A。 用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边取对数,即得到直线方程: (4-3) 在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,则可得到系数A,即: (4-4) 用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。 对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为: 实验中改变冷却水的流量以改变Re准数的值。根据定性温度(冷空气进、出口温度的算术平均值)计算对应的Pr准数值。同时,由牛顿冷却定律,求出不同流速下的传热膜系数α值。进而算得Nu准数值。 牛顿冷却定律: (4-5) 式中: α—传热膜系数,[W/m2·℃]; Q—传热量,[W]; A—总传热面积,[m2]; △t m—管壁温度与管内流体温度的对数平均温差,[℃]。 传热量Q可由下式求得: (4-6)式中:

W—质量流量,[kg/h]; Cp—流体定压比热,[J/kg·℃]; t1、t2—流体进、出口温度,[℃]; ρ—定性温度下流体密度,[kg/m3]; V—流体体积流量,[m3/s]。 设备参数: 孔板流量计: 流量计算关联式:V=4.49*R0.5 O),V——空气流量 (m3 /h) 式中:R——孔板压差(mmH 2 换热套管: 套管外管为玻璃管,内管为黄铜管。 套管有效长度:1.25m,内管内径:0.022m 计算方法、原理、公式: 对流传热的核心问题是求算传热膜系数α,当流体无相变时对流传热准数关联式的一般形式为: (4-1) 对于强制湍流而言,Gr准数可以忽略,故 (4-2) 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n和系数 A。 用图解法对多变量方程进行关联时,要对不同变量Re和Pr分别回归。本实验可简化上式,即取n=0.4(流体被加热)。这样,上式即变为单变量方程,再两边 取对数,即得到直线议程: (4-3)

传热实验讲义

换热器的操作及传热系数的测定 一、实验目的 1.了解换热器的结构; 2.掌握换热器主要性能指标的标定方法; 3.学会换热器的操作方法。 二、实验原理 在工业生产中换热器是一种经常使用的换热设备。它是由许多个传热元件(如列管换热器的管束)组成。冷、热流体借助于换热器中的传热元件进行热量交换而达到加热或冷却任务。由于传热元件的结构形式繁多,由此构成的各种换热器之性能差异颇大。为了合理的选用或设计换热器对它们的性能应该要充分的了解。除了文献资料外,实验测定换热器的性能是重要途径之一。 换热器是一种节能设备,它既能回收热能,又需消耗机械能。因此,度量一个换热器性能好坏的标准是换热器的传热系数K 和流体通过换热器的阻力损失Δp 。前者反映了回收热量的能力,后者是消耗机械能的标志。因此.在组织换热器的性能测定时,需要安排上述两方面的内容。 1.传热系数K 速率方程式为:m t A K Q ???=,式中: t m m t t ???=?ε逆 1 2211221ln )()t T t T t T t T t m -----=?(逆 而Q = q V ρCp Δt = q V ρCp ( t 2 - t 1 ) 换热系数K 是冷流体侧的传热面为基准的传热系数。即:),(h c G G f K = m c h h c c A A A A K λδαα+?+=11 符号说明: K 传热系数,W/m 2.K ; α 流体的给热系数,W/m 2.K ;

A 换热器的传热面积,m 2; Qv 流体的体积流量,m 3/s ; Cp 流体的恒压热容。j/kg.K ; T 热流体温度,℃; t 冷流体温度,℃; Δt 传热温度差,K 。 t ε? 传热平均温差的修正系数,全逆流时t ε?=1,对于单壳程双管程或二管程以上的t ε?值可从录附计算方法中求得。 λ 固体壁导热系数,W/m.K ; δ 固体壁厚度,m 。 由传热速率方程式可知:影响传热量的参数有传热面积A ,传热系数K 和过程的平均温度Δt m 三要素。 当生产工艺决定了流体的进出口温度后,传热负荷的变化是随流体的流速变化而变化。分析传热阻力的控制因素,用改变流体的流率或改变流体的进口温度,能较方便地满足生产工艺的要求。 2.流体流动的阻力损失 由流体力学知: 22 u p ??=?ρξ 式中:Δp 流体通过管道的阻力损失,Pa ; u 流体在换热器管道中的流速,m/s 。 3.换热器的操作和调整 换热器的热负荷发生变化时,需通过换热器的操作,以完成任务。由传热速率方程式知,影响传热量的参数有传热面积,传热系数和过程的平均温度差三要素,由热量衡算方程知,由于换热器的热(或冷)流体的进、出口温度,不能随意改变。在操作时的调节手段只能改变冷(或热)流体的流量和进口温度。 热(或冷)流体的进、出口温度由生产工艺决定。传热负荷的变化是由热(或冷)流体流速变化所致。由图1知,若冷(或热)流体流速的变化率相同,则仅能维持平均温差相同,不能满足热负荷变化的要求。若传热阻力受冷(或热)流体控制,采用较大的冷(或热)流体的变化率,使传热系教和平均温差同时发生变化,以达到热负荷变化的目的。若传热阻力受热(或冷)流体控制,应该采用调整冷(或热)流体的进口温度;使平均温差增加或减少,从而满足热负荷变化的要求。按照上述的操作原则进行调整,能较

传 热 综 合 实 验

传 热 综 合 实 验 一、实验目的 1.通过对本换热器的实验研究,可以掌握对流传热系数αi 的测定方法,加深对其概念和影响因素的理解。。 2.应用线性回归分析方法,确定关联式Nu=ARemPr 0.4 中常数A 、m 的值。 3.通过对管程内部插有螺旋线圈的空气-水蒸气强化套管换热器的实验研究,测定其准数关 联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。 二、实验原理 对于流体在圆形直管中作强制湍流时的对流传热系数的准数关联式可以表示成: n m C Nu Pr Re = (1) 系数C 与指数m 和n 则需由实验加以确定。对于气体,Pr 基本上不随温度而变,可视为一常数,因此,式(1)可简化为: m A Nu Re = (2) 式中: λαd Nu 2= μ ρ du =Re 通过实验测得不同流速下孔板流量计的压差,空气的进、出口温度和换热器的壁温(因 为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内、外壁温度与壁面的平均温度近似相等),根据所测的数据,经过查物性数据和计算,可求出不同流量下的Nu 和Re ,然后用线性回归方法确定关联式m A Nu Re =中常数A 、m 的值。 三、 设备主要技术数据 1. 传热管参数: 表1 实验装置结构参数 2.空气流量计 (1) 由孔板与压力传感器及数字显示仪表组成空气流量计。空气流量由公式[1]计算。 (第1套)6203.00)(113.18P V t ??=………………………………………………………………[1] (第2套)6203.00)(113.18P V t ??=………………………………………………………………[1] 其中, 0t V - 20℃ 下的体积流量,m 3/h ; P ?-孔板两端压差,Kpa

液液传热实验讲义

传热(冷水—热水)综合实验 一、实验目的: 1、通过对冷水—热水简单套管换热器的实验研究,掌握对流传热系数α及总传热系数o K 的测定方法,加深对其概念和影响因素的理解。 2、学会应用线性回归分析方法,确定关联式4.0m Pr ARe Nu =中常数A 、m 的值; 二、实验内容: 1、在套管式换热器中,测定5~6个不同流速下,管内冷水与管间热水之间的总传热系数o K ;流体与管壁面间对流传热系数o α和i α。 2、将测定值同运用o K 与o α,i α之间关系式计算得出的i α值进行比较;计算得出Nu1(实验)和Nu2(计算)的值 2、对实验数据进行线性回归,求关联式Nu1(实验)=ARe m Pr 0.4和Nu2(计算)=ARe m Pr 0.4中常数A 、m 的值。 三、实验原理 1、总传热系数o K 的测定: 由总传热速率方程式 m o o t S K Q ?= (1-1) m o o t S Q K ?= (1-2) 式中:Q —— 传热速率,W ; o S —— 换热管的外表面积,m 2; m t ?—— 对数平均温度差,℃; o K —— 基于管外表面积的总传热系数,W/( m 2·℃); 由热量衡算式: )(12t t C W Q P C -= (1-3) 式中:C W —— 冷流体的质量流量,kg/s ; P C —— 冷流体的定压比热,kJ/( kg·℃); 21,t t —— 分别为冷流体进、出口温度,℃; L d S o o π= (1-4) 式中:o d —— 传热管的外径,m ; L —— 传热管的有效长度,m ; 1 22112211212ln )()(ln t T t T t T t T t t t t t m -----=???-?=? (1-5) 式中:T 1,T 2 —— 分别为热流体进、出口温度,℃;

稳态法导热系数测定实验

稳态法导热系数测定实验 一、实验目的 1、通过实验使学生加深对傅立叶导热定律的认识。 2、通过实验,掌握在稳定热流情况下利用稳态平板法测定材料导热系数的方法。 3、确定材料的导热系数与温度之间的依变关系。 4、学习用温差热电偶测量温度的方法。 5、学习热工仪表的使用方法 二、实验原理 平板式稳态导热仪的测量原理是基于一维无限大平板稳态传热模型,这种方法是把被测材料做成比较薄的圆板形或方板形,薄板的一个表面进行加热,另一个表面则进行冷却,建立起沿厚度方向的温差。图1是无限大平板导热示意图。 图1 无限大平板的稳态导热示意图 根据傅立叶(Fourier )定律: ()()()T T T T c x x y y y y ρλλλτ???????=+++Φ??????? (1) 在一维无限大平板稳态传热时,方程(1)可简化为: 022=??x T (2) 其边界条件为 x=0时, T =T w1 x=δ时, T =T w2 可解得下列方程

)(21w w T T A Q -= δλ (3) 由式(3)可得 )(21w w T T A Q -??=δ λ (4) 式中 λ——导热系数,W/m ·℃; δ——试件厚度,m ; Q ——热流量,w ; A ——试件面积,m 2; T w1 ——试件下表面温度,℃; T w2 ——试件上表面温度,℃。 一般情况下,选择平板试件的尺寸要注意满足下列条件: D D 101 ~71 ≤δ 式中 D ——方板的短边长度,m 。 热流量Q 也可以由输入电压和电阻表示为: 2 U Q R = (5) 式中 U ——施加在加热板上的电压,V ; R ——加热板上内部加热电阻丝的电阻,Ω。 将式(5)带入式(4)得 )(212w w T T A R U -??=δ λ (6) 对应此λ的材料温度为 22 1w w T T T += (7)

气—气传热综合实验操作讲义

深对其概念和影响因素的理解,并应用线性回归分析方法,确定关联式 Nu = A * Re * Pr 实验研究,测定其准数关联式 Nu = B * Re 中常数 B 、m 的值和强化比 Nu / Nu 0 ,了解强化 ② 对α i 的实验数据进行线性回归,求关联式 Nu=ARe Pr 中常数 A 、m 的值。 ② 对α i 的实验数据进行线性回归,求关联式 Nu=BRe 中常数 B 、m 的值。 气—气传热综合实验讲义 一、 实验目的: 1. 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 α i 的测定方法,加 m 0.4 中常数 A 、m 的值; 2. 通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气—水蒸气强化套管换热器的 m 传热的基本理论和基本方式; 3. 了解套管换热器的管内压降 ?p 和 Nu 之间的关系; 二、 实验内容: 实验一: ① 测定 5~6 个不同流速下简单套管换热器的对流传热系数α i 。 m 0.4 ③ 测定 5~6 个不同流速下简单套管换热器的管内压降 ?p 1。 实验二: ① 测定 5~6 个不同流速下强化套管换热器的对流传热系数α i 。 m ③ 测定 5~6 个不同流速下强化套管换热器的管内压降 ?p 2 。并在同一坐标系下绘制普通管 ?p 1 ~Nu 与强化管 ?p 2 ~Nu 的关系曲线。比较实验结果。 ④ 同一流量下,按实验一所得准数关联式求得 Nu 0,计算传热强化比 Nu/Nu 0。 三、 实验原理 实验一 普通套管换热器传热系数及其准数关联式的测定 1. 对流传热系数α i 的测定 对流传热系数α i 可以根据牛顿冷却定律,用实验来测定。

化工原理传热实验步骤及内容

实验四传热实验 、实验目的 (1) 了解间壁式传热元件,掌握给热系数测定的实验方法。 (2) 学会给热系数测定的实验数据处理方法。 (3) 观察水蒸气在水平管外壁上的冷凝现象。 (4) 掌握热电阻测温的方法。 (5) 了解影响给热系数的因素和强化传热的途径 二、实验原理 在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。如图(4 - 1)所示,间壁式传热过程由热流体对固体壁面的对流传热, 固体壁面的热传导和固体壁面对冷流体的对流传热所组成。 图4-1间壁式传加程示意图 达到传热稳定时,有 Q -—爲)=卿/■沖仏一人.) -%4(丁-為)輛-场血(斥-咖 式中:Q —传热量,J / s ; m —热流体的质量流率,kg / s C PI—热流体的比热,J / (kg ? C); T i —热流体的进口温度,C; T2 —热流体的出口温度,C; m —冷流体的质量流率,kg / s (4-1 ) T

C p2 —冷流体的比热,J /(kg ? C ); 11 —冷流体的进口温度,C; t2 —冷流体的出口温度,C; 2 :-1 —热流体与固体壁面的对流传热系数,W / (m C ); A—热流体侧的对流传热面积,m; ";| —热流体与固体壁面的对数平均温差,C; 2 :-2 —冷流体与固体壁面的对流传热系数,W / (m C );A—冷流体侧的对流传热面积,m; |f\ —固体壁面与冷流体的对数平均温差,C; K —以传热面积A为基准的总给热系数,W / (m 2C); —冷热流体的对数平均温差,C; 热流体与固体壁面的对数平均温差可由式(4—2)计算, —[「J (4 - 2)亠4 一5 式中:T1 —热流体进口处热流体侧的壁面温度,C; TA2 —热流体出口处热流体侧的壁面温度,C。 固体壁面与冷流体的对数平均温差可由式(4—3)计算, r - :(4 —3) In切7 式中:t wi —冷流体进口处冷流体侧的壁面温度,C; t W2 —冷流体出口处冷流体侧的壁面温度,C。 热、冷流体间的对数平均温差可由式( 4 —4)计算, 当在套管式间壁换热器中,环隙通以水蒸气,内管管内通以冷空气或水进行对流传热系数测定实验时,则由式(4—1)得内管内壁面与冷空气或水的对流传热系数, 叫*-片) (4-5) 实验中测定紫铜管的壁温t wi、t w2;冷空气或水的进出口温度t l、t2;实验用紫铜管的 (4-4 )

套管换热器传热实验实验报告数据处理

套管换热器传热实验实验报告数据处理 我们组做的是实验I : 1, Q=m s1c 1 △t 1 求K 得先求Q Q=m s 1C 1△t 1 ,其中,C 1=所以得先求m s 1 , C 1, △t 1, ◇ 1m s1 =V s1 ρ 要得求V s1,V s1=u 1A ,V s1 =C 0A 0ρρρ/o (2)-gR C 0为空流系数,C 0=0.855,A 0为空口面积,A 0的计算方法如下:A 0 =π4 d 02 , d 0=20.32 mm,故 A 0= π4 ×(20.32 1000 )2=3.243293×10-4 m 2 R 为压计差读数 A=π4 d 2 ,d 为内管内径=20mm , 用内插法求解空气密度 ρ 值 这样求得m s 1, ◇ 2 C 1 的求法为先查表的相近温度下空气的C 值,然后用内插法求得对应平均温 度对应的的C 1值 ◇ 3 求△t 1= t △ t 1 ,= t = t 1 + t 2 2 t 1 为进口温度 t 2 为出口温度 进口温度t 1的求解方法 由热电偶中的电位Vt ,按照公式求[]2 000000402.00394645.0t t V E t t ++=得

Et ,再由852.4901004.810608.1105574.15 43-??+?=---t E t 求得t 1值 出口温度t 2的求解方法 由热电偶中的电位Vt ,按照公式[]2 000000402.00394645.0t t V E t t ++=求得 Et ,再由852.49010 04.810608.1105574.15 43-??+?=---t E t 求得t 2值 由以上步骤求出 Q 2 ,由Q=KA △t m 求出K 值 K= Q A △t m Q 由第一步已经求出,A 为内管内径对应的面积,A=2π rL ,r=17.8mm=0.0178 m, A=2×3.14×0.0178×1.224=0.13682362 m 2 3 ,求Re ,Nu 流体无相变强制湍流经圆形直管与管壁稳定对流传热时,对流传热准数关联式的函数关系为: (,,)l Nu f Re Pr d = 对于空气,在实验范围内,Pr 准数基本上为一常数;当管长与管径的比值大于50 时,其值对 Nu 的影响很小;则 Nu 仅为 Re 的函数,故上述函数关系一般可以处理成: m Nu aRe = 式中,a 和 m 为待定常数。 Re=du ρ μ d=2×0.0178 m =0.0356 m , u=Vs/(π×0.01782 )μ 和ρ用内插法,先查表 的相近温度的μ,ρ,再用线性关系计算求得。 测量空气一侧管壁的中区壁温T W ,由热电偶按前面公式求得;由下式可以计算空气与管壁

传热实验

序号:35 化工原理实验报告 实验名称:对流给热系数的测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工09-3班 姓名:曾学礼学号09402010337 同组者姓名:周锃刘翰卿 指导教师:张亚静 日期:2011年10月11日

一、实验目的 1. 观察水蒸气在换热管外壁上的冷凝现象,并判断冷凝类型; ; 2. 测定空气在园直管内强制对流给热系数α i 3. 应用线性回归分析方法,确定关联式Nu=ARe m Pr0.4中常数A、m的值; 4. 掌握热电阻测温的方法。 二、实验原理 在套管换热管器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式: VρC p(t2-t1)=αi A i(t w-t)m(1) 式中:V-------被加热流体体积流量,m3/s ρ--------被加热流体密度,kg/m3 C p--------被加热流体平均比热,J/(kg·℃) αi --------流体对内管内壁的对流给热系数,W/(m2·℃) t1、t2------被加热流体流进、出口的温度,℃; A i--------内管的外壁、内壁的传热面积,m2 (T-T w)m-------水蒸气与外壁间的对数平均温度差,℃。 (T-T w)m=(T1-T w1)-(T2-T w2)/ ln[(T1-T w1)/(T2-T w2)] (2) (t w-t)m-------内壁与流体间的对数平均温度差,℃ (t w-t)m=[(t w1-t1)-(t w2-t2)]/ln[(t w1-t1)/(t w2-t2)] (3) 式中:T1、T2-------蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2-------外壁和内壁上进出口温度,℃; 当内管材料的导热性能很好,即λ值很大时,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测该点的壁温。 由(3)式可得:αi= VρC p(t2-t1)/A i(t w-t)m (4) 若能测得被加热流体的V、t1、t2,内管的换热面积A i,水蒸汽温度T,壁温T w1、T w2,就可以通过上式计算出对流给热系数αi。 1.流体在只管内强制对流时的给热系数,可以按下列半经验公式求得: αi =0.023λRe0.8Pr0.4/d i 式中:αi ------流体在直管内强制对流时的给热系数,W/(m2.℃); λ ------流体的导热系数,W/(m2.℃); d i-------内管直径,m; Re-------流体在管内的雷诺数,无因次; Pr -------流体的普朗克常数,无因次;

液液传热实验讲义

2. 学会应用线性回归分析方法,确定关联式 Nu = ARe Pr 中常数 A 、m 的值; K o = S o ?t m 传热(冷水—热水)综合实验讲义 一、 实验目的 1. 通过对冷水—热水简单套管换热器的实验研究,掌握对流传热系数 α 及总传热系数 K o 的 测定方法,加深对其概念和影响因素的理解。 m 0.4 二、 实验内容 1. 在套管式换热器中,测定 5~6 个不同流速下,管内冷水与管间热水之间的总传热系数 K o ; 流体与管壁面间对流传热系数 α o 和 α i 。 2. 将测定值同运用 K o 与 α o , α i 之间关系式计算得出的 α i 值进行比较;计算得出 Nu1(实 验)和 Nu2(计算)的值 3. 对实验数据进行线性回归,求关联式 Nu1(实验)=ARe m Pr 0.4 和 Nu2(计算)=ARe m Pr 0.4 中常数 A 、m 的值。 三、 实验原理 1. 总传热系数 K o 的测定: 由总传热速率方程式 Q = K o S o ?t m (1-1) Q (1-2) 式中:Q —— 传热速率,W ; S o —— 换热管的外表面积,m 2; ?t m —— 对数平均温度差,℃; K o —— 基于管外表面积的总传热系数,W/( m 2·℃); 由热量衡算式: Q = W C C P (t 2 - t 1 ) (1-3) 1

?t m = ?t 2 - ?t 1 (T 1 - t 2 ) - (T 2 - t 1 ) ?t 2 T - t 2 ?t 1 T 2 - t 1 S i (t wm - t m ) t 1 + t 2 S o (T m - T wm ) T 1 + T 2 式中:W C —— 冷流体的质量流量,kg/s ; C P —— 冷流体的定压比热,kJ/( kg·℃); t 1 , t 2 —— 分别为冷流体进、出口温度,℃; S o = πd o L (1-4) 式中: d o —— 传热管的外径,m ; L —— 传热管的有效长度,m ; = (1-5) ln ln 1 式中:T 1,T 2 —— 分别为热流体进、出口温度,℃; 2. 对流传热系数α i , α o 的测定 对流传热系数α i , α o 可以根据牛顿冷却定律来实验测定: Q = α i S i (t wm - t m ) (1-6) Q (1-7) 式中:S i —— 换热管的内表面积, S i = πd i L m 2; t m —— 冷流体平均温度, t m = ℃; 2 t wm —— 换热管内壁表面的平均温度,℃; 同理: Q (1-8) 式中: T m —— 热流体平均温度, T m = ℃; 2 T wm —— 换热管外壁表面的平均温度,℃; 因为传热管为紫铜管,其导热系数很大,加上传热管壁很薄故认为 T wm ≈ t wm , T wm 用热 电偶来测量。 3. 总传热系数计算式 2

非良导体热导率的测量带实验数据处理

本科实验报告 (阅) 实验名称:非良导体热导率的测量 实验11 非良导体热导率的测量 【实验目的和要求】 1.学习热学实验的基本知识和技能。 2.学习测量非良导体热导率的基本原理的方法。 3.通过做物体冷却曲线和求平衡温度下物体的冷却速度,加深对数据图事法的理解。 【实验原理】 热可以从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分,这种现象叫做热传递。热传递的方式有三种:传导,对流和辐射。 设有一厚度为l、底面积为S?的薄圆板,上下两底面的温度T ,T 不相等,且T1>T2,则有热量自上底面传乡下底面(见图1),其热量可以表示为 (1)

图1 测量样品 式中,为热流量,代表单位时间里流过薄圆板的热量;为薄圆板内热流方向上的温度梯度,式中的负号表示热流方向与温度梯度的方向相反;为待 测薄圆板的热导率。 如果能保持上下两底面的温度不变(稳恒态)和传热面均匀,则,于是 (2) 得到 关键1.使待测薄圆板中的热传导过程保持为稳恒态。 2.测出稳恒态时的。 1.建立稳恒态 为了实现稳恒态,在试验中将待测薄圆板B置于两个直径与B相同的铝圆柱A,C 之间,且紧密接触,(见图2)。 图二测量装置 C内有加热用的电阻丝和用作温度传感器的热敏电阻,前者被用来做热源。首先,

可由EH-3数字化热学实验仪将C内的电阻丝加热,并将其温度稳定在设定的数值上。B的热导率尽管很小,但并不为零,固有热量通过B传递给A,使A的温度T A逐渐升高。当T A高于周围空气的温度时,A将向四周空气中散发热量。由于C的温度恒定,随着A的温度升高,一方面通过C通过B流向A的热流速率不断减小,另一方面A向周围空气中散热的速率则不断增加。当单位时间内A 从B 获得的热量等于它向周围空气中散发的热量时,A的温度就稳定不变了。 2.测量稳恒态时的 因为流过B的热流速率就是A从B获的热量的速率,而稳恒态时流入A的热流速率与它散发的热流速率相等,所以,可以通过测A在稳恒态时散热的热流速率来测。当A单独存在时,它在稳恒温度下向周围空气中散热的速率为 (3) 式中,为A的比热容;为A的质量;n=T=T2成为在稳恒温度T2时的冷却速度。 A的冷却速度可通过做冷却曲线的方法求得。具体测法是:当A、C已达稳恒态后,记下他们各自的稳恒温度T2,T1后,再断电并将B移开。使A,C接触数秒钟,将A 的温度上升到比T2高至某一个温度,再移开C,任A自然冷却,当TA降到比T2约高To(℃)时开始计时读数。以后每隔一分钟测一次TA,直到TA 低于T2约To(℃)时止。测的数据后,以时间t为横坐标,以TA为纵坐标做A 的冷却曲线,过曲线上纵坐标为T2的点做此曲线的切线,则斜率就是A在TA 的自然冷却速度,即 (4) 于是有(5) 但要注意,A自然冷却时所测出的与试验中稳恒态时A散热是的热流速率是不同的。因为A在自然冷却时,它的所有外表面都暴漏在空气中,都可以 散热,而在实验中的稳恒态时,A的上表面是与B接触的,故上表面是不散热的。由传热定律:物体因空气对流而散热的热流速率与物体暴露空气中的表面积成正比。设A的上下底面直径为d,高为h,则有 (6)

相关文档
最新文档