地震子波 数字信号实验报告

地震子波 数字信号实验报告
地震子波 数字信号实验报告

北科大数字图像处理实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称:《数字图像处理》课程实验 学生姓名:徐松松 专业:计算机科学与技术 班级:计1304 学号:41345053 指导教师:王志明 实验成绩: 实验时间:2016 年12 月15 日

一、实验目的与实验要求 1、实验目的 1. 熟悉图像高斯、脉冲等噪声的特点,以及其对图像的影响; 2. 理解图像去噪算法原理,并能编程实现基本的图像去噪算法,达到改善图像质量的效果,并能对算法性能进行简单的评价。 3. 理解图像分割算法的原理,并能编程实现基本的灰度图像分割算法,并显示图像分割结果。 2、实验要求 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg),设计或选择至少两种图像滤波算法对图像进行去噪。 2.利用给出的参考图像(org1.jpg, org2.jpg),对不同算法进行性能分析比较。 3. 对于给定的两幅数字图像(test.jpg,test 4.jpg),将其转换为灰度图像,设计或选择至少两种图像分割算法对图像进行分割,用适当的方式显示分割结果,并对不同算法进行性能分析比较。 二、实验设备(环境)及要求 1. Mac/Windows计算机 2. Matlab编程环境。 三、实验内容与步骤 1、实验1 (1)实验内容 1. 对于给定的两幅噪声图像(test1.jpg, test 2.jpg), 设计或选择至少两种图像滤波算法对图像进行去噪。 2. 利用给出的参考图像(org1.jpg, org2.jpg), 对不同算法进行性能分析比较。(2)主要步骤 1. 打开Matlab编程环境; 2. 利用’imread’函数读入包含噪声的原始图像数据; 3. 利用’imshow’函数显示所读入的图像数据;

《数字信号处理》实验报告

数字信号处理》 实验报告 年级:2011 级班级:信通 4 班姓名:朱明贵学号: 111100443 老师:李娟 福州大学 2013 年11 月

实验一快速傅里叶变换(FFT)及其应用 一、实验目的 1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。 2. 熟悉应用FFT对典型信号进行频谱分析的方法。 3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。 4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。 二、实验类型 演示型 三、实验仪器 装有MATLA爵言的计算机 四、实验原理 在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以 使用离散Fouier变换(DFT)。这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为: JV-1 $生 反变换为: 如-器冃吋 科— 有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等 距采样,因此可以用于序列的谱分析。 FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。它 是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的 序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。 (一)在运用DFT进行频谱分析的过程中可能的产生三种误差 1 .混叠 序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会 发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。避免混叠现象的 唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须

数字信号处理实验报告

实验一MATLAB语言的基本使用方法 实验类别:基础性实验 实验目的: (1)了解MATLAB程序设计语言的基本方法,熟悉MATLAB软件运行环境。 (2)掌握创建、保存、打开m文件的方法,掌握设置文件路径的方法。 (3)掌握变量、函数等有关概念,具备初步的将一般数学问题转化为对应计算机模型并进行处理的能力。 (4)掌握二维平面图形的绘制方法,能够使用这些方法进行常用的数据可视化处理。 实验内容和步骤: 1、打开MATLAB,熟悉MATLAB环境。 2、在命令窗口中分别产生3*3全零矩阵,单位矩阵,全1矩阵。 3、学习m文件的建立、保存、打开、运行方法。 4、设有一模拟信号f(t)=1.5sin60πt,取?t=0.001,n=0,1,2,…,N-1进行抽样,得到 序列f(n),编写一个m文件sy1_1.m,分别用stem,plot,subplot等命令绘制32 点序列f(n)(N=32)的图形,给图形加入标注,图注,图例。 5、学习如何利用MATLAB帮助信息。 实验结果及分析: 1)全零矩阵 >> A=zeros(3,3) A = 0 0 0 0 0 0 0 0 0 2)单位矩阵 >> B=eye(3) B = 1 0 0 0 1 0 0 0 1 3)全1矩阵 >> C=ones(3) C = 1 1 1 1 1 1 1 1 1 4)sy1_1.m N=32; n=0:N-1; dt=0.001; t=n*dt; y=1.5*sin(60*pi*t); subplot(2,1,1), plot(t,y); xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('正弦函数'); title('二维图形'); subplot(2,1,2), stem(t,y) xlabel('t'); ylabel('y=1.5*sin(60*pi*t)'); legend('序列函数'); title('条状图形'); 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 二维图形 00.0050.010.0150.020.0250.030.035 t y = 1 . 5 * s i n ( 6 * p i * t ) 条状图形

数字图像处理实验报告

数字图像处理实验报告

实验一 数字图像的基本操作和灰度变换 一、 实验目的 1. 了解数字图像的基本数据结构 2. 熟悉Matlab 中数字图像处理的基本函数和基本使用方法 3. 掌握图像灰度变换的基本理论和实现方法 4. 掌握直方图均衡化增强的基本理论和实现方法 二、实验原理 1. 图像灰度的线性变换 灰度的线性变换可以突出图像中的重要信息。通常情况下,处理前后的图像灰度级是相同的,即处理前后的图像灰度级都为[0,255]。那么,从原理上讲,我们就只能通过抑制非重要信息的对比度来腾出空间给重要信息进行对比度展宽。 设原图像的灰度为),(j i f ,处理后的图像的灰度为),(j i g ,对比度线性展宽的原理示意图如图1.1所示。假设原图像中我们关心的景物的灰度分布在[a f , b f ]区间内,处理后的图像中,我们关心的景物的灰度分布在[a g ,b g ]区间内。在这里)(a b g g g -=?()b a f f f >?=-,也就是说我们所关心的景物的灰度级得到了展宽。 根据图中所示的映射关系中分段直线的斜率我们可以得出线性对比度展 b g a g a b )j 图1.1 对比度线性变换关系

宽的计算公式: ),(j i f α, a f j i f <≤),(0 =),(j i g a a g f j i f b +-)),((, b a f j i f f <≤).,( (1-1) b b g f j i f c +-)),((, 255),(<≤j i f f b (m i ,3,2,1 =;n j ,3,2,1 =) 其中,a a f g a = ,a b a b f f g g b --=,b b f g c --=255255,图像的大小为m ×n 。 2. 直方图均衡化 直方图均衡化是将原始图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 离散图像均衡化处理可通过变换函数: 来实现。 三、实验步骤 1.图像灰度线性变换的实现 (1)读入一幅灰度图像test1.tif ,显示其灰度直方图。 新建M 文件,Untitled1.m ,编辑代码如下。 得到读入图像test1和它的灰度直方图。

数字信号处理实验报告(实验1_4)

实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验容 1、帮助命令 使用 help 命令,查找 sqrt (开方)函数的使用方法; 2、MATLAB 命令窗口 (1)在MATLAB 命令窗口直接输入命令行计算3 1)5.0sin(21+=πy 的值; (2)求多项式 p(x) = x3 + 2x+ 4的根; 3、矩阵运算 (1)矩阵的乘法 已知 A=[1 2;3 4], B=[5 5;7 8],求 A^2*B

(2)矩阵的行列式 已知A=[1 2 3;4 5 6;7 8 9],求A (3)矩阵的转置及共轭转置 已知A=[1 2 3;4 5 6;7 8 9],求A' 已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B' (4)特征值、特征向量、特征多项式 已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;

(5)使用冒号选出指定元素 已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素; 4、Matlab 基本编程方法 (1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;

(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。

5、MATLAB基本绘图命令 (1)绘制余弦曲线 y=cos(t),t∈[0,2π]

(2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π] (3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求: (a)线形为点划线、颜色为红色、数据点标记为加号; (b)坐标轴控制:显示围、刻度线、比例、网络线 (c)标注控制:坐标轴名称、标题、相应文本; >> clear;

-地震勘探实验报告

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB口连 接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

matlab图像处理实验报告

图像处理实验报告 姓名:陈琼暖 班级:07计科一班 学号:20070810104

目录: 实验一:灰度图像处理 (3) 实验二:灰度图像增强 (5) 实验三:二值图像处理 (8) 实验四:图像变换 (13) 大实验:车牌检测 (15)

实验一:灰度图像处理题目:直方图与灰度均衡 基本要求: (1) BMP灰度图像读取、显示、保存; (2)编程实现得出灰度图像的直方图; (3)实现灰度均衡算法. 实验过程: 1、BMP灰度图像读取、显示、保存; ?图像的读写与显示操作:用imread( )读取图像。 ?图像显示于屏幕:imshow( ) 。 ?

2、编程实现得出灰度图像的直方图; 3、实现灰度均衡算法; ?直方图均衡化可用histeq( )函数实现。 ?imhist(I) 显示直方图。直方图中bin的数目有图像的类型决定。如果I是个灰度图像,imhist将 使用默认值256个bins。如果I是一个二值图像,imhist使用两bins。 实验总结: Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。 通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。

实验二:灰度图像增强 题目:图像平滑与锐化 基本要求: (1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算. 实验过程: 1、 使用邻域平均法实现平滑运算; 步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ? 对图像添加噪声 J = imnoise(I,type,parameters)

数字信号处理实验报告92885

目录 实验1 离散时间信号的频域分析-----------------------2 实验2 FFT算法与应用-------------------------------7 实验3 IIR数字滤波器的设计------------------------12 实验4 FIR数字滤波器的设计------------------------17

实验1 离散时间信号的频域分析 一.实验目的 信号的频域分析是信号处理中一种有效的工具。在离散信号的时域分析中,通常将信号表示成单位采样序列δ(n )的线性组合,而在频域中,将信号表示成复变量e n j ω-或 e n N j π2-的线性组合。通过这样的表示,可以将时域的离散序 列映射到频域以便于进一步的处理。 在本实验中,将学习利用MATLAB 计算离散时间信号的DTFT 和DFT,并加深对其相互关系的理解。 二、实验原理 (1)DTFT 和DFT 的定义及其相互关系。序列x(n)DTFT 定义为()jw X e = ()n x n e ∞ =∞ ∑ω jn -它是关于自变量ω的复函数,且是以2π为周期的连续函数。 ()jw X e 可以表示为()()()jw jw jw re im X e X e jX e =+,其中,()jw re X e 和()jw im X e 分别是 ()jw X e 实部和虚部;还可以表示为 ()jw X e =()|()|jw j w X e e θ,其中, |()|jw X e 和{} ()arg ()j w X e ωθ=分别是()jw X e 的幅度函数和相位函数;它们都是ω的实函数,也是以2π为周期的周期函数。 序列()x n 的N 点DFT 定义为2211 ()()()()N N j k j kn kn N N N N n X k X e x n e x n W π π ---==== ∑∑,()X k 是周期为N 的序列。()j X e ω与()X k 的关系:()X k 是对()j X e ω)在一个周期 中的谱的等间隔N 点采样,即 2k |()()|jw w N X k X e π = = ,而()j X e ω 可以通过对()X k 内插获得,即

数字信号处理实验报告一

武汉工程大学 数字信号处理实验报告 姓名:周权 学号:1204140228 班级:通信工程02

一、实验设备 计算机,MATLAB语言环境。 二、实验基础理论 1.序列的相关概念 2.常见序列 3.序列的基本运算 4.离散傅里叶变换的相关概念 5.Z变换的相关概念 三、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 四实验目的 认识常用的各种信号,理解其数字表达式和波形表示,掌握在计算机中生成及绘制数字信号波形的方法,掌握序列的简单运算及计算机实现与作用,理解离散时间傅里叶变换,Z变换及它们的性质和信号的频域分

实验一离散时间信号(序列)的产生 代码一 单位样值 x=2; y=1; stem(x,y); title('单位样值 ') 单位阶跃序列 n0=0; n1=-10; n2=10; n=[n1:n2]; x=[(n-n0)>=0]; stem(n,x); xlabel('n'); ylabel('x{n}'); title('单位阶跃序列');

实指数序列 n=[0:10]; x=(0.5).^n; stem(n,x); xlabel('n'); ylabel('x{n}'); title('实指数序列');

正弦序列 n=[-100:100]; x=2*sin(0.05*pi*n); stem(n,x); xlabel('n'); ylabel('x{n}'); title('正弦序列');

随机序列 n=[1:10]; x=rand(1,10); subplot(221); stem(n,x); xlabel('n'); ylabel('x{n}'); title('随机序列');

图像分割 实验报告

实验报告 课程名称医学图像处理 实验名称图像分割 专业班级 姓名 学号 实验日期 实验地点 2015—2016学年度第 2 学期

050100150200250 图1 原图 3 阈值分割后的二值图像分析:手动阈值分割的阈值是取直方图中双峰的谷底的灰度值作为阈值,若有多个双峰谷底,则取第一个作为阈值。本题的阈值取

%例2 迭代阈值分割 f=imread('cameraman.tif'); %读入图像 subplot(1,2,1);imshow(f); %创建一个一行二列的窗口,在第一个窗口显示图像title('原始图像'); %标注标题 f=double(f); %转换位双精度 T=(min(f(:))+max(f(:)))/2; %设定初始阈值 done=false; %定义开关变量,用于控制循环次数 i=0; %迭代,初始值i=0 while~done %while ~done 是循环条件,~ 是“非”的意思,此 处done = 0; 说明是无限循环,循环体里面应该还 有循环退出条件,否则就循环到死了; r1=find(f<=T); %按前次结果对t进行二次分 r2=find(f>T); %按前次结果重新对t进行二次分 Tnew=(mean(f(r1))+mean(f(r2)))/2; %新阈值两个范围内像素平均值和的一半done=abs(Tnew-T)<1; %设定两次阈值的比较,当满足小于1时,停止循环, 1是自己指定的参数 T=Tnew; %把Tnw的值赋给T i=i+1; %执行循坏,每次都加1 end f(r1)=0; %把小于初始阈值的变成黑的 f(r2)=1; %把大于初始阈值的变成白的 subplot(1,2,2); %创建一个一行二列的窗口,在第二个窗口显示图像imshow(f); %显示图像 title('迭代阈值二值化图像'); %标注标题 图4原始图像图5迭代阈值二值化图像 分析:本题是迭代阈值二值化分割,步骤是:1.选定初始阈值,即原图大小取平均;2.用初阈值进行二值分割;3.目标灰度值平均背景都取平均;4.迭代生成阈值,直到两次阈值的灰 度变化不超过1,则稳定;5.输出迭代结果。

数字信号处理实验报告 (实验四)

实验四 离散时间信号的DTFT 一、实验目的 1. 运用MA TLAB 计算离散时间系统的频率响应。 2. 运用MA TLAB 验证离散时间傅立叶变换的性质。 二、实验原理 (一)、计算离散时间系统的DTFT 已知一个离散时间系统∑∑==-= -N k k N k k k n x b k n y a 00)()(,可以用MA TLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。由于)(ωj e H 是ω的连续函数,需要 尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。在MA TLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除 得到L l e H l j ,,2,1),( =ω。为了更加方便快速地运算,应将L 的值选为2的幂,如256或 者512。 例3.1 运用MA TLAB 画出以下系统的频率响应。 y(n)-0.6y(n-1)=2x(n)+x(n-1) 程序: clf; w=-4*pi:8*pi/511:4*pi; num=[2 1];den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w/pi,real(h));grid title(‘H(e^{j\omega}的实部’)) xlabel(‘\omega/ \pi ’); ylabel(‘振幅’); subplot(2,1,1) plot(w/pi,imag(h));grid title(‘H(e^{j\omega}的虚部’)) xlabel(‘\omega/ \pi ’); ylabel(‘振幅’); (二)、离散时间傅立叶变换DTFT 的性质。 1.时移与频移 设 )]([)(n x FT e X j =ω, 那么

地震勘探实验报告记录

地震勘探实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

中国地质大学(武汉)地空学院 地震实验报告 姓名:沈 班级:班 学号: 时间: 2015年05月 指导老师:张

一、实验目的 实验一: 1、浅层地震装备的基本组成; 2、认识GEODE96浅层地震仪的主要结构,并学会该类仪器的操作方法; 3、地震波认识。 实验二: 1、掌握浅层地震数据采集方法及注意事项 二、仪器介绍 1、仪器简介 全套美国GEOMETRICS公司生产的Geode96浅层地震仪(相当于四套独立的24道浅层地震仪)该仪器能满足折、反射地震勘探、井间勘探、面波调查等地震监测需要,应用Crystal公司的A/D转换器和高速过采样技术达到了24位地震仪的精度。频带从1.75Hz到20,000Hz,使得采样间隔可以从20毫秒到16微秒。采样到的数据叠加到32位的叠加器中,然后传回到主机的硬盘或其它介质上。内置预触发器,每道有16K的内存。用硬件相关器对震源信号进行实时相关运算。Geode包装坚固、防水、防震,有提手,重4.1公斤,用12V的外接电池可以连续工作10个小时。(如下图)

2、主要操作功能键及快捷键 注释: 1锁定与解锁;2清除界面;4检测噪声;7保存 3、操作步骤及注意事项 1、每个GEODE用数传线按规定串联,通过数传盒与笔记本电脑的USB 口连接。 2、每个GEODE接上12V电源。 3、开关接到与笔记本相连的第一个GEODE上。 4、传盒上的开关置于POWER UP处。 5、采集控制程序,并按工作需要设置好各项参数,然后进行正常数据采集工作。 6、出采集控制程序之前,应将数传盒上的开关置于POWER DOWN处。 7、卸下各连接线并清理整齐。 8、注意的是:在正常工作过程中,任何时候移动数传线与GEODE的连接头时,必须退出采集控制程序。另外Y型头上有红色标记的与GEODE的前12道相连接。而且采集控制软件运行的语言环境必须是英语(美国)。

图像处理 实验报告

摘要: 图像处理,用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。基本内容图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。图像处理一般指数字图像处理。 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 设计要求 可视化界面,采用多幅不同形式图像验证系统的正确性; 合理选择不同形式图像,反应各功能模块的效果及验证系统的正确性 对图像进行灰度级映射,对比分析变换前后的直方图变化; 1.课题目的与要求 目的: 基本功能:彩色图像转灰度图像 图像的几何空间变换:平移,旋转,剪切,缩放 图像的算术处理:加、减、乘 图像的灰度拉伸方法(包含参数设置); 直方图的统计和绘制;直方图均衡化和规定化; 要求: 1、熟悉图像点运算、代数运算、几何运算的基本定

义和常见方法; 2、掌握在MTLAB中对图像进行点运算、代数运算、几何运算的方法 3、掌握在MATLAB中进行插值的方法 4、运用MATLAB语言进行图像的插值缩放和插值旋转等 5、学会运用图像的灰度拉伸方法 6、学会运用图像的直方图设计和绘制;以及均衡化和规定化 7、进一步熟悉了解MATLAB语言的应用,将数字图像处理更好的应用于实际2.课题设计内容描述 1>彩色图像转化灰度图像: 大部分图像都是RGB格式。RGB是指红,绿,蓝三色。通常是每一色都是256个级。相当于过去摄影里提到了8级灰阶。 真彩色图像通常是就是指RGB。通常是三个8位,合起来是24位。不过每一个颜色并不一定是8位。比如有些显卡可以显示16位,或者是32位。所以就有16位真彩和32位真彩。 在一些特殊环境下需要将真彩色转换成灰度图像。 1单独处理每一个颜色分量。 2.处理图像的“灰度“,有时候又称为“高度”。边缘加强,平滑,去噪,加 锐度等。 3.当用黑白打印机打印照片时,通常也需要将彩色转成灰白,处理后再打印 4.摄影里,通过黑白照片体现“型体”与“线条”,“光线”。 2>图像的几何空间变化: 图像平移是将图像进行上下左右的等比例变化,不改变图像的特征,只改变位置。 图像比例缩放是指将给定的图像在x轴方向按比例缩放fx倍,在y轴按比例缩放fy倍,从而获得一幅新的图像。如果fx=fy,即在x轴方向和y轴方向缩放的比率相同,称这样的比例缩放为图像的全比例缩放。如果fx≠fy,图像的比例缩放会改变原始图象的像素间的相对位置,产生几何畸变。 旋转。一般图像的旋转是以图像的中心为原点,旋转一定的角度,也就是将图像上的所有像素都旋转一个相同的角度。旋转后图像的的大小一般会改变,即可以把转出显示区域的图像截去,或者扩大图像范围来显示所有的图像。图像的旋转变换也可以用矩阵变换来表示。

数字信号实验报告 (全)

数字信号处理实验报告 实验一:用 FFT 做谱分析 一、 实验目的 1、进一步加深 DFT 算法原理和基本性质的理解。 2、熟悉 FFT 算法原理和 FFT 子程序的应用。 3、学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用 FFT 。 二、实验原理 用FFT 对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ≤D 。可以根据此时选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号的频谱时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 三、实验内容和步骤 对以下典型信号进行谱分析: ?? ? ??≤≤-≤≤-=?? ? ??≤≤-≤≤+==其它n n n n n n x 其它n n n n n n x n R n x ,07 4, 330,4)(, 07 4, 830,1)() ()(3241 4() cos 4 x n n π = 5()cos(/4)cos(/8)x n n n ππ=+ 6() cos8cos16cos20x t t t t πππ=++

折射波勘探实验报告全解

《浅层折射波勘探》实验报告

《浅层折射波勘探》实验成绩评定表班级姓名学号

一、实验名称:浅层折射波勘探 二、实验目的 加深对地震勘探基本概念的理解,巩固已学的理论知识,了解数字地震仪的使用和仪器工作参数的选择;了解地震勘探人工震源激发,检波器的安置条件;地震折射波法野外资料的采集技术及方法,并进行资料的整理与解释;了解地震勘探野外工作施工的过程以及组织管理工作。 三、实验原理 1、折射波法基本原理 以水平界面的两层介质进行简要的说明,假设地下深度为h ,有一个水平的速度分界面R ,上、下两层的速度分别为V 1和V 2,且V 2>V 1。 如图1所示。从激发点O 至地面某一接收点D 的距离为X ,折射波旅行的路程为OK 、KE 、ED 之和,则它的旅行时t 为: 图1 水平两层介质折射波时距曲线 1 21V ED V KE V OK t ++= 式1 为了简便起见,先作如下证明:从O ,D 两点分别作界面R 的垂线,则OA =DG =h ,再自A 、G 分别作OK ,ED 的垂线,几何上不难证明∠BAK =∠EGF =i ,因

已知2 1 sin V V i = ,所以: 2 1 V V EG EF AK BK == 式2 即 21V AK V BK = 和 2 1V EG V EF = 式3 上式说明,波以速度V 1旅行BK (或EF )路程与以速度V 2旅行AK (或EC )路程所需的时间是相等的。将式3的关系和式1作等效置换,并经变换后可得: 2 121222122cos 2V V V V h V x V i h V x t -+=+= 式4 这就是水平两层介质的折射波时距曲线方程。它表示时距曲线是一条直线,若令x =0,则可得时距曲线的截距时间t 0(时距曲线延长与t 轴相交处的时间值) 2 12122102cos 2V V V V h V i h t -== 式5 式5表示出界面深度h 和截距时间t0之间的关系,当已知V 1和V 2时,可以求出界面的深度h 。 2、折射波分层解释的t 0法 折射波t 0解释法是常用的地震折射波解释方法,它是针相遇时距曲线观测系统采集发展起来的解释方法。 t 0法解释的主要原理与方法如下: t 0法又称为t 0差数时距曲线法,是解释折射波相遇时距曲线最常用的方法之一。当折射界面的曲率半径比其埋深大得很多的情况下,t 0法通常能取得很好的效果,且具有简便快速的优点。 如图2所示,设有折射波相遇的时距曲线S 1和S 2,两者的激发点分别是O 1 和O 2,

数字图像处理实验报告

目录 实验一:数字图像的基本处理操作 (4) :实验目的 (4) :实验任务和要求 (4) :实验步骤和结果 (5) :结果分析 (8) 实验二:图像的灰度变换和直方图变换 (9) :实验目的 (9) :实验任务和要求 (9) :实验步骤和结果 (9) :结果分析 (13) 实验三:图像的平滑处理 (14) :实验目的 (14) :实验任务和要求 (14) :实验步骤和结果 (14) :结果分析 (18) 实验四:图像的锐化处理 (19) :实验目的 (19) :实验任务和要求 (19) :实验步骤和结果 (19) :结果分析 (21)

实验一:数字图像的基本处理操作 :实验目的 1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用; 2、实现图像的读取、显示、代数运算和简单变换。 3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。:实验任务和要求 1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分 成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分 别显示,注上文字标题。 3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换, 显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。 4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里 叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的 对应关系。 :实验步骤和结果 1.对实验任务1的实现代码如下: a=imread('d:\'); i=rgb2gray(a); I=im2bw(a,; subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像'); 结果如图所示:

数字信号实验报告

北京科技大学 《信号系统与信号处理综合实验》实验 报告 学号:__________ 姓名:_____________________ 专业:____________ 年月日

目录: 1实验一CCS使用实验 2实验二、SEED-DTK6446 Linux开发环境搭建3实验三、Linux平台实验 4二、音频采集回放实验 5三、视频采集回放实验 6OSD图像叠加实验 7图像边缘检测实验

课程实验目的 1.数字信号处理是一门理论与实践并重的课程,在学习理论知识的同时再配合经典DSP实验,可以加深对数字信号处理软、硬件的理解与掌握。 2.接触并了解SEED-DTK6446实验箱,学会通过Linux操作平台,利用SEED-DTK6446实验箱完成一些经典的实验历程,加深对数字信号处理的了解。 3. 学习并掌握SEED-DTK6446 CCS开发环境的搭建,建立好所有编译测试环境,为下面的实验做好准备工作。 实验一 CCS使用实验 一、实验目的 1.熟悉CCS3.3集成开发环境,掌握工程的生成方法; 2.熟悉SEED-DTK6446实验环境; 3. 学习用标准C 语言编制程序; 4.掌握CCS3.3集成开发环境的调试方法; 二、实验内容 1.DSP源文件的建立; 2.DSP程序工程文件的建立; 3. 学习使用CCS3.3集成开发工具的调试工具。 三、实验步骤 1.创建源文件:选择File →New →Source File 命令;打开配套光盘\03. Examples of program\01.SEEE-DTK6446 CCS Examples\examples\3.1.1 math。 2.创建工程文件:点击Project-->New,创建新工程;点击Project选择add files to project,添加源程序math.c。 3. 设置编译与连接选项:点击Project选择Build Opitions; 4. 工程编译与调试:点击Project →Build all,对工程进行编译;点击File →load program,在弹出的对话框中载入debug 文件夹下的.out可执行文件;点击debug →Go Main回到C程序的入口;运行程序并观察输出结果。 四.实验要求:

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

数字信号实验报告1

实验一信号、系统及系统响应 1、实验目的 认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法; 熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。 2、实验内容 a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。 clc y1=rand(500); x1=linspace(0,1,100); yn=hist(y1,x1); yn=yn/length(y1); bar(x1,yn); title('[0,1]均匀分布'); figure; y2=randn(1,500); ymin=min(y2); ymax=max(y2); x2=linspace(ymin,ymax,100); ym=hist(y2,x2); ym=ym/length(y2); bar(x2,ym); title('[0,1]高斯分布');

b. 线性时不变系统单位脉冲响应为h(n)=(0.9)n u(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。 function [x,n]=stepseq(n0,ns,ne) n=[ns:ne]; x=[(n-n0)>=0]; function [y,ny]=conv_m(x,nx,h,nh) ny1=nx(1)+nh(1); ny2=nx(length(x))+nh(length(h)); ny=[ny1:ny2]; y=conv(x,h); h=((0.9).^n).*stepseq(0,-5,50); subplot(3,1,1); stem(n,x,'filled'); axis([-5,50,0,2]); ylabel('X(n)'); subplot(3,1,2); stem(n,h,'filled');

数字信号实验报告

实验一:快速傅立叶变换的谱分析 一、实验目的: 学会利用matlab中的FFT函数,即进行信号的谱分析。 二、实验题目: 1.已知: t1=[0:0.001:0.3]; t2=[0.301:0.001:0.6]; t3=[0.601:0.001:0.9]; t4=[0.901:0.001:1.199]; x1=sin(2*pi*100*t1); x2=sin(2*pi*50*t2); x3=sin(2*pi*25*t3); x4=sin(2*pi*10*t4); 信号s1为 t= 0:0.001:1.199;s1= sin(2*pi*100*t)+sin(2*pi*50*t)+sin(2*pi*25*t)+sin(2*pi*10*t); 信号s2为t=[t1,t2,t3,t4];s2= [x1,x2,x3,x4]; 信号s3为t=[t1,t2,t3,t4];s3= [x1,x4,x2,x3]; a.编写程序分别画出信号s1,s2,s3的时域波形和幅频图(参考图1,2,3)。 b.观察信号s1,s2,s3的时域波形和频谱图,思考其幅频图的差别及其原因。 c.信号s1,s2,s3的抽样频率fs为多少?对于1200个点的时域离散序列,对其 FFT后仍为长度为1200个点的序列,即周期N=1200,试分析N与离散时间信号频谱的周期fs的对应关系。各频谱图的频率分辨率为多少Hz? d.若有信号s4的幅频图与s2的幅频图完全相同(如图2所示),问s4的时域 波形和s2是相同的吗,为什么? 实验程序清单: t1=[0:0.001:0.3]; t2=[0.301:0.001:0.6]; t3=[0.601:0.001:0.9]; t4=[0.901:0.001:1.199]; x1=sin(2*pi*100*t1); x2=sin(2*pi*50*t2); x3=sin(2*pi*25*t3); x4=sin(2*pi*10*t4); %信号s1的时域图和频域图 t5=0:0.001:1.199; x5=sin(2*pi*100*t5)+sin(2*pi*50*t5)+sin(2*pi*25*t5)+sin(2*pi*10*t5); y5=abs(fft(x5));

相关文档
最新文档