知识讲解条件概率事件地相互独立性(理)(基础)

知识讲解条件概率事件地相互独立性(理)(基础)
知识讲解条件概率事件地相互独立性(理)(基础)

条件概率 事件的相互独立性

【学习目标】

1.了解条件概率的概念和概率的乘法公式. 2.能运用条件概率解决一些简单的实际问题.

3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件. 4.能运用相互独立事件的概率解决一些简单的实际问题. 【要点梳理】

要点一、条件概率的概念 1.定义

设A 、B 为两个事件,且()0P A >,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率。用符号(|)P B A 表示。

(|)P B A 读作:A 发生的条件下B 发生的概率。

要点诠释

在条件概率的定义中,事件A 在“事件B 已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率. 2.P (A |B )、P (AB )、P (B )的区别

P (A |B )是在事件B 发生的条件下,事件A 发生的概率。 P (AB )是事件A 与事件B 同时发生的概率,无附加条件。 P (B )是事件B 发生的概率,无附加条件. 它们的联系是:()

(|)()

P AB P A B P B =

. 要点诠释

一般说来,对于概率P(A|B)与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。概率P(A)是指在整个基本事件空间Ω的条件下事件A 发生的可能性大小,而条件概率P(A|B)是指在事件B 发生的条件下,事件A 发生的可能性大小。

例如,盒中球的个数如下表。从中任取一球,记A=“取得篮球”,B=“取得玻璃球”。基本事件空间Ω包含的样本点总数为16,事件A 包含的样本点总数为11,故11

()16

P A =

如果已知取得玻璃球的条件下取得篮球的概率就是事件B 发生的条件下事件A 发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故42

(|)63

P A B ==。 要点二、条件概率的公式

1.计算事件B 发生的条件下事件A 发生的条件概率,常有以下两种方式: ①利用定义计算.

先分别计算概率P (AB )及P (B ),然后借助于条件概率公式()

(|)()

P AB P A B P B =

求解. ②利用缩小样本空间的观点计算.

在这里,原来的样本空间缩小为已知的条件事件B ,原来的事件A 缩小为事件AB ,从而

(|)AB P A B B =

包含的基本事件数包含的基本事件数,即:()

(|)()

n AB P B A n A =,此法常应用于古典概型中的条件概率

求解. 要点诠释

概率P(B|A)与P(AB)的联系与区别:

联系:事件A ,B 都发生了。 区别:

①在P(B|A)中,事件A ,B 发生有时间上的差异,事件A 先发生事件B 后发生;在P(AB)中,事件A ,B 同时发生;

②基本事件空间不同在P(B|A)中,事件A 成为基本事件空间;在P(AB)中,基本事件空间仍为原基本事件空间。

2.条件概率公式的变形. 公式()

(|)()

P AB P A B P B =

揭示了P (B )、P (A |B )、P (AB )的关系,常常用于知二求一,即要熟练应用它的变形公式如,若P (B )>0,则P (AB )=P (B )·P (A |B ),该式称为概率的乘法公式. 要点诠释

条件概率也是概率,所以条件概率具有概率的性质.如: ①任何事件的条件概率取值在0到1之间;

②必然事件的条件概率为1,不可能事件的条件概率为0; ③条件概率也有加法公式:

P (B ∪C |A )=P (B |A )+P (C |A ),

其中B 和C 是两个互斥事件. 要点三、相互独立事件 1.定义:

事件A (或B )是否发生对事件B (或A )发生的概率没有影响,即(|)()P B A P B =,这样的两个事件叫做相互独立事件。

若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立。 2.相互独立事件同时发生的概率公式:

对于事件A 和事件B ,用A B ?表示事件A 、B 同时发生。

(1)若A 与B 是相互独立事件,则()()()P A B P A P B ?=?;

(2)若事件12,,,n A A A L 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积, 即:1212()()()()n n P A A A P A P A P A ???=???L L 。 要点诠释

(1)P (AB )=P (A )P (B )使用的前提是A 、B 为相互独立事件,也就是说,只有相互独立的两个事件同时发生的概率,才等于每个事件发生的概率的积.

(2)两个事件A 、B 相互独立事件的充要条件是()()()P A B P A P B ?=?。 3.相互独立事件与互斥事件的比较

互斥事件与相互独立事件是两个不同的概念,它们之间没有直接关系。

互斥事件是指两个事件不可能同时发生,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响。

一般地,两个事件不可能既互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的。相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的。 4. 几种事件的概率公式的比较

已知两个事件A ,B ,它们发生的概率为P (A ),P (B ),将A ,B 中至少有一个发生记为事件A+B ,都发生记为事件A ·B ,都不发生记为事件A B ?,恰有一个发生记为事件A B A B ?+?,至多有一个发生记为事件A B A B A B ?+?+?,则它们的概率间的关系如下表所示:

【典型例题】 类型一、条件概率

例1.甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时,甲地也为雨天的概率为多少? (2)甲地为雨天时,乙地也为雨天的概率为多少?

【思路点拨】(1)在乙地为雨天的事情业已发生的情况下,求甲地也下雨的概率,为典型的条件概率问题。 【解析】设A 表示“甲地为雨天”,B 表示“乙地为雨天”,则根据题意有P (A )=0.20,P (B )=0.18,

P (AB )=0.12.

(1)()0.12

(|)0.67()0.18

P AB P A B P B =

=≈; (2)()0.12

(|)0.60()0.20

P AB P B A P A =

==. 【总结升华】这类条件概率的应用问题,首先分清一前一后两事件的发生,前面的事件对后面的事件的发生有没有影响。若没有影响,就是无条件概率;若有影响,就是条件概率,然后根据相应的公式计算即可。 举一反三:

【变式1】 甲、乙两名推销员推销某种产品,据以往经验,两人在一天内卖出一份产品的概率分别为

3

5

和710,两人在一天内都卖出一份产品的概率为1

2

,问: (1)在一天内甲先卖出一份产品乙后卖出一份产品的概率是多少? (2)在一天内乙先卖出一份产品甲后卖出一份产品的概率是多少? 【答案】

事件A=“甲在一天内卖出一份产品”,事件B=“乙在一天内卖出一份产品”, 因为两人在一天内卖出一份产品的概率分别为

35和710,两人在一天内都卖出一份产品的概率为1

2

所以3()5P A =

,7()10P B =,1()2

P AB =。 (1)因为“在一天内甲先卖出一份产品乙后卖出一份产品”这一事件是甲在一天内卖出一份产品后,

乙卖出一份产品,所以由条件概率公式,可得1

()5

2(|)3()

65

P AB P B A P A ===;

(2)因为“在一天内乙先卖出一份产品甲后卖出一份产品”这一事件是乙在一天内卖出一份产品后,

甲卖出一份产品,所以由条件概率公式,可得1

()5

2(|)7()710

P AB P A B P B ===。

【变式2】若3()4P A =,1

(|)2P B A =,则()P AB 等于( )

A .2

3

B .38

C .13

D .58

【答案】B

313

()(|)428

P AB P A P B A =?=?=()。

【变式3】一个盒子中装有6只好晶体管和4只坏晶体管,任取两次,每次取1只,第一次取后不放回,若第一次取到的是好的,则第二次也取到好的概率为( )

A .

35 B .13 C .59 D .49

【答案】C

设i A =“第i 次取到好的晶体管”(i =1,2)。 因为163()105P A =

=,12651

()1093

P A A ?==?, 所以12211()5

(|)()9

P A A P A A P A ==。

例2. 5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到理科题概率

【思路点拨】 本题考查古典概型、条件概率.(1)和(2)中利用m

P n

=解决,(3)利用条件概率公式解决.

【解析】 设“第1次抽到理科题”为事件A ,“第2次抽到理科题”为事件B ,则“第1次和第2次都抽到理科题”为事件AB .

(1)11

342

5123

()205

A A P A A ===. (2)232563

()2010A P AB A ===.

(3)3

()1

10(|)3()25

P AB P B A P A ===.

【总结升华】

(1)求条件概率(|)P B A 的关键就是要抓住事件A 作为条件和事件A 与B 同时发生这两件事,然后具体问题具体对待。

(2)本题第(3)问可用下面的方法求解:

用n (A )表示事件A 中包含的基本事件个数, 则n (A )=12,n (AB )=6,

故()61

(|)()122

n AB P B A n A =

==. 举一反三:

【变式1】某学校一年级共有学生100名,其中男生60人,女生40人;来自北京的有20人,其中男生12人,若任选一人是女生,问该女生来自北京的概率是多少?

【答案】用A 表示“任选一人是女生”,B 表示“任选一人来自北京”,依题意知北京的学生有8名女生,这是一个条件概率问题,即计算P (B |A ). 由于40()100P A =

,8

()100

P AB =,

∴8

()1

100(|)40()

5100

P AB P B A P A ===.

【变式2】在10支铅笔中,有8支正品,2支次品,若从中任取2支,则在第1次取到的是次品的条件下,第二次取到正品的概率是( )

A .

15 B .845 C .89 D .45

【答案】C

利用缩小样本空间的方法求解。

因为第一次取到1支次品,还剩9支铅笔,其中有8支正品, 所以第二次取正品的概率是

8

9

。 【变式3】盒中装有5件产品,其中3件一等品,2件二等品,从中不放回地抽取产品,每次抽取1件,

求:

(1)取两次,两次都取得一等品的概率; (2)取两次,第二次取得一等品的概率;

(3)取两次,已知第二次取得一等品,第一次取得的是二等品的概率。 【答案】事件A i 为“第i 次取到一等品”,其中i=1,2,

(1)取两次,两次都取得一等品的概率为

12121323

()()(|)5410

P A A P A P A A ==?=;

(2)取两次,第二次取得一等品的概率,即第一次有可能取到一等品,也有可能取到二等品, 可得212121212()()()()P A P A A A A P A A P A A =+=+23323

54545

=

?+?=; (3)取两次,已知第二次取得一等品,第一次取得的是二等品的概率,

即1212223()1

54(|)3()25

P A A P A A P A ?

===。

例3. 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球

放入2号箱,然后从2号箱随机取出一球,问从2号箱取出红球的概率是多少?

【思路点拨】 从2号箱取出红球,有两种互斥的情况:一是当从1号箱取出红球时;二是当从1号箱取出白球时.

【解析】 记事件A :从2号箱中取出的是红球;事件B :从1号箱中取出的是红球.

则42()243P B =

=+,1()1()3P B P B =-=, 314(|)819P A B +==+,31

(|)813

P A B ==+,

从而()()()P A P AB P AB =+ (|)()(|)()P A B P B P A B P B =+ 421111

933327

=

?+?=

. 【总结升华】 求复杂事件的概率,可以把它分解为若干个互不相容的简单事件,然后利用条件概率公式

和乘法公式,求出这些简单事件的概率,最后利用概率的加法公式,得到最终结果.

举一反三:

【变式】 一个口袋内装有2个白球和2个黑球,那么: (1)先摸出一个白球不放回,再摸出—个白球的概率是多少? (2)先摸出一个白球后放回,再摸出一个白球的概率是多少? 【答案】

(1)设“先摸出一个白球不放回”为事件A ,“再摸出一个白球”为事件B ,则“先后两次摸到白球”为事件AB ,

∴1()2P A =

,111

()236

P AB =?=. ∴1

()1

6(|)1()

32

P AB P B A P A ===.

(2)设“先摸出一个白球放回”为事件A 1,“再摸出一个白球”为事件B 1,则“两次都摸到白球”为事件A 1B 1,

∴11()2P A =

,111()4

P A B =. ∴111111

()1

4(|)1()

22

P A B P B A P A ===.

综合(1)(2)所述,先摸出一个白球不放回,再摸出一个白球的概率为1

3

;先摸出一个白球后放回,再摸出一个白球的概率为12

. 类型二、相互独立事件

例4. 容器中盛有5个白乒乓球和3个黄乒乓球.

(1)“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”这两个事件是否相互独立?为什么?

(2)“从8个球中任意取出1个,取出的是白球”与“把取出的1个白球放回容器,再从容器中任意取出1个,取出的是黄球”这两个事件是否相互独立?为什么? 【思路点拨】 从相互独立事件的定义入手.

【解析】 (1)“从8个球中任意取出1个,取出的是白球”的概率为5

8

,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为4

7

;若前一事件没有发生,则后一事件发生的概率为

5

7

.可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件. (2)由于把取出的白球放回容器,故对“从中任意取出1个,取出的是黄球”的概率没有影响,所以二者是相互独立事件.

【总结升华】 判断两事件是否相互独立的方法有:

(1)通过计算P (B|A )=P (B )可以判断两个事件相互独立:

(2)通过验证P (AB )=P (A )P (B )也可以判断两个事件相互独立. 举一反三:

【变式】判断下列各对事件是互斥事件还是相互独立事件.

(1)运动员甲射击1次,“射中9环”与“射中8环”;

(2)甲、乙两运动员各射击1次,“甲射中10环”与“乙射中9环”:

(3)甲、乙两运动员各射击1次,“甲、乙都射中目标”与“甲、乙都没有射中目标”;

(4)甲、乙两运动员各射击1次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”.【答案】

(1)甲射击1次,“射中9环”与“射中8环”这两个事件不可能同时发生,二者是互斥事件.(2)甲、乙各射击1次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者为相互独立事件.

(3)甲、乙各射击1次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件.

(4)甲、乙各射击1次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”可能同时发生,二者构不成互斥事件,但也不可能是相互独立事件.

例5. 甲、乙各进行一次射击,若甲、乙击中目标的概率分别为0.8、0.7.求下列事件的概率:(1)两人都击中目标;

(2)至少有一人击中目标;

(3)恰有一人击中目标.

【思路点拨】显然“甲射击一次,击中目标”,与“乙射击一次,击中目标”互不影响,即相互独立,两人都击中,即事件同时发生,应该用乘法公式。

【解析】记A为“甲射击一次,击中目标”,B为“乙射击一次,击中目标”,则A与B相互独立,进

++发生;恰有一个而有A与B,A与B,A与B也都相互独立.至少有一个击中,即事件AB AB AB

+发生.

击中,即事件AB AB

由已知P(A)=0.8,P(B)=0.7,

(1)两人都击中目标的概率

P(AB)=P(A)·P(B)=0.8×0.7=0.56.

(2)至少有一人击中目标的概率

()()()()

P AB AB AB P AB P AB P AB

++=++

()()()()()()

P A P B P A P B P A P B

=?+?+?

=0.2×0.7+0.8×0.3+0.8×0.7=0.94.

(3)恰有一人击中目标的概率

()()()

P AB AB P AB P AB

+=+=

()()()()

P A P B P A P B

?+?=0.2×0.7+0.8×0.3=0.38.

【总结升华】审题应注意关键的词句,例如“至少有一个发生”“至多有一个发生”“恰有一个发生”等,应学会在求复杂事件的概率时对事件等价拆分来求解.

举一反三:

【变式1】甲、乙两个袋中均装有红、白两种颜色的球,这些球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。若分别从甲、乙两袋中各随机取出一个球,求取出的两球都是红球的概率。

【答案】

因从甲袋中取一球为红球的概率为4

6,从乙袋中取一球为红球的概率为1

6

故从两袋中各取一球,取出的都是红球的概率为411

669

?=。

【变式2】在某段时间内,甲地下雨的概率为0.3,乙地下雨的概率为0.4,若在这段时间内两地是否下雨之间没有影响,则在这段时间内,甲、乙两地都不下雨的概率为()

A.0.12 B.0.88 C.0.28 D.0.42

【答案】D,P=(1-0.3)×(1-0.4)=0.42

【变式3】某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0 . 05 ,求两次抽奖中

以下事件的概率:

(1)都抽到某一指定号码;

(2)恰有一次抽到某一指定号码;

(3)至少有一次抽到某一指定号码.

【答案】(1)记“第一次抽奖抽到某一指定号码”为事件A, “第二次抽奖抽到某一指定号码”为事件B ,则“两次抽奖都抽到某一指定号码”就是事件AB.由于两次抽奖结果互不影响,因此A与B相互独立.于是由独立性可得,两次抽奖都抽到某一指定号码的概率

P ( AB ) = P ( A ) P ( B ) = 0. 05×0.05 = 0.0025.

(2 ) “两次抽奖恰有一次抽到某一指定号码”可以用(A B)U(A B)表示.由于事件A B与A B 互斥,根据概率加法公式和相互独立事件的定义,所求的概率为

P (A B)十P(A B)=P(A)P(B)+ P(A)P(B )

= 0. 05×(1-0.05 ) + (1-0.05 ) ×0.05 = 0. 095.

( 3 ) “两次抽奖至少有一次抽到某一指定号码”可以用(AB ) U ( A B)U(A B)表示.由于事件AB , A B和A B 两两互斥,根据概率加法公式和相互独立事件的定义,所求的概率为P ( AB ) + P(A B)+ P (A B ) = 0.0025 +0. 095 = 0. 097

例6.甲、乙、丙三位同学完成6道数学自测题,已知他们及格的概率依次为4

5,3

5

,7

10

。求

(1)三人中有且只有两人及格的概率;

(2)三人中至少有一人不及格的概率。

【思路点拨】三件(或三件以上)相互独立的事同时发生,和两个相互独立的事同时发生是类似的,都用乘法公式。

【解析】设甲、乙、丙三位同学答题及格分别为事件A,B,C,则事件A,B,C相互独立。

(1)三人中有且只有两人及格的概率为

1()()()

P P ABC P ABC P ABC =++

()()()()()()()()()P A P B P C P A P B P C P A P B P C =??+??+??

437437437(1)(1)(1)551055105510=??-+-??+?-? 113

250

=; (2)三人中至少有一人不及格的概率为

243783

1()1()()()15510125

P P ABC P A P B P C =-=-??=-??=

。例1. 【总结升华】

①明确事件中的“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词语的意义。

②在求事件的概率时,有时会遇到求“至少……”或“至多……”等事件的概率问题,它们是诸多事件的和或积,可以从正面或对立面解决问题。如果从正面考虑这些问题,求解过程繁琐,但“至少……”或“至多……”这些事件的对立事件却相对简单,其概率也易求出,此时,可逆向思维,运用“正难则反”的原则求解。 举一反三:

【变式1】某道路的A 、B 、C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是( )

A.

35192 B. 25192 C. 35576 D. 65

192

【答案】A ;

在A 、B 、C 三处不停车的概率分别为

2556012=,3576012=,459

6012

=, 故三处都不停车的概率是57935

121212192

??=。

【变式2】甲射击命中目标的概率是12,乙射击命中目标的概率是13,丙射击命中目标的概率是1

4

若现在三人同时射击目标,则目标被击中的概率是( )

A .

34 B .23 C .45 D .7

10

【答案】A

设“甲射击命中目标”为事件A ,“乙射击命中目标”为事件B ,“丙射击命中目标”为事件C 。 因击中目标表示事件A ,B ,C 中至少有一个发生:目标可能被一人、两人或三人击中。

因目标被击中的事件的对立事件是目标未被击中,即三人都未击中目标,它可以表示为()P ABC , 而三人射击结果是相互独立的,故目标被击中的概率为1()P P A B C =-?? ∵()P A B C ??()()()P A P B P C =??[1()][1()][1()]P A P B P C =-?-?-

1111(1)(1)(1)2344

=-?-?-=,

故目标被击中的概率1()P P A B C =-??=13

144

-

=。 【变式3】设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某1 h 内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125. (1)求甲、乙、丙在这1 h 内需要照顾的概率分别是多少; (2)计算这1 h 内至少有一台机器需要照顾的概率. 【答案】

记“机器甲需要照顾”为事件A ,“机器乙需要照顾”为事件B ,“机器丙需要照顾”为事件C .由题意,各台机器是否需要照顾相互之间没有影响,∴A 、B 、C 是相互独立事件. (1)由已知得P (A ·B )=P (A )·P (B )=0.05, P (A ·C )=P (A )·P (C )=0.1, P (B ·C )=P (B )·P (C )=0.125,

解得P (A )=0.2,P (B )=0.25,P (C )=0.5.

∴甲、乙、丙在这1 h 内需要照顾的概率分别为0.2,0.25,0.5. (2)记A 的对立事件为A ,B 的对立事件为B ,C 的对立事件为C , 则()0.8P A =,()0.75P B =,()0.5P C =.

∴()1()1()()()0.7P A B C P A B C P A P B P C ++=-??=-??=. ∴这1 h 内至少有一台机器需要照顾的概率为0.7.

【变式4】 如图两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率. 【答案】 法一:

()()()()()P A B C P A B C P A B C P A B C P A B C ??+??+??+??+??

()()()()()()()()()()()()()()()0.847

P A P B P C P A P B P C P A P B P C P A P B P C P A P B P C =??+??+??+??+??=

法二:

[]21()1()10.3(10.7)0.847P C P A B --?=-?-=

经济数学基础-概率统计课后习题答案

习 题 一 写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次; (3) 掷一枚硬币,直到首次出现正面为止; (4) 一个库房在某一个时刻的库存量(假定最大容量为M ). 解 (1) Ω={正面,反面} △ {正,反} (2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”, B =“奇数点”, C =“点数小于5”, D =“小于5的偶数点”,讨论上述各事件间的关系. 解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A Ω A 与B 为对立事件,即B =A ;B 与D 互不相容;A ?D ,C ?D. 3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++= B - C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B = 321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解 B A A B A +=+ C B A B A A C B A ++=++ C B A B B AC +=+ BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对立的区别何在,举例说明. 解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容. 7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系. 解 由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有 A =C +F ,C 与F 互不相容, D ?A ?F ,A ?C. 8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1 315 C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有 图1-1 图1-2

条件概率与独立性

()()()()()()()()1012+C AB A P AB n P B A P A n P B A B C P B C A P B A P A ?????==????≤≤?????=???定义:对于两个事件A 和B ,在已知事件A 发生 的条件下,事件B 发生的概率。 公式:古典概型条件概率、性质、若事件、互斥,则有 条件概率题型: 题型一:根据公式换算求概率 ()()()()11,,23P B A P A B P A P B ===求(P(B)=1/3) 若P (A )=34,P (B |A )=12 ,则P (AB )等于 ( 3/8 ) 题型二:求条件概率 ()()()P AB P B A P A ?=???? 公式法:条件概率求解基本事件法:确定新的基本事件空间 1、公式法:由条件概率公式 ()()()P AB P B A P A =,分别求出()P AB 和()P A ,代入即可;公式法适用于所有条件概率问题;如例1 2、基本事件法:确定满足已知条件事件A 的基本事件数,确定新的基本事件 空间。基本事件法适用于解决与古典概型或几何概型相关的条件概率问题,比公式法方便,尤其是解决对于有次序的条件概率问题,如例2 用两种方法求解下列问题: 例1、 (公式法)盒中装有形状,大小完全相同的5个球,其中红色球3个, 黄色球2个,若从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为( )

A. 3 5 B. C. 2 3 D. 2 5 例2、(基本事件法)袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为() A.5 9 B. 4 9 C. 2 9 D. 2 3 例3、(基本事件法)有一匹叫Harry的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry赢了15场.如果明天下雨,Harry参加赛马的赢率是(1/2) 解答:此题所求就是Harry在雨天赛马赢的概率即 151 302 P== 例4、(基本事件法)一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球, 则后两次也摸得白球的概率为___1 5 _____. 例5、(基本事件法)某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第 一题不会答的情况下及格的概率.(25 42 ) 习题: 1.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛 出的也是偶数点的概率为 ( ) A.1 B.1 2 C. 1 3 D. 1 4 2.盒中装有形状,大小完全相同的5个球,其中红色球3个,黄色球2个,若 从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为() A. 3 5 B. C. 2 3 D. 2 5 9 10 9 10

1.2.1条件概率与独立事件

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

北师大数学选修课时分层作业2 条件概率与独立事件 含解析

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

事件的独立性与条件概率练习专题

事件的独立性与条件概率专题 1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为 ( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34

C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的 概率为13,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13 ,视力合格的概率为16,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( )

概率 2 条件概率与相互独立事件

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

概率统计基础训练题

第一章基础训练题 一、填空 1、设}1),({},4),({2222>+=≤+=y x y x B y x y x A ,则=?B A 。 2、事件A 、B 、C 至少有一个发生可表示为 ,至少有两个发生 ,三个都不发生 。 3、设}6,5,4,3,2,1{},7,5,3,1{==B A ,则=-B A 。 4、设事件A 在10次试验中发生了4次,则事件A 的频率为 。 5、设,)(),()(p A p B A p AB p ==则=)(B p 。 6、A 、B 二人各抛一枚硬币3次,则出现国徽一面次数相同的概率是 。 7、筐中有4个青苹果和5个红元帅,随机地从中取出2个,则取出的苹果为同一品种的概 率为 ,恰好取出2个青苹果的概率为 ,恰好取出1个青苹果和1个红元帅的概率 为 。 8、从一批由45件正品,5件次品组成的产品中任取3件产品,其中恰有一件次品的概率为 ,至少有一件正品的概率为 。 9、从一筐装有95个一等品,5个二等品的苹果中,每次随机取一个,记录它的等级后放回 原筐搅匀后再取一个,共取50次,则无二等品的概率为 。 10、已知,3.0)(,4.0)(==B p A p 5.0)(=?B A p ,则=)(B A p 。 11、已知,8.0)(,6.0)(,5.0)(===A B p B p A p 则=)(AB p ,=?)(B A p 。 12、对任意二事件B A ,,=-)(B A p 。 13、已知,3.0)(,4.0)(==B p A p (1)当A ,B 互不相容时,=?)(B A p ,=)(AB p (2)当A ,B 相互独立时,=?)(B A p ,=)(AB p ;(3)当A B ?时,=)(A p , =)(A B p ,=?)(B A p ,=)(AB p ,=-)(B A p 。 14、设C B A ,,为三事件,A 与B 都发生而C 不发生,则用C B A ,,的运算关系可表示 为 。设A ,B ,C 都发生,则用C B A ,,的运算关系可表示为 。 15、设B A ,为互斥事件,且,8.0)(=A p 则)(B A p = 。 16、从一批由10件正品,3件次品组成的产品中,任取一件产品,取得次品的概率为 。 17、设B A ,为两事件,则=)(AB p 。若B A ,为互斥事件,则=?)(B A p 。 18、设2.0)(,5.0)(=-=A B p A p ,则=?=)()(B A p B A p 。 (7.0)()()(),()()(=?=-+-=-B A p A B p A p AB p B p A B p )

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是0.8,则该射击运动员射击4次至少击中3次的概率为( ) A .0.85 B .0.819 2 C .0.8 D .0.75 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.34 B.23 C.35 D.12 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( ) A .0.960 B .0.864 C .0.720 D .0.576 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.1 2 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是1 2 ,构造数列{a n },使得a n = ????? 1 (第n 次抛掷时出现正面),-1 (第n 次抛掷时出现反面), 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) A.116 B.18 C.1 4 D.1 2 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于

2017高考理科数学第一轮基础知识点复习教案概率与统计1

(此文档为word格式,下载后您可任意编辑修改!) 第十二编概率与统计 §12.1 随机事件的概率 1.下列说法不正确的有 . ①某事件发生的频率为P(A)=1.1 ②不可能事件的概率为0,必然事件的概率为1 ③小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件 ④某事件发生的概率是随着试验次数的变化而变化的 答案①③④ 2.给出下列三个命题,其中正确命题有个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率. 答案0 3.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为, . 答案0.97 0.03 4.甲、乙两人下棋,两人和棋的概率是,乙获胜的概率是,则乙不输的概率是 . 答案 5.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率之和为 . 答案

例1盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少? 解(1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示: (1)计算表中击中10环的各个频率; (2)这位射击运动员射击一次,击中10环的概率为多少? 解(1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9. 例3(14分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示: 求该射击队员射击一次 (1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率. 解记事件“射击一次,命中k环”为A k(k∈N,k≤10),则事件A k彼此互斥. 2分

条件概率与事件的独立性

条件概率与事件的独立性 1. 条件概率及其性质 (1)条件概率的定义:设A 、B 为两个事件,且P(A)>0,称P(A|B)= 为在 发生的条件下, 发生的概率。 2.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做 . 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 3.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 4.互斥事件与相互独立事件是有区别的: 互斥事件与相互独立事件研究的都是两个事件的关系,但互斥的两个事件是一次实验中的两个事件,相互独立的两个事件是在两次试验中得到的,注意区别。 如果A 、B 相互独立,则P (A +B )=P (A )+P (B )-P (A ?B ) 如:某人射击一次命中的概率是0.9,射击两次,互不影响,至少命中一次的概率是0.9+0.9-0.9×0.9=0.99,(也即1-0.1×0.1=0.99) 5.独立重复试验 (1)独立重复试验的定义: (2)n 次独立重复试验的概率公式: 三、基础再现 1.一学生通过英语听力测试的概率是2 1 ,他连续测试两次,那么其中恰好一次通过的概率是 ( ) A. 41 B. 31 C. 21 D. 4 3 2.已知,53 )(,103)(==A P AB P 则)|(A B P 等于 ( ) A. 50 9 B. 21 C. 109 D. 41 3.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( ) A . 125 81 B . 125 54 C . 125 36 D . 125 27 4.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( ) A. p 1p 2 B.p 1(1-p 2)+p 2(1-p 1) C.1-p 1p 2 D.1-(1-p 1)(1-p 2) 5.(浙江)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( ) (A) 0.216 (B)0.36 (C)0.432 (D)0.648 6.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为3 1 ,丙生解出它的概率为 4 1 ,由甲、乙、丙三人独立解答此题只有一人解出的概率为______.

2019年北师大版数学选修1-2练习(第1章)条件概率与独立事件(含答案)

2019年北师大版精品数学资料 条件概率与独立事件 同步练习 【选择题】 1、一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,第一次 取后不放回.则若已知第一只是好的,第二只也是好的概率为( ) A .53 B .52 C .95 D .3 1 2、袋中有2个白球,3个黑球,从中依次取出2个,则取出两个都是白球的概率 ( ) A .53 B .101 C .31 D .5 2 3、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为 ( ) A .P 3 B .(1-P)3 C .1-P 3 D .1-(1-P)3 4、设某种产品分两道独立工序生产,第一道工序的次品率为10%,第二道工序的 次品率为3%,生产这种产品只要有一道工序出次品就将生产次品,则该产品的次品率是( ). A .0.873 B .0.13 C .0.127 D .0.03 5、甲、乙、丙三人独立地去译一个密码,分别译出的概率为51,31,4 1,则此密码能译出的概率是 ( ) A . 60 1 B .5 2 C .5 3 D . 60 59 6、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为 81 80 ,则此射手的命中率为 ( ) A .3 1 B .4 1 C .3 2 D .5 2 7、n 件产品中含有m 件次品,现逐个进行检查,直至次品全部被查出为止.若第 n-1次查出m-1件次品的概率为r ,则第n 次查出最后一件次品的概率为( ) A .1 B .r-1 C .r D .r +1 8、对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4, 0.5和0.7,则三次射击中恰有一次命中目标的概率是 ( ) A .0.36 B .0.64 C .0.74 D .0.63 【填空题】 9、某人把6把钥匙,其中仅有一把钥匙可以打开房门,则前3次试插成功的概率 为 __. 10、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:

2.2.1条件概率与事件的相互独立性

2. 2.1条件概率与事件的相互独立性 教学目标:1、通过对具体情景的分析,了解条件概率的定义。理解两个事件相互独立的概念。 2,掌握一些简单的条件概率的计算。能进行一些与事件独立有关的概率的计算。 3,通过对实例的分析,会进行简单的应用 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学过程:概念:1,对于两个事件A 与B ,如果P(A)>0,称P(B ︱A)=P(AB)/P(A),为在事件A 发生的条件下,事件B 发生的条件概率. 2,如果两个事件A 与B 满足等式 P(AB)=P(A)P(B),称事件A 与B 是相互独立的,简称A 与B 独立。 例1.一张储蓄卡的密码共有6位数字,每位数字都可从9~0中任选一个,某人在银行自 动提款机上取钱时,忘记了密码的最后一位数字.求 (1) 任意按最后一位数字,不超过2次就对的概率; (2) 如果他记得密码的最后一位是偶数,不超过2次就按对的概率. 解:设第i 次按对密码为事件i A (i=1,2) ,则1 12()A A A A =表示不超过2次就按对 密码. (1)因为事件1A 与事件12A A 互斥,由概率的加法公式得 1121911()()()101095 P A P A P A A ?=+=+=?. (2)用B 表示最后一位按偶数的事件,则 112(|)(|)(|)P A B P A B P A A B =+ 14125545 ?=+=?. 例2.一个家庭中有两个小孩,假定生男、生女是等可能的,已知这个家庭有一个是女孩, 问这时另一个小孩是男孩的概率是多少? 解:一个家庭的两个孩子有四种可能:{(男,男)},{(男,女)},{(女,男)},{(女,女)}。 这个家庭中有一个女孩的情况有三种:{(男,女)},{(女,男)},{(女,女)}。在这种情况下“其中一个小孩是男孩”占两种情况,因此所求概率为2/3. 例3.甲、乙两名篮球运动员分别进行一次投篮,如果两人投中的概率都是6.0,计算: (1)两人都投中的概率;(2)其中恰有一人投中的概率;(3)至少有一人投中的概率. 解:(1)“两人各投一次,都投中”就是事件AB 发生,因此所求概率为 P ( AB )=P (A )P (B )=0.6×0.6=0.36 (2)分析:“两人各投一次,恰有一人投中”包括两种情况:甲投中,乙未投中;甲未击中,乙击中。 因此所求概率为 48.06.0)6.01()6.01(6.0)()()()()()(=?-+-?=+=+B P A P B P A P B A P B A P 。

中职数学基础模块下册概率与统计初步练习题及答案

概率与统计初步 例1、某商场有4个大门,若从一个门进去,购买商品后再从另一个门出去,不同的走法共有多少种 解:4×3=12 例2.指出下列事件是必然事件,不可能事件,还是随机事件 ①某乒乓球运动员在某运动会上获得冠军。 ②掷一颗骰子出现8点。 ③如果0 a=。 a,则b -b = ④某人买某一期的体育彩票中奖。 解:①④为随机事件,②是不可能事件,③是必然事件。 例3.某活动小组有20名同学,其中男生15人,女生5人,现从中任选3人组成代表队参加比赛, A表示“至少有1名女生代表”,求) P。 (A 解:) P=15×14×13/20×19×18=273/584 (A 例4.在50件产品中,有5件次品,现从中任取2件。以下四对事件哪些是互斥事件哪些是对立事件哪些不是互斥事件 ①恰有1件次品和恰有2件次品互斥事件 ②至少有1件次品和至少有1件正品不是互斥事件 ③最多有1件次品和至少有1件正品不是互斥事件 ④至少有1件次品和全是正品对立事件 例5.从1,2,3,4,5,6六个数字中任取两个数,计算它们都是偶数的概率。 解:P(A)=3×2/6×5=1/5

例6.抛掷两颗骰子,求:①总点数出现5点的概率;②出现两个相同点数的概率。 解:容易看出基本事件的总数是6×6=36(个),所以基本事件总数n=36. (1)记“点数之和出现5点”的事件为A,事件A 包含的基本事件共6个:(1,4)、(2,3)、(3,2)、 (4,1)、,所以P(A)=.4/36=1/9 (2)记“出现两个相同的点”的事件为B,则事件B 包含的基本事件有6个:(1,1)、(2,2)、(3,3)、(4,4)、(5,5)、(6,6).所以P(B)=6/36=1/6 例7.甲、乙两人各进行一次射击,如果两人击中目标的概率都是,计算: ①两人都未击中目标的概率; ②两人都击中目标的概率; ③其中恰有1人击中目标的概率; ④至少有1人击中目标的概率。 解:A={甲射击一次,击中目标},B={乙射击一次,击中目标} (1)16 .04.04.0)()()(=?==B P A P B A P (2) 36.06.06.0)()()(=?==B P A P AB P (3)48.04.06.06.04.0)()(=?+?=+B A P B A P (4)84.016.01)(1=-=-B A P 例8.种植某种树苗成活率为,现种植5棵。试求: ①全部成活的概率; ②全部死亡的概率; ③恰好成活4棵的概率; ④至少成活3棵的概率。 解:(1)××××=

条件概率与事件的独立性练习题

条件概率与事件的独立性练习题 1.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12 ,且 是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12 D.116 2、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率 为( ) A.81125 B.54125 C.36125 D.27125 3、一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率 是() A. 41 B. 31 C.21 D.4 3 4.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为() A .12581 B .1255 4 C .12536 D .125 27 5、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( ) (A) 0.216 (B)0.36 (C)0.432 (D)0.648 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.

7.2009年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34 . (1)求该考生首次做错一道题时,已正确做出了两道题的概率; (2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.

概率论与数理统计基础

第1章概率论与数理统计基础 1.1概率论基础 一、随机事件与概率 1.随机事件--简称事件 自然界中的事件可分为必然事件、不可能事件和随机事件三种:○1必然事件(U):指在一定条件下必然发生的事件,如“1atm下水加热至100℃时沸腾”是必然事件。 ○2不可能事件(V):指在一定条件下不发生的事件,如“1atm下水加热至50℃时沸腾”是不可能事件。 ○3随机事件(A、B……):指一定条件下,可能发生,也可能不发生的事件。 2.概率与频率 对每一次试验而言,随机事件是否发生是带有偶然性的。但在大量重复试验下,并把这些试验结果综合在一起,就可以看出支配这些偶然性的某种必然规律性来。实践证明,随机事件发生的可能性大小是它本身所固有的属性,不随人们的主观意愿而转移,并且这种属性可以通过大量试验来认识。 为便于研究,我们将随机事件A发生的可能性的大小用一个数值p来表示,并把这个数值p叫做事件A的概率。记作: P(A)=p 为了确定事件A的概率p,首先必须说明频率的概念。 设A为某试验可能出现的随机事件,在同样条件下,该试验重复做n次,事件A出现了m次(0≤m≤n),则称m为A在这n次试验中出现的频数,称m/n为A在这n次试验中出现的频率。(见书上表1-1) 频率m/n本身不是常数,它与试验次数n有关,随着试验次数n的增加,频率总是在某一常数附近摆动,而且n愈大,频率与这

个常数的偏差往往愈小,这种性质叫做频率的稳定性。这个常数是客观存在的,与所做的若干次具体试验无关,它反映了事件本身所蕴含的规律性,反映了事件出现的可能性大小。 因此,这个常数(p)就是事件A的概率。即事件A的概率就是事件A发生的频率的稳定值(p)。 P(A)=p 抛掷硬币试验 试验者投掷次数 n 出现正面次数 m 出现正面频率 m/n 蒲丰4040 2048 0.5069 皮尔逊12000 6019 0.5016 皮尔逊24000 12012 0.5005 维尼30000 14994 0.4998 3.概率的基本性质 ○1 0≤P(A)≤1 即任何事件的概率都介于0和1之间 ○2 P(U)=1 即必然事件的概率为1 ○3 P(V)=0 即不可能事件的概率为0 二、随机变量及其概率分布 1.随机变量的概念 有些随机事件有数量标识,如射击时命中的环数,掷一枚骰子所出现的点数等等。但也有些随机事件无数量标识,如掷一枚硬币时,试验结果为“正面朝上”或“反面朝上”,而不是数量。这会使我们感到不太方便,能否用量来代替事?这就促使我们引入随机变量的概念。事实上,很多事都和量有关。例如,掷硬币时“正面朝上”或“反面朝上”这两件事,我们可以分别记为“0”或“1”。经这样规定后,随机事件就可以用一个数来表示了。 试验结果能用一个数ξ(希腊字母,读“克西”)来表示,这个数ξ随试验结果不同而变化,我们称ξ为随机变量。

概率统计第一章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第一章 概率论的基本概念 教学要求: 一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算. 二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式. 三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法. 重点:事件的表示与事件的独立性;概率的性质与计算. 难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理 解与应用;独立性的应用. 练习一 随机试验、样本空间、随机事件 1.写出下列随机事件的样本空间 (1)同时掷两颗骰子,记录两颗骰子点数之和; (2)生产产品直到有5件正品为止,记录生产产品的总件数; (3)在单位圆内任意取一点,记录它的坐标. 解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12 }; (2){=Ω5;6;7;…}; (3)(){} 1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件: (1)A 发生,B 与C 不发生,记为 C B A ; (2)C B A ,,至少有一个发生,记为C B A ; (3) C B A ,,中只有一个发生,记为C B A C B A C B A ; (4)C B A ,,中不多于两个发生,记为ABC . 3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:

相关文档
最新文档