ANASYS对带裂缝梁体的模态分析

ANASYS对带裂缝梁体的模态分析
ANASYS对带裂缝梁体的模态分析

ANSYS对带裂缝结构模态分析

通过ANASYS 的计算可以有效的解决带裂缝实体梁的工况

利用ANSYS可以对实体进行模态分析的特点,直接建立带裂缝实体梁模型,进行模态分析。取悬臂梁,梁尺寸为mm

200?

=

400

?,

?

?

b2000

mm

L

mm

h

取其弹性模量为2.13E10帕,泊松比为0.167,密度为2.5E-6千克每立方毫米,

,取ANSYS计算得到开裂前的一阶自振频率为0.74257Hz。取裂缝位置为L

L

n

,利用实体楔形模拟裂缝,对实体梁进行如下分析:

裂缝深度为h

a

n

1.裂缝宽度对模态的影响

分别取裂缝宽度为0.02mm,0.04mm,0.2mm,考察裂缝宽度对梁模态的影响。设定裂缝位置分别为0.1,0.2,0.4,0.6,0.8设定裂缝深度分别为0.1,0.3,0.5分析结果如表1-1所示,其对比图如图1-1所示。

从图表数据分析,得到如下结论:在允许裂缝范围内,裂缝的开裂宽度对结构的模态的影响可以忽略不计。

2.裂缝开裂位置对模态影响

利用1中结论,取裂缝宽度为0.02mm,考察裂缝在上部开裂时是否与下部开裂时不同。结果如图1-1所示,可以看出与下部开裂时完全相同。因此,可以得到当结构几何尺寸固定时,在同一几何方向上的开裂位置不影响其模态。

3.第二条裂缝模态对比一条裂缝时的模态

利用1,2中的结论,取两条均在梁底部的裂缝。第一条裂缝宽度为0.02mm,深度为0.1,位置分别为0.3,0.5,0.7;第二条裂缝宽度为0.02mm,深度分别为0.1,0.3,0.5,位置分别0.1,0.2,0.4,0.6,0.8。分析结果如表3-1。

从图3-1可以看出,模拟值与试验值对照良好,可以说明此方法可行。

从图3-2可以看出,单裂缝自振频率与完好梁自振频率比,同双裂缝自振频率与单裂缝自振频率比是非常接近的。即,再次开裂对结构前一状态的模态影响是基本相同的。

综合1,2,3可以看出,采用实体建模直接构件裂缝的方法分析带裂缝的结构模态是完全可行的,但因为现阶段扩展有限元方法XFEM尚不完善,采用有限元方法建立裂缝又导致需要重新修改实体模型再剖分单元网格,而且,不论是裂缝

实体还是裂缝面上的网格剖分,都是非常困难的。因此,需要引入适当的简化方法来实现带裂缝实体结构的模态分析。

考察以上方法可以看出,建立楔形裂缝后,开裂出的节点刚度降低了一半,因此采用折减模量法来进行模拟,做结果对比分析。

4.利用折减模量法分析带裂缝结构模态的合理性及其折减量取值分析

在之前模型的基础上,分别建立40mm和20mm尺寸网格单元模型,对裂缝面处的单元弹性模量进行折减,计算模态。根据图表结果表明:在网格密度合理的状态下,裂缝边缘网格的尺寸大小对模态计算结果没有影响。如图4-1,4-2,4-3所示。

折减模量法的模量折减系数不能同时适用于不同深度的裂缝,不同深度的裂缝有最合适的模量折减系数,需要深入研究讨论。就本文中的0.1,0.3,0.5等效深度的裂缝,分别采用30%,10%和5%进行模量折减模拟最为合适。如图4-4,4-5,4-6所示。

表1-1 单裂缝时自振频率值

裂缝宽度0.02mm 裂缝宽度0.04mm 裂缝宽度0.2mm

a/h a/h a/h

L1/L 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

频率值

0.1 0.73783 0.70537 0.64997 0.73783 0.70537 0.64997 0.73783 0.70537 0.64996 0.2 0.73909 0.71487 0.67092 0.73909 0.71487 0.67092 0.73909 0.71487 0.67091 0.4 0.74106 0.73072 0.7101 0.74106 0.73072 0.7101 0.74106 0.73072 0.71009 0.6 0.74207 0.73983 0.73343 0.74207 0.73983 0.73343 0.74207 0.73984 0.73343 0.8 0.74239 0.74219 0.74148 0.74239 0.74219 0.74148 0.74239 0.7422 0.7415

开裂模态-原模态比例值

0.1 0.993617 0.949904 0.875298 0.993617 0.949904 0.875298 0.993617 0.949904 0.875284 0.2 0.995314 0.962697 0.903511 0.995314 0.962697 0.903511 0.995314 0.962697 0.903497 0.4 0.997967 0.984042 0.956273 0.997967 0.984042 0.956273 0.997967 0.984042 0.95626 0.6 0.999327 0.99631 0.987691 0.999327 0.99631 0.987691 0.999327 0.996324 0.987691 0.8 0.999758 0.999488 0.998532 0.999758 0.999488 0.998532 0.999758 0.999502 0.998559

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

图1-1 (纵轴为频率比,横轴为裂缝位置)

表2-1 上部开裂的自振频率

裂缝宽度0.02mm

a/h

L1/L 0.1 0.3 0.5

自振频率

0.1 0.73783 0.70537 0.64997 0.2 0.73909 0.71487 0.67092 0.4 0.74106 0.73072 0.7101 0.6 0.74207 0.73987 0.73343 0.8 0.74239 0.74218 0.74148

开裂模态-原模态比

0.1 0.993617 0.949904 0.875298 0.2 0.995314 0.962697 0.903511 0.4 0.997967 0.984042 0.956273 0.6 0.999327 0.996364 0.987691 0.8 0.999758 0.999475 0.998532

表3-1 双裂缝自振频率

L1/L 0.3 0.5 0.7

a2/h a2/h a2/h

L2/L 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

单裂缝自振频率

0.7402 0.74167 0.74229

双裂缝自振频率

0.1 0.73566 0.70353 0.6486 0.7371 0.70474 0.64947 0.73771 0.70526 0.64988 0.2 0.73701 0.71356 0.67019 0.73836 0.71421 0.67037 0.73897 0.71476 0.67083 0.4 0.73892 0.72909 0.70895 0.74035 0.73026 0.70983 0.74093 0.7306 0.70999 0.6 0.73985 0.73713 0.73128 0.74135 0.73874 0.73297 0.74195 0.73926 0.73339 0.8 0.74017 0.7399 0.73926 0.74164 0.74138 0.74074 0.74227 0.74202 0.74139

双裂缝自振频率-单裂缝自振频率比值

0.1 0.993867 0.950459 0.87625 0.993838 0.950207 0.875686 0.99383 0.950114 0.875507 0.2 0.99569 0.96401 0.905417 0.995537 0.962975 0.903866 0.995527 0.962912 0.90373 0.4 0.998271 0.984991 0.957782 0.99822 0.984616 0.95707 0.998168 0.984251 0.956486 0.6 0.999527 0.995852 0.987949 0.999569 0.996049 0.98827 0.999542 0.995918 0.98801 0.8 0.999959 0.999595 0.99873 0.99996 0.999609 0.998746 0.999973 0.999636 0.998788

双裂缝自振频率-未开裂自振频率比值

0.1 0.990694 0.947426 0.873453 0.992634 0.949055 0.874625 0.993455 0.949756 0.875177 0.2 0.992512 0.960933 0.902528 0.994331 0.961808 0.90277 0.995152 0.962549 0.90339 0.4 0.995085 0.981847 0.954725 0.99701 0.983422 0.95591 0.997791 0.98388 0.956125 0.6 0.996337 0.992674 0.984796 0.998357 0.994842 0.987072 0.999165 0.995543 0.987638 0.8 0.996768 0.996404 0.995543 0.998748 0.998397 0.997536 0.999596 0.999259 0.998411

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.2

0.4

0.6

0.8

1

1.2

图3-1 双裂缝自振频率值-原始频率值-试验值

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

图3-2 单裂缝频率与完好梁频率比-双裂缝与单裂缝频率比对照图

图4-1 40mm和20mm尺寸单元对比(50%)

图4-2 40mm和20mm尺寸单元对比(40%)

图4-3 40mm和20mm尺寸单元对比(30%)

图4-4 裂缝深度0.1时最合适拟合曲线

图4-5 裂缝深度0.3时最合适拟合曲线

图4-6 裂缝深度0.5时最合适拟合曲线

悬臂梁固有频率测试实验数据处理

实验题目:悬臂梁固有频率测试实验数据处理 一、实验要求以下: 1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数; 2. 了解小阻尼结构的衰减自由振动形态; 3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼 根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。 二、实验内容 识别悬臂梁的二阶固有频率和阻尼系数。 三、测试原理概述: 1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。 2,脉冲激励用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大。 3.幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 实验步骤及内容 1,按要求,把各实验仪器连接好接入电脑中,然后在悬臂梁上粘紧压电式加速度传感器打开计算机,。。 2,打开计算机,启动计算机上的“振动测试及谱分析.vi ”。 3,选择适当的采样频率和采样点数以及硬件增益。点击LabVIEW 上的运行按钮(Run )观察由脉冲信号引起梁自由衰减的曲线的波形和频谱。 4,尝试输入不同的滤波截止频率,观察振动信号的波形和频谱的变化。 5,尝试输入不同的采样频率和采样点数以及硬件增益,观察振动信号的波形变化。 6,根椐最合适的参数选择,显示最佳的结果。然后按下“结束按钮,完成信号采集。最后我选择的参数是:采样频率 f为512HZ,采样点数N为512点。 s 7,记录数据,copy读到数据的程序,关闭计算机。

箱梁的结构与受力特点

(二)箱形截面的配筋 箱形截面的预应力混凝土结构一般配 有预应力钢筋和非预应力向普通钢筋。 1、纵向预应力钢筋:结构的主要受力 钢筋,根据正负弯矩的需要一般布置在顶板 和底板内。这些预应力钢束部分上弯或下弯 而锚于助板,以产生预剪力。近年来,由于 大吨位预应力束的采用,使在大跨径桥梁设 计中,无需单纯为了布置众多的预应力束而 增大顶板或底板面积,使结构设计简洁,而 又便于施工。 2、横向预应力钢筋:当箱梁肋板间距 厚的桥面板。的上、下两层钢筋网间,锚固于悬臂板端。 3时,可布置竖向预应力钢筋,面桥梁都采用三向预应力。 4 钢筋网。必须指出,因此必须精心设计,做到既安全又经济。 第二节 箱形梁的受力特点 作用在箱形梁上的主要荷载是恒载与活载。恒载 一般是对称作用的,活载可以是对称作用,但更多的 情况是偏心作用的,因此,作用于箱形梁的外力可综 合表达为偏心荷载来进行结构分析; 在偏心荷载作用下,箱形梁将产生纵向弯曲、扭 转、畸变及横向挠曲四种基本变形状态。详见图2-4。 1、纵向弯曲 产生竖向变位w ,在横截面上起纵向正应力M σ及剪应力M τ。对于肋距不大的箱形梁,M σ按初等梁 理论计算,当肋距较大时,会出现所谓“剪力滞效应”。 即翼板中的M σ分布不均匀,近肋翼板处产生应力高 βα+= 刚性扭转 横向挠曲 图2-4 箱形梁在偏心荷载 作用下的变形状态

峰,而远肋翼板处则产生应力低谷,这称为“正剪力滞”;反之,如果近肋翼板处产生应力低谷,而远肋翼板处则产生应力高峰,则为“负剪力滞”。对于肋距较大的宽箱梁,这种应力高峰可达相当大比例,必须引起重视。 2、刚性扭转 刚性扭转即受扭时箱形的周边不变形。扭转产生扭转角θ。分自由扭转与约束扭转。 (1)自由扭转:箱形梁受扭时,截面各纤维的纵向变形是自由的,杆件端面虽出现凹凸,但纵向纵维无伸长缩短,能自由翘曲,因而不产生纵向正应力,只产生自由扭转剪应力K τ。 (2)约束扭转:受扭时纵向纤维变形不自由,受到拉伸或压缩,截面不能自由翘曲。约束扭转在截面上产生翘曲正应力w σ和约束扭转剪应力w τ。 产生约束扭转的原因:支承条件的约束,如固端支承约束纵向纤维变形;受扭时截面形状及其沿梁纵向的变化,使截面各点纤维变形不协调也将产生约束扭转。如等厚壁的矩形箱梁、变截面梁、设横隔板的箱梁等,即使不受支承约束,也将产生约束扭转。 3、畸变(即受扭时截面周边变形) 畸变的主要变形特征是畸变角γ。薄壁宽箱的矩形截面受扭变形后,无法保持截面的投影仍为矩形。畸变产生翘曲正应力dw σ和畸变剪应力dw τ。 4、横向弯曲:畸变还会引起箱形截面各板的横向弯曲,在板内产生横向弯曲应力dt σ (纵截面上)。 5、局部荷载的影响:箱形梁承受偏心荷载作用,除了按弯扭杆件进行整体分析外,还应考虑局部荷载的影响。车辆荷载作用于顶板,除直接受荷载部分产生横向弯曲外,由于整个截面形成超静定结构,因而引起其它各部分也产生横向弯曲。图2-5表示箱形截面在顶板上作用车辆荷载,在各板中产生横向弯矩图。这些弯矩在各板的纵截面上产生横向弯曲正应力c σ及剪应力。 综合箱形梁在偏心荷载作用下产生的应力有: 在横截面上:纵向正应力:dw w M z σσσσ++= 剪应力:dw w M K τττττ+++= 在纵截面上;横向弯曲正应力:c dt s σσσ+= 在预应力混凝土梁中,跨径越大,恒载占总荷载比例就越大。一般地,由于恒载产生的对称弯曲应力是主要的,而由于活载偏心所产生的扭转应力是次要的。如果箱壁较厚,或沿梁的纵向布置一定数量的横隔板,限制箱形梁的畸变,则畸变应力也是不大的。但对于少设或不设横隔板的宽箱薄壁梁,畸变应力不可忽视。板的横向应力对于顶板、肋板及底板的配筋具有重要意义,必须引起重视。 图2-5 局部荷载作用下 横向弯矩图

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

悬臂梁的模态实验

悬臂梁的模态实验 1、实验概述 点)之间的频响函数,利用上式可得 「(k ) J 10 令t 0k ) =1就可得到第k 阶主振型的10个元素。根据他们的相对大小就能画出第 k 阶主振型。如果分别令 k =1,2,3,4,就可以画出前 4阶主振型。 2、实验要求 (1) 证明无论用频响函数的幅值谱或虚部谱,都可以求出各阶主振型; (2) 如果我们不测量振动的位移信号, 而是测量振动的加速度信号,就可以得到加 速度频响函数。试证明利用加速度频响函数也可以求出各阶主振型; 在频响函数曲线上 f 『二f k 处,s k = 1 ,将出现第k 阶共振峰,该处的频响函数 可以近似写为 ?: ( k) ?: ( k) ~ r j H rj (k) ■ i2k ( ? 设 j =1,2,…,10,和 r=10, 即测量悬臂梁上均匀分布的 本实验的装置如图 8所示。用激振力锤2敲击悬臂梁 1,由锤头的力传感器测量锤击 力,电涡流传感器测量梁自由端的振动信号, 算机,由虚拟动态分析仪处理可以求出锤击 点 (设为第j 点)与位移测量点(设为第r 点) 之间的频响函数。悬臂梁可以抽象为由 无限多 个质点用板簧串联的多自由度的振 动系统,其 中第j 点与第r 点之间的频响 函数公式为 分别经电荷放大器 6、位移测量仪5送给计 H rj k ⑴(1 -s : i2 j Sj -2~. f S i 悬臂梁的檯态实验 10个点与自由端(即第 10 H 10 ,10 1.悬臂絮2、激振力锤久电涡凉位移怯感器 J 前置盟久便移量仪&电荷放大器 f

(3)本实验求出前4阶主振型,对实验过程中出现的问题进行讨论。

简单轴的模态分析

简单轴的模态分析 一根轴,半径r=0.03m,长s=1m,密度p=7800kg/m3,弹性模量E=2e11,两端简支。 (1)理论计算公式为:f = ( n^2 / s^2 ) * ( pi / 2 ) * sqrt ( E * I / ( p * A ) ) n=1,2,3,... ^表示平方,sqrt表示开方,pi是圆周率,A=pi*r^2为圆截面的面积, I=pi*D^4/64为圆截面的惯性矩, D=2*r为直径 (2)计算前三阶结果为119.311 HZ,477.242 HZ,1073.795 HZ。 ANSYS WORKBENCH 12.1求解(很可能有不准确的地方,逐渐修正) (一)思路:通过二维线模拟轴,线有圆形截面,半径0.03m 1.DesignModeler中的造型 1)创建两构造点(construction point),定义点的坐标。 2)通过两点创建线。

3)创建截面。 4)在线体上应用所创建的截面。

5)显示带有截面的线体。 2.Model中进行模态分析。注意可以导入到Model中的体的类型,这里要包含Line body。 1)对两端点创建简支(simply support)约束 2)求解结果在solution中。前三阶的固有频率为118.33,467.19,1029.7。最后一阶与理论计 算值误差较大。

(二)思路:直接创建三维的轴。 1)对两端面创建远距离移动(Remote Displacement)约束。两面的约束设置如下: 2)求解结果在solution中。前三阶的固有频率为118.68,473.57,1061.5。与理论计算值接近。

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

实验四 五:结构静力分析与ANSYS模态分析

注:3月20号,周二课程内容主要是完成下面实验四 特别注意:本周六没课,本五周23号,8:00--12:00有课------------------------------------------------------------------------------------- 实验四MEMS薄膜压力传感器静力学分析 一、实验目的 1、掌握静力学分析 2、验证理论分析结果 3、对不同形状膜的分析结果进行对比 二、实验器材 能够安装ANSYS软件,内存在512MHz以上,硬盘有5G空间的计算机 三、实验说明 (一)基本思路 1、建模与网格化 2、静力学分析 3、对结果进行分析和比较 (二)问题描述: 由于许多压力传感器的工作原理是将受压力作用而变形的薄膜硅片中的应变转换成所需形式的电输出信号,所以我们要研究比较一下用什么样形状的膜来作为压力传感器的受力面比较好。我们比较的膜形状有三种,分别是圆形. 正方形. 长方形。在比较的过程中,三种形状膜的面积.,厚度和承受的压力是都是相等的。设置参数具体为:F=0.1MPa, EX=1.9e11,PRXY=0.3,DENS=2.33e3.单元尺寸为5e-006。为了选

择合适的网格化类型,首先我们拿圆的结构进行一下比较,最后选择比较接近理论计算的网格化类型,通过比较,我们知道映射网格化类型比较优越,所以后面的两种类型膜结构选择了映射网格化。 四、实验内容和步骤 圆形薄膜1 1.先建立一个圆形薄膜:Main Menu>Preprocessor>modeling>Create>volumes>solid cylinder.弹出以个对话 框如图,输入数据如图4-1,单击OK. 图4-1 2.设置单元类型:Main Menu>Preprocessor>element type>add/edit/delete,弹出一个对话框,点击add,显示library of element type对话框如图:在library of element type下拉列表框中选择structural solide 项,在其右侧下拉表框中选择brick 8node 45选项,单击OK. 在点击close.如图4-2.

悬臂梁地振动模态实验报告材料

实验 等截面悬臂梁模态测试实验 一、 实验目的 1. 熟悉模态分析原理; 2. 掌握悬臂梁的测试过程。 二、 实验原理 1. 模态分析基本原理 理论上,连续弹性体梁有无限多个自由度,因此需要无限多个连续模型才能描述,但是在实际操作中可以将连续弹性体梁分为n 个集中质量来研究。简化之后的模型中有n 个集中质量,一般就有n 个自由度,系统的运动方程是n 个二阶互相耦合(联立)的常微分方程。这就是说梁可以用一种“模态模型”来描述其动态响应。 模态分析的实质,是一种坐标转换。其目的在于把原在物理坐标系统中描述的响应向量,放到所谓“模态坐标系统”中来描述。这一坐标系统的每一个基向量恰是振动系统的一个特征向量。也就是说在这个坐标下,振动方程是一组互无耦合的方程,分别描述振动系统的各阶振动形式,每个坐标均可单独求解,得到系统的某阶结构参数。 多次锤击各点,通过仪器记录传感器与力锤的信号,计算得到第i个激励点与定响应点(例如点2)之间的传递函数 ω ,从而得到频率响应函数矩阵中的一行 频响函数的任一行包含所有模态参数,而该行的r 阶模态的频响函数 的比值,即为r 阶模态的振型。 2. 激励方法 为进行模态分析,首先要测得激振力及相应的响应信号,进行传递函数分析。传递函数分析实质上就是机械导纳,i 和j 两点之间的传递函数表示 [] ∑==N r iN r i r i r H H H 1 21 ... [] Nr r r N r r r r ir k c j m ???ωω? (2112) ∑ =++-=[]{}[] T r ir N r r iN i i Y H H H ??∑==1 21 ...

预应力混凝土连续箱梁纵向受力分析

预应力混凝土连续箱梁纵向受力分析 摘要:以某三跨预应力混凝土连续箱梁为例,利用有限元分析软件Midas/Civil分别建立了单梁模型和梁格法模型。通过对两种模型计算结果的比较,分析了单梁模型和梁格模型计算结果之间的差异,提出了设计计算分析中的一些建议。结论对同类桥梁的设计计算分析具有一定的参考意义。 关键词:连续箱梁平面杆系梁格法 1引言 对箱型梁桥进行有限元分析时通常可建立三种模型进行计算分析,即平面杆系、空间杆系以及空间实体模型。平面杆系模型方法简便,仅能反映杆系截面的平均力学特征,可用于简单结构的粗略分析;空间实体模型建模工作量大,适用于结构的局部分析;空间杆系模型在合理建模的情况下,能较为全面地反映结构的空间受力特点,具有基本概念清晰、易于理解和使用等特点[1]。本文从适用性和经济性出发,结合具体实例采用梁格法进行结构分析,并与平面杆系模型的计算结果进行比较分析验证梁格法的适用性。 2工程实例概况 本文以某三跨等截面预应力混凝土连续箱梁桥为例,桥跨布置为20m+32m+20m,桥面宽12.0m,为单箱双室截面,如图1所示;两侧翼缘悬臂板长2.0m,箱底宽7.5m,梁高1.45m,连续梁双点支撑,跨间无横隔板,仅在支点处设支座横梁。设计荷载:汽车-15、挂-80。 图1 桥梁简图(单位:cm) 3计算模型及计算结果分析 本文采用桥梁有限元分析软件Midas/Civil分别建立桥梁的单梁模型和梁格模型。 3.1单梁模型 采用Midas/Civil的空间梁单元建立桥梁的单梁模型,共建立节点73个,单元72个,如图2所示。其中汽车荷载的作用通过定义车道偏心加以考虑。

预应力大变形模态分析到 PSTRES 和 SSTIF 的辨异

一,前言: 在ANSYS中有两个命令可以将预应力效应激活并考虑在求解方程计算中,但是他们是有区别,最近在论坛上出现很多的帖子讨论预应力大变形模态分析,但是好象大家对以上两个命令出现一定程度的混淆,本文结合例子对以上两个命令及相关问题做以阐释。不妥之处,欢迎高手批评指正 二,例子简单介绍: 借用网友的例子进行说明,下面简单介绍以下我们分析的问题。 实际的问题是两根拉索,通过圆钢管联系在一起成以下平面形状,拉索中通过施加应变yingbian=3.51e-3考虑索中的预应力。本文将对以下结构进行静力求解和模态求解。 三,静力求解结果分析: 本文采用以下四种不同的求解方式进行求解,并对结果进行分析: SOLUTION 1 小变形求解,不激活以上两个命令,使用以下命令流: Nlgeom,off Sstif,off Pstres,off Solv SOLUTION 2-1 小变形求解,激活Pstres命令,使用以下命令流: Nlgeom,off Pstres,on solv SOLUTION 2-2 大变形求解,激活Pstres命令,使用以下命令流: Nlgeom,on Pstres,on solv SOLUTION 2-2 大变形求解,激活SSTIF,on命令,使用以下命令流: Nlgeom,on Sstif,on solv 经过求解分别得到以下计算结果:以UX变形为例 结论:通过以上结果可见,PSTRES,ON 是不适合用于大变形分析,因为该命令不会激活△U的附加刚度矩阵。 四,命令辨析: 为从根本上阐明以上问题,我们先从两个命令的说明上进行对比,区分其中的不同之处。4-1PSTRES 命令 PSTRES, Key Specifies whether *1pstress effects are calculated or included. 注1,Pstres主要为激活预应力效应,注意和SSTIF使用目的的区别 Notes Specifies whether or not prestress effects are to be calculated or included. Prestress effects are calculated in a static or transient analysis for inclusion in a buckling, modal, harmonic (Method = FULL or REDUC), transient (Method = REDUC), or substructure generation analysis. If used in SOLUTION, this command is valid only*2within the first load step.

实验四 悬臂梁弯曲实验汇总

实验四悬臂梁弯曲实验 一、电阻应变仪 各种不同规格及各种品种的电阻应变计现在有二万多种,测量仪器也有数百余种,但按其作用原理,电阻应变测量系统可看成由电阻应变计、电阻应变仪及记录器三部分组成。其中电阻应变计可将构件的应变转换为电阻变化。电阻应变仪将此电阻变化转换为电压(或电流)的变化,并进行放大,然后转换成应变数值。 其中电阻变化转换成电压(或电流)信号主要是通过应变电桥(惠斯顿电桥)来实现的,下面简要介绍电桥原理。 1、应变电桥 应变电桥一般分为直流电桥和交流电桥两种,本篇只介绍直流电桥。

电桥原理图所示,它由电阻R1、R2、R3、R4组成四个桥臂,AC两点接供桥电压U。图中U BD是电桥的输出电压,下面讨论输出电压与电阻间的关系。 通过ABC的电流为:I1=U/(R2+ R1) 通过ADC的电流为:I2=U/(R3+ R4) BD二点的电位差 U BD= I1R2-I2R3=(R2R4-R1R3)U /(R2+ R1)(R3+ R4) 当U BD=0,即电桥平衡。由此得到电桥平衡条件为: R1 R3 =R2R4 如果R1 =R2 =R3 =R4 =R,而其中一个R有电阻增 量, 式中2ΔR 与4R相比为高阶微量,可略去,上式化为 如果R1 =R2 =R3 =R4为电阻应变计并受力变形后产生的电阻增量为 、、、代入式中,计算中略去高阶微量,可得

将式代入上式可得 电桥可把应变计感受到的应变转变成电压(或电流)信号,但是 这一信号非常微弱,所以要进行放大,然后把放大了的信号再用应变 表示出来,这就是电阻应变仪的工作原理。电阻应变仪按测量应变的 频率可分为:静态电阻应变仪、静动态电阻应变仪、动态电阻应变仪 和超动态电阻应变仪,下面我们简要介绍常用的静态电阻应变仪中的 一种应变仪--数字电阻应变仪。 二、测量电桥的接法 各种应变计和传感器通常需采用某种测量电路接入测量仪表,测 量其输出信号。对于电阻应变计或者电阻应变计式传感器,通常采用 电桥测量电路,将应变计引起电阻变化转换为电压信号或电流信号。 电桥的测量电路由电阻应变计及电阻组成桥臂,电桥的应变计接桥方 式分为半桥和全桥。 在实际测量中,可以利用电桥的基本特性,采用各种电阻应变计在电桥中不同 的连接方法达到不同的测量目的:

预应力砼连续箱梁支架受力分析

预应力砼连续箱梁支架受力分析 本文从搭设满堂脚手架需的基础,叙述预应力砼连续箱梁,必须基础稳固,支架荷载分析计算全面,通过预压,消除主要的非弹性变形和弹性变形,使底模顶面预设标高符合设计要求。 标签支架;砼连续箱梁;预压;荷载 在南水北调安阳段的生产桥的施工中,上部结构为后张法现浇预应力混凝土连续箱梁,梁长有95m、80m、70m、66m等,梁宽有5.5m、4.5m两种,下部结构为钻孔灌注桩基础、柱式墩台。桥梁设计车辆荷载等级为公路—Ⅱ级。桥位地震动峰值加速度为0.15g。在两桥台处设D80型伸缩缝各一道。混凝土设计标号为C50。本文就预应力砼连续箱梁支架受力,进行分析。 1 地基处理(渠道内搭满堂脚手架) 满堂脚手架的沉降值控制至关重要,所以应严格控制地基的强度,首先在桥位的两侧挖好排水系统,然后对原地面进行压实处理,土基高度比渠底高0.6m。在桥墩与桥台之间的渠坡上挖台阶,台阶高0.1m,宽0.3m,长(梁宽加1m),然后在土台阶上浇C10垫层、厚0.1 m,作为渠坡面上搭钢管架子垫石。坡面上粉2cm厚水泥砂浆,防止下雨时雨水冲毁台阶。 对承台与渠坡交界处架子搭设,承台开挖时的工作面,根据设计要求选用回填材料,回填跟承台顶面平,承台顶面以上土方暂不回填,搭满堂脚手架时,承台与渠坡交界处的三角形部位,立杆纵横间距按0.3m布设,大小横杆层步距按0.9 m搭设,增加斜撑杆。同时,注意渠坡上钢管与承台处钢管的连接。 2 支架荷载计算分析 支架进行强度、刚度及稳定进行验算,确保支架在施工过程中能满足承载要求。进行验算,过程如下: 满堂脚手架顶层大横杆验算: 箱梁底砼荷载,按中跨计算 G=30/80×(265-30)×26=2291.25KN 安全系数取K=1.2,假设全部重量作用于底模上,则底模按每平方米承受的荷载为:按中跨30m计算。 F1=2291.25×1.2/(3×30)=30.55KN/㎡

实验三 矩形截面悬臂梁弯曲测弹性模量和泊松比

中国矿业大学力学实验报告 姓名白永刚 班级 土木11-9班 同组姓名 方雷、蔡卫、蔡尧 实验日期2012-10-26 材料弹性模量E 和泊松比μ的测试 一、实验目的 1. 测定常用金属材料的弹性模量E 和泊松比μ。 2. 验证胡克定律。 3. 学习掌握电测法的基本原理和电阻应变仪的操作。 4. 熟悉测量电桥的应用。掌握应变片在测量电桥中的各种接线方法。 5. 学习用最小二乘法处理实验数据。 二、实验设备 1. 电子万能试验机或组合实验台; 2. 静态电阻应变测力仪; 3. 游标卡尺; 4. 矩形截面梁。 三、实验原理和方法 材料在线弹性范围内服从胡克定律,应力和应变成正比关系。单向拉伸时,其形式为 E σε= (1) 式中E 为弹性模量。在εσ-曲线上,E 由弹性阶段直线的斜率确定,它表征材料抵抗弹性应变的能力。E 愈大,产生一定弹性变形所需的应力愈大。E 是弹性元件选材的重要依据,是力学计算中的一个重要参量。 00F = l E A l σε = ? (2) 试件弯曲时,产生纵向伸长和横向收缩,或者产生纵向收缩和纵向伸长。实验表明在弹性范围内,横向应变ε'与轴向应变ε,二者之比为一常数,其绝对值称为泊松比,用μ来表示,即 ε εμ' = (3) 本实验采用电测法来测量E 、μ。 试件采用矩形截面试件,布片方式如图(a)。在试件中央某截面,沿前后两面轴向分别对称地分布有两对轴向应变片R 1,R 1’以测量轴向应变ε。一对横向应变片R 2,R 2’以测轴向应变ε'。

1. 测弹性模量E 由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减少测量误差,实验已从初载()000F F ≠开始。与0F 对应的应变仪读数d ε可预调到零。采用增量法,分级加载,分别测量在各项同载荷增量F ?作用下,产生的应变增量ε?,并求ε?的平均值。设试件初始横截面面积为A 0,又因=/l l ε?,则(2)式可写成 0A F E ε?= ?均 (4) 上式即为增量法测E 得计算公式,其中d ε?为试件实际轴向应变增量的平均值, F ?为加载力的阶段差值。 实验前拟定加载方案,通常考虑以下情况: (1) 由于在比例极限内进行试验,故最大应力值不应大于比例极限,实验最 大载荷为 max 0(0.70.8)A S F σ≤- (5) (2) 初载荷0F 可按max F 的10%或稍大于此值来设定。 (3) 分5-7级加载,每级加载后要使应变度数有明显变化。 2. 测泊松比μ 利用试件的横向应变和轴向应变,采用全桥测量法,在弯曲情况下测出横向应变ε'和轴向应变F ε,并随时检验其增长是否符合线性规律。按照定义有 ()F 21d εμε=+ (6) 'F =ε με?? 均 均 (7) 布片方案如图(a)所示。

悬臂梁实验简明指导书

悬臂梁实验指导 1、实验目的 1、初步掌握电测方法和多点应变测量技术; 2、测定悬臂梁上下表面的应力,验证梁的弯曲理论。 2、实验设备 1、材料力学组合试验台; 2、电阻应变仪; 3、矩形截面钢梁。 3、原理及方法 如上图,梁在纯弯曲时,同一截面的上表面产生拉应变,下表面产生压应变,上下表面产生的拉压应变绝对值相等。分别在梁上下表面对称位置贴上应变片R1、R2,此时,可得到不同横截面的正应力σ,其理论值计算公式: M :弯矩 M=P·L ( L :载荷作用点到测试点的距离) (抗弯截面矩量) 温度补偿片贴在相同材料的金属上。对每一待测应变片联同补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知:,于是可将实测值和理论值进行比较。 四、实验步骤及注意事项 1、按照指导书介绍的电阻应变仪使用方法,根据应变片灵敏 系数k,设定仪器灵敏系数k仪,使k仪=k。 2、对每一待测应变片联同补偿片按半桥接线,在本次实验 中,将用导线把所有的b端、c端各自连通(短路),以实 现各测点共用补偿片。 3、准备好加载法码 (本次实验用的是非标准法码)。 4、确认无加载,此时把各测点的应变调零,用应变仪的换点 开关切换测点。 5、开始进行加载、实验。(应片仪读数为微应变) 6、加载法码时要缓慢,测量中不要挪动导线;小心操作,不

要因超载压坏钢梁。 五、数据处理 1、本次实验以加载一次和卸载一次为例,卸载可观察一下数 据飘移的现象,多次的可以类推。每次由P1到P3(Pmax),在应变仪上读出各测点逐次的应变值,然后进行逐级卸载,并记录相应的应变值。 2、把所有实测数据填入数据表中,并按公式进行计算。 3、每一测点求出对的相对误差e: 4、相关数据 应变片灵敏系数k=2,阻值为120Ω; 悬臂梁弹性模量E=2.15×1011 Pa 悬臂梁横相关几何尺寸:L=300mm、h=10mm、b=30mm、1N=0.102kgf 1kgf (公斤力) =9.8N 1MPa=1×106 Pa (1MPa=1N/mm2,1Pa=1N/m2) 测量片1 载荷加载卸载相对误差 e: P1 P2 P3 测量片2 载荷加载卸载相对误差 e: P1 P2 P3 实验中心机械实验室 2009年10月

悬臂梁实验报告

实验报告悬臂梁的模态实验 姓名:xxx 学号:xxx 专业:xxx 系别:xxx

一、试验装置 二、实验原理 本实验采用锤击法测定悬臂梁的频响函数,将第S 点沿坐标X S 方向作用的锤击力和第r 点沿X r 方向的响应分别由相应的传感器转换为电信号,在由动态分析仪,按照随机振动理论,运算得出r,s 两点间的频响函数rs H ~ , ∑=+-==n i i i i k i s i r s r rs i k F X H 12 ) ()()(0) 21(~~ λζλ?? (1) 又由于响应信号是加速度,同时圆频率为ω,位移函数,sin t X x ω=其加速度为 ,sin 22x t X a ωωω-=-=用复数表示后,参照(1)可得到加速度频响函数为: ∑=+--=-=n i i i i k i s i r s r a rs i k F X H 12 ) ()()(2 02)21(~~λζλ??ωω (2) 由公式(2)可知,当k ωω=时,1=k λ,此时式(2)可近似写为: ,22)(~) ()()()() ()(2k k k s k r k k k s k r k k a rs m i k i H ζ??ζ??ωωω-=-== (3) 它对应频响函数a rs H ~的幅频曲线的第k 个峰值,其中在上面(3),k m k k k 2() (ω)式中= 为各阶主质量...n k ,3,2,1=。改变s 点的位置,在不同点激振,可以得到不同点与点r 之间的频响函数,当s=r 时,就可得到点r 处的原点频响函数,表示为: ∑ =+--=n i i i i i i r i r a rr i k H 1 2 )() ()(2 ) 21(~λζλ??ω (4) 它的第k 个峰值为:

体外预应力加固梁的受力性能分析

体外预应力加固梁的受力性能分析 体外预应力多应用于桥梁和建筑结构以及结构加固补强之中。本文对体外预应力加固混凝土梁的研究概况及加固机理进行了阐述,为以后的加固设计提供理论参考。 标签:体外预应力;加固机理;等效荷载 现行《混凝土结构加固技术规范》(CECS 2590)中列出了加大截面加固法、外包钢加固法、改变结构传力途径加固法、外部粘钢加固法、预应力加固法等多种结构加固方法。其中体外预应力加固法已愈来愈受到人们的关注,它克服了采用其他方法加固时加固材料中普遍存在的应力效应滞后的缺陷,保证了新旧材料和结构的整体性与协同工作,是一种有效的主动加固方法。工程实践表明:采用体外预应力法加固桥梁和房屋结构,不仅能提高其承载力,还可以减小挠度和裂缝宽度,提高结构的弹性恢复能力,并且具有施工简便、不占用空间等特点[1]。 1、体外预应力加固梁研究概况 体外预应力是后张预应力体系的重要分支之一。传统的后张预应力结构中,预应力筋总是埋放布置在混凝土截面之内,而体外预应力混凝土结构是将预应力筋布置于混凝土截面以外施加预应力的一种结构体系。 我国于1996年10月首次采用体外预应力技术对一孔跨度为27.7m的预应力混凝土梁进行了加固[2]。90年前后,东南大学以吕志涛为首的课题组,运用试验方法对体外预应力加固梁进行了研究,通过梁的正截面抗弯加固、梁的抗剪加固的试验研究和分析计算,对预应力加固梁进行了较为系统的研究,提出了预应力加固的设计计算方法[3]。1991年,杜世生、叶见曙、赖国麟等[4]提出了体外预应力加固钢筋混凝土简支梁的抗弯极限强度的计算方法。 1999年北京建筑工程技术研究中心刘航[5]等人做了“体外预应力加固混凝土框架梁的试验研究”。其结论是钢筋混凝土框架结构采用按其弯矩图布置的折线体外预应力筋进行加固时,在正常使用极限状态下,可以显著减小梁的跨中挠度和裂缝宽度;在承载力极限状态下,可以显著提高原结构的抗弯极限承载力,效果好于直线体外预应力筋。2000年奉龙成和赵人达通过对12片体外预应力加固试验梁的己有试验结果的分析,认为其等效塑性区长度与破坏截面中性轴高度之比是基本接近一常数,在确定这一常数数值后,给出体外预应力筋的极限应力计算公式以及正截面强度的计算方法,公式对样本试验数据精度较高,但其他学者的试验数据表明其等效塑性区长度与破坏截面中性轴高度之比浮动较大。 2、体外预应力加固原理及特点 体外预应力加固技术的基本原理是充分利用了混凝土抗压性能,通过体外

阶梯轴 ANSYS静态分析与模态分析

阶梯轴 ANSYS静态分析与模态分析阶梯轴结构如下:

下面来做轴的静态分析: 1 定义工作文件名和工作标题(过程略) 2 显示工作平面(过程略) 3 利用矩形面素生成面 1) 生成矩形面:Main Menu>Preprocessor>Create>Rectangle>By Dimensions,在对话框的“X-coordinates”和“Y-coordinates”后面输入栏中分别输入下列数据: X1=0, X2=260, Y1=0, Y2=70,单击“Aplay” X1=260, X2=380, Y1=0, Y2=75,单击“Aplay”; XI=380, X2=420, Y1=0, Y2=100,单击“Aplay”; X1=420, X2=660, Y1=0, Y2=80,单击“Aplay”; X1=660, X2=800, Y1=0, Y2=75,单击“ok”;生成的结果如图 2) 矩形面相加操作:Main Menu>Preprocessor>Operate>Add>Areas,出现一个拾取框,单击“Pick All”,则完成相加操作,生成的结果如图

4 由面绕轴线生成体 1)面绕轴线操作:Main Menu>Preprocessor>Operate> Extrude>About Axis, 出现一个拾取框,单击“Pick All”又出现第二个拾取轴心线两端点的拾取框,用鼠标在图形上分别拾取编号为“1、18”的关键点,然后单击“OK”, 又弹出一个对话框单击“OK”.

2)保存到文件中:Main Menu> File>Save As, 弹出一个对话框,在 “Save Database to”下面的输入栏中输入用户自定义的文件名“shaft.DB”,单击“OK”. 5 生成A-A键槽 1)移动工作平面:在“Offset WP by Increments ”中的“X,Y,Z Offset” 下面的输入栏中输入“85,0,40”(A-A键槽左侧圆弧中心),并按“Enter” 键确认。 2)生成一个圆 Main Menu>Preprocessor>Create> Cylinder>Solid Cylinder, 弹出一个对话框,在其输入栏中分别输入“Radius=25,Deoth=50”,单击“OK”。 3)生成一个块:Main Menu>Preprocessor>Create> Block>By Dimensions, 弹出一个话框,在其输入栏中输入的数据如图所示,单击OK。

悬臂梁模态分析实验报告.doc

精品资料 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的前五阶固有频率; 2、熟悉和了解悬臂梁振动的规律和特点; 3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、仪器和设备 悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。 三、实验基本原理 瞬态信号可以用三种方式产生,分述如下: 一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号. 二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大. 三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力. 用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较

少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗. 四、实验结果记录 前五阶固有频率表 阶数固有频率(Hz) 1 8.491 2 54.216 3 154.607 4 304.354 5 494.691 实验测得的前五阶振型图如下: 1阶振型图

2阶振型图 3阶振型图 4阶振型图

5阶振型图 五、理论计算悬臂梁固有频率 圆截面悬臂钢梁有关参数可取:Pa E 11101.2?=,7850=ρkg/3 m 。用直尺测 量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有频率为 4 2 2(Al EI l f i i ρπ β)= (5-2) 悬臂梁固有圆频率及主振型函数

悬臂梁模态分析实验报告

悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的前五阶固有频率; 2、熟悉和了解悬臂梁振动的规律和特点; 3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、仪器和设备 悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。 三、实验基本原理 瞬态信号可以用三种方式产生,分述如下: 一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号. 二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大. 三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力. 用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗. 四、实验结果记录

前五阶固有频率表 阶数固有频率(Hz) 1 8.491 2 54.216 3 154.607 4 304.354 5 494.691 实验测得的前五阶振型图如下: 1阶振型图 2阶振型图

3阶振型图 4阶振型图 5阶振型图

五、理论计算悬臂梁固有频率 圆截面悬臂钢梁有关参数可取:Pa E 11101.2?=,7850=ρkg/3 m 。用直尺测 量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有频率为 4 2 2(Al EI l f i i ρπ β)= (5-2) 悬臂梁固有圆频率及主振型函数 频率方程 A EI f L Lch ρπββ211 cos *= -= i 固有圆频率i n f 主振型函数 )(x X i 1 * 21 1 f f β= 2 *2 22f f β= 3 *2 33f f β= 4 *2 44f f β= 5 *2 55f f β=

相关文档
最新文档