最新小波变换基础

最新小波变换基础
最新小波变换基础

小波变换基础

第9章小波变换基础

9.1 小波变换的定义

给定一个基本函数?Skip Record If...?,令

?Skip Record If...?(9.1.1)

式中?Skip Record If...?均为常数,且?Skip Record If...?。显然,?Skip Record If...?是基本函数?Skip Record If...?先作移位再作伸缩以后得到的。若?Skip Record If...?不断地变化,我们可得到一族函数?Skip Record If...?。给定平方可积的信号?Skip Record If...?,即?Skip Record If...?,则?Skip Record If...?的小波变换(Wavelet Transform,WT)定义为

?Skip Record If...?

?Skip Record If...?(9.1.2)

式中?Skip Record If...?和?Skip Record If...?均是连续变量,因此该式又称为连续小波变换(CWT)。如无特别说明,式中及以后各式中的积分都是从?Skip Record If...?到?Skip Record If...?。信号?Skip Record If...?的小波变换?Skip Record If...?是?Skip Record If...?和?Skip Record If...?的函数,?Skip Record If...?是时移,?Skip Record If...?是尺度因子。?Skip Record If...?又称为基本小波,或母小波。?Skip Record If...?是母小波经移位和伸缩所产生的一族函数,我们称之为小波基函数,或简称小波基。这样,(9.1.2)式的?Skip Record If...?又可解释为信号?Skip Record If...?和一族小波基的内积。

母小波可以是实函数,也可以是复函数。若?Skip Record If...?是实信号,?Skip Record If...?也是实的,则?Skip Record If...?也是实的,反之,?Skip Record If...?为复函数。

在(9.1.1)式中,?Skip Record If...?的作用是确定对?Skip Record If...?分

析的时间位置,也即时间中心。尺度因子?Skip Record If...?的作用是把基本小波?Skip Record If...?作伸缩。我们在1.1节中已指出,由?Skip Record If...?变成?Skip Record If...?,当?Skip Record If...?时,若?Skip Record If...?越大,则

仅供学习与交流,如有侵权请联系网站删除谢谢283

仅供学习与交流,如有侵权请联系网站删除 谢谢283

?Skip Record If...?的时域支撑范围(即时域宽度)较之?Skip Record If...?变得越大,反之,当?Skip Record If...?时,?Skip Record If...?越小,则?Skip Record If...?的宽度越窄。这样,?Skip Record If...?和?Skip Record If...?联合越来确定了对?Skip Record If...?分析的中心位置及分析的时间宽度,如图9.1.1所示。

图9.1.1 基本小波的伸缩及参数?Skip Record If...?和?Skip

Record If...?对分析范围的控制

(a)基本小波,(b )?Skip Record If...?,?Skip Record If...? ,(c)

?Skip Record If...?不变,?Skip Record If...?, (d)分析范围

这样,(9.1.2)式的WT 可理解为用一族分析宽度不断变化的基函数对?Skip Record If...?作分析,由下一节的讨论可知,这一变化正好适应了我们对信号分析时在不同频率范围所需要不同的分辨率这一基本要求。

(9.1.1)式中的因子?Skip Record If...?是为了保证在不同的尺度?Skip Record If...?时,?Skip Record If...?始终能和母函数?Skip Record If...?有着相同的能量,即

?Skip Record If...?

)

(t 2=t

t

t

a

令?Skip Record If...?,则?Skip Record If...?,这样,上式的积分即等于?Skip Record If...?。

令?Skip Record If...?的傅里叶变换为?Skip Record If...?,?Skip Record If...?的傅里叶变换为?Skip Record If...?,由傅里叶变换的性质,?Skip Record If...?的傅里叶变换为:

?Skip Record If...? ?Skip Record If...? ?Skip Record If...?(9.1.3)由Parsevals定理,(9.1.2)式可重新表为:

?Skip Record If...?

?Skip Record If...?(9.1.4)

此式即为小波变换的频域表达式。

9.2 小波变换的特点

下面,我们从小波变换的恒Q性质、时域及频率分辨率以及和其它变换方法的对比来讨论小波变换的特点,以帮助我们对小波变换有更深入的理解。

比较(9.1.2)和(9.1.4)式对小波变换的两个定义可以看出,如果?Skip Record If...?在时域是有限支撑的,那么它和?Skip Record If...?作内积后将保证?Skip Record If...?在时域也是有限支撑的,从而实现我们所希望的时域定位功能,也即使?Skip Record If...?反映的是?Skip Record If...?在?Skip Record If...?附近的性质。同样,若?Skip Record If...?具有带通性质,即?Skip Record If...?围绕着中心频率是有限支撑的,那么?Skip Record If...?和?Skip Record If...?作内积后也将反映?Skip Record If...?在中心频率处的局部性质,从而实现好的频率定位性质。显然,这些性能正是我们所希望的。问题是如何找到这样的母小波?Skip Record If...?,使其在时域和频域都是有限支撑的。有关小波的种类及小波设计的问题,我们将在后续章节中详细讨论。

由1.3节可知,若?Skip Record If...?的时间中心是?Skip Record If...?,时宽是?Skip Record If...?,?Skip Record If...?的频率中心是?Skip Record If...?,带宽是?Skip Record If...?,那么?Skip Record If...?的时间中心仍是?Skip Record If...?,但时宽变成?Skip Record If...?,?Skip Record If...?的频谱?Skip Record If...?的频率中心变为?Skip Record If...?,带宽变成?Skip Record If...?。这样,?Skip Record If...?的时宽-带宽积仍是?Skip Record If...?,与?Skip Record If...?

仅供学习与交流,如有侵权请联系网站删除谢谢283

无关。这一方面说明小波变换的时-频关系也受到不定原理的制约,但另一方面,也即更主要的是揭示了小波变换的一个性质,也即恒Q 性质。定义

?Skip Record If...?=带宽/中心频率 (9.1.5) 为母小波?Skip Record If...?的品质因数,对?Skip Record If...?,其 带宽/中心频率=?Skip Record If...?

因此,不论?Skip Record If...?为何值?Skip Record If...?,?Skip Record If...?始终保持了和?Skip Record If...?具有性同的品质因数。恒Q 性质是小波变换的一个重要性质,也是区别于其它类型的变换且被广泛应用的一个重要原因。图9.2.1说明了?Skip Record If...?和?Skip Record If...?的带宽及中心频率随?Skip Record If...?变化的情况。

图9.2.1 ?Skip Record If...?随?Skip Record If...?变化的说明;(a)

?Skip Record If...?,(b) ?Skip Record If...?,(c) ?Skip Record If...?

将图9.1.1和图9.1.2结合起来,我们可看到小波变换在对信号分析时有如下特点:当?Skip Record If...?变小时,对?Skip Record If...?的时域观察范围变窄,但对?Skip Record If...?在频率观察的范围变宽,且观察的中心频率向高频处移动,如图9.2.1c 所示。反之,当?Skip Record If...?变大时,对?Skip Record If...?的时域观察范围变宽,频域的观察范围变窄,且分析的中心频率向低频处移动,如图9.2.1b 所示。将图9.1.1和9.2.1所反映的时-频关系结合在一起,我们可得到在不同尺度下小波变换所分析的时宽、带宽、时间中心和频率中心的关系,如图9.2.2所示。

?Skip ?

kip

?

?Skip Recor ?

p

2Ω0

Ω)2/1(=a )

1(=a /2

t ?

图9.2.2 a取不同值时小波变换对信号分析的时-频区间

由于小波变换的恒Q性质,因此在不同尺度下,图9.2.2中三个时、频分析区间(即三个矩形)的面积保持不变。由此我们看到,小波变换为我们提供了一个在时、频平面上可调的分析窗口。该分析窗口在高频端(图中?Skip Record If...?处)的频率分辨率不好(矩形窗的频率边变长),但时域的分辨率变好(矩形的时间边变短);反之,在低频端(图中?Skip Record If...?处),频率分辨率变好,而时域分辨率变差。但在不同的?Skip Record If...?值下,图9.2.2中分析窗的面积保持不变,也即时、频分辨率可以随分析任务的需要作出调整。

众所周知,信号中的高频成份往往对应时域中的快变成份,如陡峭的前沿、后沿、尖脉冲等。对这一类信号分析时则要求时域分辨率要好以适应快变成份间隔短的需要,对频域的分辨率则可以放宽,当然,时、频分析窗也应处在高频端的位置。与此相反,低频信号往往是信号中的慢变成份,对这类信号分析时一般希望频率的分辨率要好,而时间的分辨率可以放宽,同时分析的中心频率也应移到低频处。显然,小波变换的特点可以自动满足这些客观实际的需要。

总结上述小波变换的特点可知,当我们用较小的?Skip Record If...?对信号作高频分析时,我们实际上是用高频小波对信号作细致观察,当我们用较大的?Skip Record If...?对信号作低频分析时,实际上是用低频小波对信号作概貌观察。如上面所述,小波变换的这一特点即既符合对信号作实际分析时的规律,也符合人们的视觉特点。

现在我们来讨论一下小波变换和前面几章所讨论过的其它信号分析方法的区别。

我们知道,傅里叶变换的基函数是复正弦。这一基函数在频域有着最佳的定位功能(频域的?Skip Record If...?函数),但在时域所对应的范围是?Skip Record If...?~?Skip Record If...?,完全不具备定位功能。这是FT的一个严重的缺点。

人们希望用短时傅里叶变换来弥补FT的不足。重写(2.1.1)式,即

仅供学习与交流,如有侵权请联系网站删除谢谢283

?Skip Record If...?

?Skip Record If...? (9.2.6)

由于该式中只有窗函数的位移而无时间的伸缩,因此,位移量的大小不会改变复指数?Skip Record If...?的频率。同理,当复指数由?Skip Record If...?变成?Skip Record If...?(即频率发生变化)时,这一变化也不会影响窗函数?Skip Record If...?。这样,当复指数?Skip Record If...?的频率变化时,STFT 的基函数?Skip Record If...?的包络不会改变,改变的只是该包络下的频率成份。这样,当?Skip Record If...?由?Skip Record If...?

变化成?Skip Record If...?时,?Skip Record If...?对?Skip Record If...?分析的中心频率改变,但分析的频率范围不变,也即带宽不变。因此,STFT 不具备恒Q

性质,当然也不具备随着分辨率变化而自动调节分析带宽的能力,如图9.2.3

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

MATLAB小波变换指令及其功能介绍(超级有用)解读

MATLAB小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1) dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname') [cA,cD]=dwt(X,Lo_D,Hi_D)别可以实现一维、二维和 N 维DFT 说明:[cA,cD]=dwt(X,'wname') 使用指定的小波基函数 'wname' 对信号X 进行分解,cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信 号进行分解。 (2) idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname') X=idwt(cA,cD,Lo_R,Hi_R) X=idwt(cA,cD,'wname',L)函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L) 说明:X=idwt(cA,cD,'wname') 由近似分量 cA 和细节分量 cD 经 小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。 X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能

--------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1) wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分 格式:Y=wcodemat(X,NB,OPT,ABSOL) Y=wcodemat(X,NB,OPT) Y=wcodemat(X,NB) Y=wcodemat(X) 说明:Y=wcodemat(X,NB,OPT,ABSOL) 返回数据矩阵 X 的编码矩阵 Y ;NB 伪编码的最大值,即编码范围为 0~NB,缺省值 NB=16; OPT 指定了编码的方式(缺省值为 'mat'),即:别可以实现 一维、二维和 N 维 DFT OPT='row' ,按行编码 OPT='col' ,按列编码

第9章小波变换基础

第9章 小波变换基础 9.1 小波变换的定义 给定一个基本函数)(t ψ,令 )(1)(,a b t a t b a -= ψψ (9.1.1) 式中b a ,均为常数,且0>a 。显然,)(,t b a ψ是基本函数)(t ψ先作移位再作伸缩以后得到的。若b a ,不断地变化,我们可得到一族函数)(,t b a ψ。给定平方可积的信号)(t x ,即 )()(2R L t x ∈,则)(t x 的小波变换(Wavelet Transform ,WT )定义为 dt a b t t x a b a WT x )()(1),(-= ? *ψ ??==? * )(),()()(,,t t x dt t t x b a b a ψψ (9.1.2) 式中b a ,和t 均是连续变量,因此该式又称为连续小波变换(CWT )。如无特别说明,式中及以后各式中的积分都是从∞-到∞+。信号)(t x 的小波变换),(b a WT x 是a 和b 的函数, b 是时移,a 是尺度因子。)(t ψ又称为基本小波,或母小波。)(,t b a ψ是母小波经移位和 伸缩所产生的一族函数,我们称之为小波基函数,或简称小波基。这样,(9.1.2)式的WT 又可解释为信号)(t x 和一族小波基的内积。 母小波可以是实函数,也可以是复函数。若)(t x 是实信号,)(t ψ也是实的,则 ),(b a WT x 也是实的,反之,),(b a WT x 为复函数。 在(9.1.1)式中,b 的作用是确定对)(t x 分析的时间位置,也即时间中心。尺度因子 a 的作用是把基本小波)(t ψ作伸缩。我们在1.1节中已指出,由)(t ψ变成)(a t ψ,当1 >a 时,若a 越大,则)(a t ψ的时域支撑范围(即时域宽度)较之)(t ψ变得越大,反之,当1

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

MATLAB小波变换指令及其功能介绍(超级有用).

MATLAB 小波变换指令及其功能介绍 1 一维小波变换的 Matlab 实现 (1 dwt函数 功能:一维离散小波变换 格式:[cA,cD]=dwt(X,'wname' [cA,cD]=dwt(X,Lo_D,Hi_D别可以实现一维、二维和 N 维 DFT 说明:[cA,cD]=dwt(X,'wname' 使用指定的小波基函数 'wname' 对信号X 进行分解,cA 、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。 (2 idwt 函数 功能:一维离散小波反变换 格式:X=idwt(cA,cD,'wname' X=idwt(cA,cD,Lo_R,Hi_R X=idwt(cA,cD,'wname',L函数 fft、fft2 和 fftn 分 X=idwt(cA,cD,Lo_R,Hi_R,L 说明:X=idwt(cA,cD,'wname' 由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。 'wname' 为所选的小波函数 X=idwt(cA,cD,Lo_R,Hi_R 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L 和 X=idwt(cA,cD,Lo_R,Hi_R,L 指定返回信号 X 中心附近的 L 个点。 2 二维小波变换的 Matlab 实现 二维小波变换的函数别可以实现一维、二维和 N 维 DFT 函数名函数功能 --------------------------------------------------- dwt2 二维离散小波变换 wavedec2 二维信号的多层小波分解 idwt2 二维离散小波反变换 waverec2 二维信号的多层小波重构 wrcoef2 由多层小波分解重构某一层的分解信号 upcoef2 由多层小波分解重构近似分量或细节分量 detcoef2 提取二维信号小波分解的细节分量 appcoef2 提取二维信号小波分解的近似分量 upwlev2 二维小波分解的单层重构 dwtpet2 二维周期小波变换 idwtper2 二维周期小波反变换 ----------------------------------------------------------- (1 wcodemat 函数 功能:对数据矩阵进行伪彩色编码函数 fft、fft2 和 fftn 分格式: Y=wcodemat(X,NB,OPT,ABSOL Y=wcodemat(X,NB,OPT Y=wcodemat(X,NB

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波变换-完美通俗解读

小波变换和motion信号处理(一) 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA 这些东西了。对小波变换的认识也就停留在神秘的“图像视频压缩算法之王”上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一

些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂; 国的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 最后说明,我不是研究信号处理的专业人士,所以文中必有疏漏或者错误,如发现还请不吝赐教。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率

的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进行分析,但却无法将两者有效地结合起来,因此傅立叶变换在信号的局部化分析方面存在严重不足。但在许多实际应用中,如地震信号分析、核医学图像信号分析等,研究者们往往需要了解某个局部时段上出现了哪个频率,或是某个频率出现在哪个时段上,即信号的时频局部化特征,傅立叶变换对于此类分析无能为力。 因此需要一种如下的数学工具:可以将信号的时域和频域结合起来构成信号的时频谱,描述和分析其时频联合特征,这就是所谓的时频局部化分析方法,即时频分析法。1964年,Gabor 等人在傅立叶变换的基础上引入了一个时间局部化“窗函数”g(t),改进了傅立叶变换的不足,形成窗口化傅立叶变换,又称“Gabor 变换”。 定义“窗函数”(t)g 在有限的区间外恒等于零或很快地趋于零,用函数(t )g -τ乘以(t)f ,其效果等同于在t =τ附近打开一个窗口,即: ()()()dt e t g t f G t j f ωττω-+∞ ∞--=?, (4-3) 式(4-3)即为函数f(t)关于g(t)的Gabor 变换。由定义可知,信号(t)f 的Gabor 变换可以反映该信号在t =τ附近的频谱特性。其逆变换公式为: ()()()ττωτωπ ωd G t g e d t f f t j ,21 ? ?+∞ ∞ --- = (4-4) 可见()τω,f G 的确包含了信号(t)f 的全部信息,且Gabor 窗口位置可以随着 τ的变化而平移,符合信号时频局部化分析的要求。 虽然Gabor 变换一定程度上克服了傅立叶变换缺乏时频局部分析能力的不

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

最新小波变换基础

小波变换基础

第9章小波变换基础 9.1 小波变换的定义 给定一个基本函数?Skip Record If...?,令 ?Skip Record If...?(9.1.1) 式中?Skip Record If...?均为常数,且?Skip Record If...?。显然,?Skip Record If...?是基本函数?Skip Record If...?先作移位再作伸缩以后得到的。若?Skip Record If...?不断地变化,我们可得到一族函数?Skip Record If...?。给定平方可积的信号?Skip Record If...?,即?Skip Record If...?,则?Skip Record If...?的小波变换(Wavelet Transform,WT)定义为 ?Skip Record If...? ?Skip Record If...?(9.1.2) 式中?Skip Record If...?和?Skip Record If...?均是连续变量,因此该式又称为连续小波变换(CWT)。如无特别说明,式中及以后各式中的积分都是从?Skip Record If...?到?Skip Record If...?。信号?Skip Record If...?的小波变换?Skip Record If...?是?Skip Record If...?和?Skip Record If...?的函数,?Skip Record If...?是时移,?Skip Record If...?是尺度因子。?Skip Record If...?又称为基本小波,或母小波。?Skip Record If...?是母小波经移位和伸缩所产生的一族函数,我们称之为小波基函数,或简称小波基。这样,(9.1.2)式的?Skip Record If...?又可解释为信号?Skip Record If...?和一族小波基的内积。 母小波可以是实函数,也可以是复函数。若?Skip Record If...?是实信号,?Skip Record If...?也是实的,则?Skip Record If...?也是实的,反之,?Skip Record If...?为复函数。 在(9.1.1)式中,?Skip Record If...?的作用是确定对?Skip Record If...?分 析的时间位置,也即时间中心。尺度因子?Skip Record If...?的作用是把基本小波?Skip Record If...?作伸缩。我们在1.1节中已指出,由?Skip Record If...?变成?Skip Record If...?,当?Skip Record If...?时,若?Skip Record If...?越大,则 仅供学习与交流,如有侵权请联系网站删除谢谢283

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波变换完美通俗解读

小波变换完美通俗解读 转自: 这是《小波变换和motion信号处理》系列的第一篇,基础普及。第二篇我准备写深入小波的东西,第三篇讲解应用。 记得我还在大四的时候,在申请出国和保研中犹豫了好一阵,骨子里的保守最后让我选择了先保研。当然后来也退学了,不过这是后话。当时保研就要找老板,实验室,自己运气还不错,进了一个在本校很牛逼的实验室干活路。我们实验室主要是搞图像的,实力在全国也是很强的,进去后和师兄师姐聊,大家都在搞什么小波变换,H264之类的。当时的我心思都不在这方面,尽搞什么操作系统移植,ARM+FPGA这些东西了。对小波变换的认识也就停留在神秘的"图像视频压缩算法之王"上面。 后来我才发现,在别的很广泛的领域中,小波也逐渐开始流行。比如话说很早以前,我们接触的信号频域处理基本都是傅立叶和拉普拉斯的天下。但这些年,小波在信号分析中的逐渐兴盛和普及。这让人不得不感到好奇,是什么特性让它在图象压缩,信号处理这些关键应用中更得到信赖呢?说实话,我还在国内的时候,就开始好奇这个问题了,于是放狗搜,放毒搜,找遍了中文讲小波变换的科普文章,发现没几个讲得清楚的,当时好奇心没那么重,也不是搞这个研究的,懒得找英文大部头论文了,于是作罢。后来来了这边,有些项目要用信号处理,不得已接触到一些小波变换的东西,才开始硬着头皮看。看了一些材料,听了一些课,才发现,还是那个老生常谈的论调:国外的技术资料和国内真TNND不是一个档次的。同样的事情,别人说得很清楚,连我这种并不聪明的人也看得懂;国内的材料则绕来绕去讲得一塌糊涂,除了少数天才没几个人能在短时间掌握的。 牢骚就不继续发挥了。在这个系列文章里,我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

小波变换 mallat

实验目的:通过编程实现离散快速小波变换Mallat 算法,从而加深理解二维 小波变换的分解与合成,同时,提高编程能力和matlab 的应用,为以后的学习打下基础。 实验原理: 1、Mallat 快速算法 本实验使用离散快速小波变换快速算法Mallat 算法,算法原理如下 (1)1(2)j j k n n c h n k c -=-∑ (2) 1(2)j j k n n d g n k c -=-∑重构算法: (3) 1(2)(2)j j j n k k n n c h n k c g n k d -=-+-∑∑对于(1)、(2)等效于经过冲击响应为和的数字滤波器,然后再分别进 1 j n c -[]h n -[]g n -行“二抽取”,Mallat 分解算法的滤波器表示形式如下图 C j-1 d j (k) C j (k) 用滤波器表示如下图 d j C j C j-1(k) 2、 255*255 10lg PSNR MSE ='2 11 ()*M N ij ij i j f f MSE M N ==-= ∑∑ 分别表示原始图像和重建后的图像,。 {}ij f '{}ij f 1,1i M j N ≤≤≤≤3、边界延拓方法有零延拓、周期延拓、对称周期延拓、常数连续延拓等,本实验采用以上四种方法进行原图像的1/8延拓,并进行重构,各种延拓方法所对应的函数为yan0(x)、yancir (x )、yan(x)、yanc(x),在主程序中,需要某种延拓,便调用某种函数。

实验编程思路: 为使程序易于理解,在不考虑算法复杂度的情况下,分解程序采用简洁的循环计算出下一级的分解系数,程序采用的编程思想如下 [][][]11100[0][1][2][3][4][5]001[1]00[0][1][2][3]00[1][2][3][4][5]00[0][1]12j j j j j j c c h h h h h h c c h h h h n c n h h h h h h c ---?? ??????????????? ???=??????????????--?????????????? L L M M M M M M M M O O M L 以上矩阵等式左面是进行二抽样的结果,是分解的低频部分。同理,对 [0][1]2 j j n c c -L j 于分解的高频部分有如下矩阵形式: j [][][]11 100[0][1][2][3][4][5]0 01[1]00[0][1][2][3]00[1][2][3][4][5]00[0][1]12j j j j j d d g g g g g g d d g g g g n d n g g g g g g d ---???? ????????????? ???=? ?????? ???????--?????????????? L L M M M M M M M M O O M L 分解程序: lenx=size(x,2);%x 为一维向量 lenh=size(h,2);h=[h,zeros(1,(lenx-lenh))];g=[g,zeros(1,(lenx-lenh))]; r1(1)=sum(h.*x); r2(1)=sum(g.*x); for k=1:1:(lenx/2-1) %循环求出下一级低频和高频分量 h=[h(end-1:end),h(1:(end-2))]; r1(k+1)=sum(h.*x); g=[g(end-1:end),g(1:1:(end-2))]; r2(k+1)=sum(g.*x); end y=[r1,r2]; 对于重构算法,其等效形式为 [][][] 1(2)(2)j j j n n c n h n k c k g n k d k -=-+-∑∑上式等号右边部分实质上是对变量的数字卷积运算,程序采用频域相乘代替卷积,重建程k 序为 y=ifft(fft(c3,lenx).*fft(h,lenx))+ ifft(fft(d3,lenx).*fft(g,lenx));

小波变换

小波变换理论及应用 ABSTRACT:小波理论是近几年发展起来的新的信号处理技术,因其在时间域和频率域都可以达到高的分辨率,被称为“数学显微镜”,在数值信号处理领域应用广泛,发展非常快。但其涉及较多的数学知识,以及巧妙的数字计算技巧,对于非数学专业的科研人员,要完全掌握其中的精妙之处,有一定的难度。正是考虑到这一点,本文的开始部分不过多说明小波分析的数学理论,只是以尽量简短的篇幅介绍必要的预备知识,接着阐述小波变换理论。在理解了小波变换理论的基础上,再举例说明小波变换在实际中的应用。 第一章小波变换理论 这一章用尽量简短的篇幅和通俗的语言介绍小波变换的基本概念。 1.1.从傅里叶变换到小波变换 一、傅里叶变换 在信号处理中重要方法之一是傅里叶变换(Fourier Transform),它架起了时间域和频率域之间的桥梁。图1.1给出了傅里叶分析的示意图。 图1.1 傅里叶变换示意图 定义x(t)的傅里叶变换X(ω): ?∞∞-- =dt e t x X t jω ω) ( ) ( (1) X(ω)的傅里叶反变换x(t): ?∞∞- =ω ω π ωd e X t x t j ) ( 2 1 ) ( (2) 对很多信号来说,傅里叶分析非常有用。因为它能给出信号中包含的各种频率成分。但是,傅里叶变换有着严重的缺点:变换之后使信号失去了时间信息,它不能告诉人们在某段时间里发生了什么变化。而很多信号都包含有人们感兴趣的非稳态(或)特性,如漂移、趋势项、突然变化以及信号的开始或结束。这些特性是信号的重要部分。因此傅里叶变换不适于分析处理这类信号。

二、短时傅里叶变换 为了克服傅里叶变换的缺点,D.Gabor(1946)提出了短时傅里叶变换(Short Time Fourier Transform), 又称为盖博(Gabor)变换或者加窗傅里叶变换(Windowed Fourier Transform)。图1.2给出了短时傅里叶变换的示意图。 图1.2短时傅里叶变换 盖博变换把一个时间信号变换为时间和频率的二维函数,它能够提供信号在某个时间段和某个频率范围的一定信息。这些信息的精度依赖于时间窗的大小。盖博变换的缺点是对所有的频率成分,所取的时间窗的大小都相同。然而,对很多信号为了获得更精确的时间或频率信息,需要可变的时间窗。 三、小波变换 小波变换提出了变化的时间窗。当需要精确的低频信息时,采用长的时间窗,当需要精确的高频信息时,采用短的时间窗。图1.3给出了时间域信号、傅 里叶变换、短时傅里叶变换和小波变换对比的示意图。 时间域频率域 短时傅里叶变换小波变换 图1.3 小波变换示意图 1.2.连续小波变换 什么是小波?小波是一个衰减的波形,它在有限的区域里存在(不为零), 且其均值为零。小波变换采用改变时间-频率窗口形状的方法,很好的解决了时

相关文档
最新文档