短波天线尺寸计算

短波天线尺寸计算
短波天线尺寸计算

短波天线尺寸计算

计算方法:

用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是波长为单边振子长度,再去93--97%的缩短率:

比如:

频率

7.05兆的单边振子xx为:

10.64米,加上

0.3米作为修剪余量;l* p" u;[6 q!L/p7B5s:

}6频率

14.22兆的单边振子xx为:

5.3米,加上

0.3米的修剪余量;

频率

21.26兆的单边振子xx为:

3.53米,加上

0.2米的修剪余量即可;再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。

主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于

1.3。

倒V天线单边振子长度数据及计算方式如下:

水平、倒V天线计算公式

/4波长水平、倒V天线xx的计算公式:

光速/频率/4*95%=(单臂)xx

21.400MHz天线的计算长度3000/

21.*95%=3330mm

14.270MHz天线的计算长度3000/

14.*95%=4993mm

7.05MHz天线的计算长度3000/

7.*95%=107mm

29.60MHz天线的计算长度3000/

29.*95%=2667mm

以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm 左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。

或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于

1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于

1.2即可)。

例如:

假设我们的目标频率是

21.400MHz上述天线SWR最小值时候的频率读数是

19.896MHz。

读数差=

21.400MHz-

19.896MHz=

1.504MHz=1504KHz

计算得知15米波段每KHz对应修剪长度为

0.025cm:

15米波段半波振子总修剪值=1504X

0.025=

37.6(cm)

振子两边对称剪去

37.=

18.8(cm)

修剪振子要留有余地,差别越小越要细心,防止修剪过多。还要注意测试人员尽量远离天线振子,或站在偶极天线中间馈电点附近测试,减少人体干扰。:

V8 J.h2s. G5 M-_& V

5 ].Z B, _4 Q( O

6 W( i3]8 j*L2 Y9Q# m*

1 t:

Q(C( e0F/ z

. Q3 I!M% ~"i/ X5W$ X:

[- c

! N" R!w, j5W2 [1

" Z# g-b. [1A5 m6

; C' q-b1 Y5f. G0h8 K

. j) FD4 X1`+ S-G" I%`& W

( ]9 U'~7 Q#5 I' K3S- q2J:

P(

另外,使用天线测试仪时,可以指示天线振子谐振时的阻抗,不断调整天线的夹角和高度可以改变阻抗,尽量调整阻抗接近50欧姆即可。

水平偶极天线角度与阻抗的关系如下:

水平偶极天线给电部角度为180度时的阻抗是73欧姆;从180度角度开始变窄,它的阻抗也会随之渐渐地下降。150度时是68欧姆,120度时是58欧姆,105时刚好是50欧姆,更窄的角度90度时是42欧姆,60度时刚降列23欧姆。

0 [! A6I6 j5t' \+@( q)P( _1

二.

无线电通信天线增益的计算

增益是指:

在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。

可以这样来理解增益的物理含义------为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要100W的输入功率,而用增益为G = 13 dB = 20的某定向天线作为发射天线时,输入功率只需1

= 5W。换言之,某天线的增益,就其最大辐射方向上的辐射效果来说,与无方向性的理想点源相比,把输入功率放大的倍数。

半波对称振子的增益为G=

2.15dBi。4个半波对称振子沿垂线上下排列,构成一个垂直四元阵,其增益约为G=

8.15dBi(dBi这个单位表示比较对象是各向均匀辐射的理想点源)。

如果以半波对称振子作比较对象,其增益的单位是dBd。

半波对称振子的增益为G=0dBd(因为是自己跟自己比,比值为1,取对数得零值。)垂直四元阵,其增益约为G=

8.15–

2.15=6dBd。

天线增益的若干计算公式

1)天线主瓣宽度越窄,增益越高。对于一般天线,可用下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}

式中,2θ3dB,E与2θ3dB,H分别为天线在两个主平面上的波瓣宽度;

32000是统计出来的经验数据。

2)对于抛物面天线,可用下式近似计算其增益:

G(dBi)=10Lg{

4.5×(D/λ0)2}

式中,D为抛物面直径;

λ0为中心工作波长;

4.5是统计出来的经验数据。

3)对于直立全向天线,有近似计算式

G(dBi)=10Lg{2L/λ0}

式中,L为天线xx;

λ0为中心工作波长;

关于天线的db, dBi,dBd等单位

有些朋友往往比较容易混淆这些单位,dB取的都是以对数值为基础的。

(1)dB,这单纯是一个相对值,也就是说A比B的值的对数。常常用于说A 比B高或低多少dB,但是单独说A的增益是多少dB,是不合理的,因为我们不知道B是什么。只是我们许多同好有时为了简省就口头说多少dB了,但这样是不够确切的,不过常常也就将错就错,默认理解为dBi吧,要么您就再问问清楚。

(2)dBd,这是有标准参考值的,即B规定为自由空间的半波偶极子天线,这样A与B的值比起来就有来统一的参照物,您告诉同好这个天线10dBd,他就明白您的天线比半波偶极子天线在主辐射方向上能聚集10倍的能量,即好10倍。

(3)dBi,这个单位的含义相对复杂了点,但是它最能表达实际环境情况的比值单位,这里参照物B是以点源振子(实际不存在此物,可以看作是相对波长很短的一小段振子,或叫微分段吧),在标准的定义中这个点源振子应该是理想球状的全方向性辐射,这时与dBd就有一定的数学关系了,即1dBd=

2.14dBi。

然而实际上绝大多数的天线都会受安装高度的影响,其中最重要的就是地面影响,由于地面的镜像作用,常常使波束形状改变,在某些方向常常会高出2-5dB。到这里您应该明白19dBi了吧。许多正规的天线产家常常喜欢用dBi来标天线的增益值,他们通常都会表明安装高度或对标出数值的计算方法,或者他所生产的就是大家通常知道的安装环境,如车顶载天线,往往省略说明。

发射功率与增益

无线电发射机输出的射频信号,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。电磁波到达接收地点后,由天线接收下来(仅仅接收很小一部分功率),并通过馈线送到无线电接收机。

因此在无线网络的工程中,计算发射装置的发射功率与天线的辐射能力非常重要。

Tx是发射(Transmits)的简称。无线电波的发射功率是指在给定频段范围内的能量,通常有两种衡量或测量标准:

功率(W)-相对1瓦(Watts)的线性水准。

增益(dBm)-相对1毫瓦(Milliwatt)的比例水准。

两种表达方式可以互相转换:

dBm = 10 x log[功率mW]

mW = 10 [增益dBm / 10 dBm]

在无线系统中,天线被用来把电流波转换成电磁波,在转换过程中还可以对发射和接收的信号进行“放大”,这种能量放大的度量成为“增益(Gain)”。天线增益的度量单位为“dBi”。

由于无线系统中的电磁波能量是由发射设备的发射能量和天线的放大叠加作用产生,因此度量发射能量最好同一度量-增益(dB),例如,发射设备的功率为100mW,或20dBm;天线的增益为10dBi,则:

发射总能量=发射功率(dBm)+天线增益(dBi)

=20dBm+10dBi

=30dBm

或者:

=1000mW

=1W

在“小功率”系统中每个dB都非常重要,特别要记住“3dB法则”。

每增加或降低3dB,意味着增加一倍或降低一半的功率:

-3 dB = 功率

-6 dB = 功率

+3 dB = 2x功率

+6 dB = 4x功率

例如,100mW的无线发射功率为20dBm,而50mW的无线发射功率为17dBm,而200mW的发射功率为23dBm

短波天线原理和应用

短波天线的原理和应用 摘要:本文从电波传播和电离层分布特性的角度解释了短波电波辐射的特点,并介绍了常用短波天线的种类和特性。对各类短波天线的架设要求和注意事项给出了建议和参考。最后对短波天线的接地系统的设计给出了一些参考方案。 关键词:天线、电离层、极化、接地 1.序 无线电通信就是依赖于无线电电波在空间的传播而建立通信链路的,因此电波传播是 无线电的一个重要环节。对于不同的工作频段,电波的传播特性将有所不同。同时所采用的辐射天线也将有很大的不同。本文将就电波的传播特性和短波常用天线以及电台架设的注意问题作一些介绍。 1.1 电离层特性 电波在空间传播将会受到电离层的影响,尤其是中短波的传播就是依赖于电离层的反射进行传输的,因此对电离层应有一些了解。 a)电离层的产生 地球表面有1000公里高的大气层,由于太阳光辐射(x射线,紫外线)空气不断电离同时不断复合,这样空气中将存在着游离的带电粒子; b)带电粒子随高度增加而增加,在离地面较近的地方每立方米只有几个或几十个粒子,到接近1000公里时,每立方米将有上千或上万个带电粒子。因电离层一般按如下分层: C层D层E层F1层F2层 0~50kM 60~90kM 100~120kM 170~220kM 225~450kM c)电离层在白天、黑夜,一年四季将会有不同的变化。白天由于有阳光,低层(D层)电离层浓度升高,反之黑夜时将降低。一年四季变化也是由于因受阳光照射时间长或短而变化。 d)电离层在不断上下或水平运动,从而造成电波反射传播过程中的瑞利衰落和多普勒效应。 e)电离层具有非均匀分布性,类似云彩的特点,因而造成电波反射时的散射,多径时延。f)电离层对电波的吸收随工作频率升高而减少。对中长波吸收很大,如10~20kW的中波广播机覆盖面在100km左右,而1kW的短波可传送3000km。即频率愈高的中短波信号愈容易穿越低层(D层)的电离层。 1.2 大地对电波的影响 大地对电波的影响主要是地波传播的影响,大地不能视为良导体也不能视为绝缘体,由于地质不同应区分对待。 a)对于如海水、淡水、湿地,对电波的吸收较小,但由于地面反射波与入射波有180o 相位差,将会吸收紧靠地面的电波,使波瓣抬高; b)对于干燥地质对电波吸收会较大(主要对短波吸收); c)对于金属矿藏地质如铁矿地带,对电波吸收是非常大的,千万不要在这里设立电台(收发信台);

业余无线电 短波便携GP天线

PAC-12 Kit Contents Part Quantity Screws: 8/32 x 3/8” 8 Screws: 8-32 x 5/16” 2 Screw: 8-32 x 1/4” 1 #8 internal tooth washers 8 #8 solder lug ring terminals 6 Bolt: Aluminum, 1/4-20 x 1.5” 1 1/4” internal tooth washer 1 Nut: Aluminum hex, 1/4-20 1 Stainless wing nut, 1/4-20 1 1/4” ring terminals 3 BNC connector 1 BNC mounting plate 1 Wire, PVC insulated stranded 12” Wire, 18AWG enamel copper 1 14 conductor ribbon cable roll 1 Feedpoint insulator PVC tube 1 Feedpoint insulator end caps 2 6” Coil form, PVC 1 3.5” Coil form, PVC 1 Coil form end caps 4 Aluminum Rods 12” 2 Aluminum hex coupling nuts 1 72” telescoping antenna 1 Antenna whip adapter 1 Aluminum ground spike 1 Tools Needed Soldering iron Phillips screwdriver Wire stripper Wrenches, 7/16” and 1/2” Terminal crimp tool Pliers Solder

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

几种短波天线的比较

几种短波天线的比较(ZT) 这里我们是常见的几款短波天线,如国产的10米波段1/2波长垂直天线,曰本钻石公司的HV-4,自制的加感天线,自制的DP天线。当然,还很多的其他的天线类型。这次只是对这几款用过的做一个比较,讲一讲个人的一些体会,希望能大家有所帮助。还是会再继续寻找,试图找出更符合个人需要,容易制作和携带的野营天线。 1. 国产的10米波段1/2波长垂直天线: 这种天线好处很多,增益高,发射仰角低,受环境影响小,无须调整,架设高度低,可以直接放在地上。缺点是单波段天线,一个波段得要一根。另外每节1米左右,携带不算很麻烦也不算容易。 2. 曰本钻石公司的HV-4: 这是一款车天线,是适合放在车顶使用的,曾经用吸盘吸在普桑顶上,在行驶的汽车上用15米波段联络曰本电台效果非常好。但是不把它安装在车上,它就无法正常工作,即使加上了模拟地线,谐振点也全部偏低,21MHz波段的谐振点到了18MHz。所以其实是不适合野营使用的。 3. 自制的加感天线: 振子是1.5米长的拉杆天线,收起来的时候很短。加感线圈在底部,另外还需要地线配合。由于当年调试的时候是把天线斜挑出阳台,地线自然下垂的形态。所以今天曾经试图把天线振子竖起来,地线拉水平,或斜向下45度,就都无法谐振。只有摆成当年调试的样子,才能谐振。回想以前玩野外操作的时候,这类天线的加感线圈都是做很多抽头出来,到地方再重新找抽头位置。看来这天线也必须这样做才成,它太受环境的影响。这种天线携带还算容易,不过振子短,有效辐射长度短,效率不会很高。但是也不算太差。 阻抗匹配概念 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。 重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。 阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线 作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线

卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。 图2 卡塞格伦天线 3.格里高利天线 格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重

短波天线尺寸计算

短波天线尺寸计算 计算方法: 用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是波长为单边振子长度,再去93--97%的缩短率: 比如: 频率 7.05兆的单边振子xx为: 10.64米,加上 0.3米作为修剪余量;l* p" u;[6 q!L/p7B5s: }6频率 14.22兆的单边振子xx为: 5.3米,加上 0.3米的修剪余量; 频率 21.26兆的单边振子xx为: 3.53米,加上 0.2米的修剪余量即可;再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。 主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于 1.3。 倒V天线单边振子长度数据及计算方式如下:

水平、倒V天线计算公式 /4波长水平、倒V天线xx的计算公式: 光速/频率/4*95%=(单臂)xx 21.400MHz天线的计算长度3000/ 21.*95%=3330mm 14.270MHz天线的计算长度3000/ 14.*95%=4993mm 7.05MHz天线的计算长度3000/ 7.*95%=107mm 29.60MHz天线的计算长度3000/ 29.*95%=2667mm 以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm 左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。 或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于 1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于 1.2即可)。 例如: 假设我们的目标频率是 21.400MHz上述天线SWR最小值时候的频率读数是 19.896MHz。

EH短波天线DIY---以磁场辐射为主的超小型的短波天线..

EH短波天线DIY---以磁场辐射为主的超小型的短波天线 (2011-11-18 20:26:25) 转载▼ 标签: 分类:天线 eh天线 短波天线 车载天线 电磁场 短波 通联 电台 天线 EH短波天线是依据新的天线理论所设计的天线,E(电场)H(磁场)互垂直的原理,将2个极板之间产生磁场,这个天线是以磁场辐射为主的,它的长度和波长没有严格关系,倒是它的直径和谐振频率密切相关。 下图为EH短波天线的磁场、电场示意图

EH短波天线接线图: 各波段的天线主体PVC管的推荐直径: 80米200 MM 40米100 MM 20米51 MM 15米25 MM 10米19 MM 极板采用铜箔制作,以上均为网络上的数据。 由于本次DIY的20m段EH短波天线,材料不齐全,摸索性的做了一定的尝试:主体采用了UPVC直径25的管材,极板使用的是铝质易拉罐饮料盒,谐振电感使用1mm的漆包线,谐振电容使用了5/40P的陶瓷可调

电容(此电容耐压为50V,最大承受功率不能超过10W,换用真空可调电容后,使用功率可以提高到50至200W以上)。 制作完成后,在14.27MHZ短波频率上,驻波比能够调到1.37左右;同一时间和同一地点EH天线采用GP形式与倒V天线接受性能相比,EH 天线为S7,倒V天线为S9,相差为2个S,后面补充了通联测试的报告。总的来说,对于20m短波段的天线,EH的长度只有0.65m,也算不错了效果了。 以下为EH短波天线DIY的全过程: 1、上极板制作 2、下极板制作

3、上下极板连接(固定前,将极板连线安装测试到位)

4、上下极板安装到位整体图 5、绕制电感线圈(中间的二个焊点为的谐振电容连接点,二面共四个端子)

天线简介

天线一般理论简介 为了有效斯将能量从发射机馈送到天线,需要解决如下三个问题:1、有效地进行能量转换,提高辐射功率或提高天线系统的信噪比,天线作为传输线的终端负载,要求天线与传输线匹配;2、天线作为一种辐射或接受器件,应具有向所需方向辐射无线电波的能力;3、天线作为一种极化器件,可分为线极化,圆极化和椭圆极化。在同一系统中收发天线应具有相同的极化形式。天线一般都是可逆的,即同一副天线即可用做接收天线,也可用作发射天线。天线按结构形式分为两大类:一类是导线,金属棒或金属板构成的天线,称为线天线;另一类是似声学或光学设备,由金属面或介质面构成的面天线。 一、基本元的辐射: 1、电基本振子的辐射 给出在球坐标原点沿z 轴放置的电基本振子在各向同性理想均匀无限大自由空间的表达式: 3202 32022 cos 41sin 41 sin 40 jkr A r jkr A jkr A r I l j k E e r r I l j k jk E e r r r I l jk H e r r H H E θ?θ?θπωεθπωεθπ---? ?= -+ ?????=-+- ?????= + ??? ===注:9 02 2 000 010 362/E 120H k k θ? εεπ πλωεμηπ-== === =相移常数;波阻抗(远区场) (1)近区场

当kr<<1时称为近区场,此时 2 3 3 sin 42 cos 41 sin 40 A A r A r I l H r I l E j r I l E j r H H E ?θθ?θ πθωεπθ ωεπ= =-=-=== 不难看出,上述表达式和稳态场的公式完全相符,因此,近区场又称为似稳区。场随距离的增大而迅速减少。电场滞后于磁场90度,因此复坡印延矢量是虚数(12S E H =?),每周平均 辐射的功率为零。这种没有能量向外辐射的场称之为“感应场”。 (2)远区场 当kr>>1时称为远区场,此时60sin e sin e 20 jkr A jkr A r r I l E j r I l H j r E H H E θ? θ?πθλθλ--==≈=== 此时,有电场和磁场两个分量在空间相互垂直且与r 矢径方向垂直,三者构成右手螺旋系统。电场、磁场在时间上同相,其复坡印延矢量* 12S E H =?是实数,为有功功率且指向r 增加的 方向上。二者比值为一实数0 120η π =,所以仅需讨论二者之一。 且电基本振子远区场是沿着径向向外传播的横电磁波TEM 。在0180 o o θ =、方向上辐射为0,在90 o θ =方向辐射最强。方向图: E 面(包含振子轴)为一个8字形,H 面(垂直振子轴)为一个圆。 (3)辐射功率

天线的几个重要参数介绍

一、天线的几个重要参数介绍 1.天线的输入阻抗 天线的输入阻抗是天线馈电端输入电压与输入电流的比值。天线与馈线的连接,最佳情形是天线输入阻抗是纯电阻且等于馈线的特性阻抗,这时馈线终端没有功率反射,馈线上没有驻波,天线的输入阻抗随频率的变化比较平缓。天线的匹配工作就是消除天线输入阻抗中的电抗分量,使电阻分量尽可能地接近馈线的特性阻抗。匹配的优劣一般用四个参数来衡量,即反射系数,行波系数,驻波比和回波损耗,四个参数之间有固定的数值关系,使用那一个纯出于习惯。在我们日常维护中,用的较多的是驻波比和回波损耗。 xx: 它是行波系数的倒数,其值在1到无穷大之间。驻波比为1,表示完全匹配;驻波比为无穷大表示全反射,完全失配。在移动通信系统中,一般要求驻波比小于 1.5。回波损耗: 它是反射系数绝对值的倒数,以分贝值表示。回波损耗的值在0dB的到无穷大之间,回波损耗越大表示匹配越差,回波损耗越大表示匹配越好。0表示全反射,无穷大表示完全匹配。在移动通信系统中,一般要求回波损耗大于 14dB。 2.天线的极化方式 所谓天线的极化,就是指天线辐射时形成的电场强度方向。当电场强度方向垂直于地面时,此电波就称为垂直极化波;当电场强度方向平行于地面时,此电波就称为水平极化波。由于电波的特性,决定了水平极化传播的信号在贴近地面时会在大地表面产生极化电流,极化电流因受大地阻抗影响产生热能而使电场信号迅速衰减,而垂直极化方式则不易产生极化电流,从而避免了能量的大幅衰减,保证了信号的有效传播。因此,在移动通信系统中,一般均采用垂直极化的传播方式。另外,随着新技术的发展,最近又出现了一种双极化天线。就其设计思路而言,一般分为垂直与水平极化和±45°极化两种方式,性能

常用的几类天线的优缺点

常用的几类天线的优缺点 木雨 2014-11-14 07:04:16 因各位对天线的认识不同,所以这里简单介绍一下我们最常用的几类天线的优缺点,供大家参考!并对广大HAM比较典型的问题作解答: 第一、让我们来认识一下什么天线适合我们,我们最常用的天线就是偶极天线DP(dipole antenna)、其次就是垂直接地天线GP(Ground Plane Antenna),还有长线天线(Longwire ANT)、八木天线(YAGI)等。。DP天线架设简单、有着极高的效率和信噪比适合中近程距离通讯的入射仰角,和接近8字形的辐射波辨,成本最低所以是使用最普遍的一种天线。GP天线有着全向并且低入射仰角的优点适合DX 越洋通信。长线天线配合自动天调或者手动天调是一种效率接近60%的一种天线,适合没有空间架设短波天线的一种补充。八木天线有着高增益的定向天线,非常适合DX远距离通讯的一款天线。 每一款天线都有着它的优点和缺点,比如DP有着极高的效率和信噪比但是它有方向性(虽然方向性并不强但是的确的方向性),GP天线有着全向辐射和低仰角的优点,但是因为是垂直架设底噪大就是GP的缺点。长线天线因为是不对称天线所以底噪相对也较大一些,效率稍低、但是优点就是配合天调不用修剪振子即可使用,长线天线只是没有办法架设短波天线的一种办法。八木天线有着极高方向性的天线,低仰角并且可以转向、可以说指到那打到那里,缺点造价高、要通过转动天线才不会漏掉弱信号。没有十全十美的天线,所以我们可以根据自身的环境和经济条件来选择适合自己的天线。 第二、天线频率越低波长越长,所以短波低波段的天线都是很长。标准全尺寸DP就是1/2波长并非一波长(很多新HAM不懂什么叫全尺寸),比如40米波段(7MHZ)全尺寸偶极天线全长就是20米,一对振子对应就是一个波段,如果要实现多波段就要增加振子。三波段全尺寸天线就要三对(6条振子),所以在城市我们几乎没有几个HAM家里有足够的空间来架设这么长的天线。所以才会用到陷波器、陷波器就是相当于一个开关作用。在你使用不同波段时天线陷波器会自动选择通或者阻断选择对应的振子,这样就可以在一对振子中实现多波段。但是陷波器都是由线圈组成所以会对后面的波段起到缩短作用,同时陷波器也会产生损耗,同时因为有缩短所以带宽相当全尺寸天线要窄一些和效率也要低一些。陷波器使用非常广泛,比如A3S A4S八木天线,还有CREATE 730V多波段正V天线,钻石CP6等垂直GP天线都是使用陷波器。带有陷波器的天线优点就是架设方便、并且实现了多波段,缺点就是因为使用了陷波器天线带宽要窄一些、效率也要低一些。在一条振子实现多波段陷波器是必不可少的,也是最方便的一种解决方案!比如本人原创的一款K-730天线其中21M 29M都是标准的全尺寸,只有14M和7M因为串有陷波器会产生缩短系数。但实际使用买过天线的HAM对天线效果都是满意的,K系列天线就是在效率和实现多波段取了一个择中点,即实现了多波段、架设又方便、效率又不会低。相对于铝管陷波器天线K系列天线成本是最低的,所以低廉的价格造就了K系列天线的极高性价比,这也是这个天线卖的最火的原因。就本人也没有想到会销量会超过1300付,有优点就会有缺点没有十全十美的天线,只有适合你的天线。 第三、关于天线的调整,有些新HAM说我没有驻波表,也没有天线分析仪可以调整好天线吗?驻波表和天分是我们玩业余无线电必备的,没有这些我们是无法调整天线,我们国产天分有BA5RW的AW07A还有大红点驻波表等,图示阻抗分析仪目前有BH7KVE开发的KVE-60A图示显示都是非常直观的、也是非常适合新老HAM使用。调整天线的关键不是调整驻波,而是调整天线的谐振点。天线可以看作是一个LC组成的谐振电路、振子就是L(电感)空间电场形成C(电容),天线高度变了环境变了空间电场也变了C也变了、所以谐振点会变。天线只要按要求架设后剩下要做的就是测谐振点,再修剪振子(振子就好比L电感)、减短了振子电感变小了LC谐振点就会上升,让谐振点落在我们工作的频率上调整即结束!扫描谐振点是调整天线的关键,因为天线架设好扫描天线谐振在什么频率上

天线知识

1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率:(1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚gov-ern-ment的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因, 而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线可以做得很

天线简介

天线介绍

版本历史 版本/状态责任人发布日期备注V1.0 张鑫2010年7月天线简介第一版

目录 一、基础知识 (4) 1.1天线的定义 (4) 1.2天线的原理 (4) 1.3天线的基本参数 (5) 1.3.1 谐振频率 (5) 1.3.2 增益 (5) 1.3.3 驻波比 (6) 1.3.4 极化 (7) 1.3.5 辐射方向图 (8) 1.3.6 波瓣宽度 (9) 1.3.7 天线类型 (9) 二、天线的类型与选购 (11) 2.1 全向天线 (11) 2.1.1 普通全向天线 (11) 2.1.2 室内吸顶天线 (11) 2.2 定向天线 (12) 2.2.1 平板定向天线(Patch Antenna) (12) 2.2.2 八木天线(Yagi Antenna) (14) 2.2.3 抛物面栅状天线(Grid Antenna) (15) 2.3 天线配件 (15) 2.3.1 接头 (16) 注解:如何辨别天线接头的公母类型 (19) 2.3.2 射频电缆 (20) 2.3.3 其他配件 (21) 2.4 法律法规 (22) 三、无线传输 (23) 3.1影响室内无线传输的因素 (23) 3.2 室外传输和增益选择 (24) 3.2.1 视距传输(Line of Sight Propagation) (24) 3.2.2 自由空间路径损耗与传输距离 (25) 3.2.3 衰落余量和距离计算 (25) 3.2.4 Fresnel Zone (26) 3.2.5 计算举例 (26)

一、基础知识 1.1天线的定义 天线(Antenna)是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。 天线是在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。 1.2天线的原理 当导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。如图a所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图b、c所示,电场就散播在周围空间,因而辐射增强。必须指出,当导线的长度L远小于波长λ时,辐射很微弱;导线的长度L增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。

短波天线

优化短波通信的方法 1、改善短波信号质量的三大要素 由于短波传输存在固有弱点,短波信号的质量不如超短波。不过我们可以通过一些途径改善短波信号质量,使其尽可能接近超短波。改善短波信号质量的三大要素是:正确选用工作频率;正确选择和架设天地线;选用先进优质的电台和电源等设备。 1.1 正确选用工作频率 短波频率和超短波频率的使用性质完全不同。超短波属于视距通信,距离短,可以固定使用频段内的任何频点;而短波频率则受到电离层变化、通信距离和方向、海拔高度、天线类型等多种因素的影响和限制。用同一套电台和天线,选用不同频率,通信效果可能差异很大。 对于有经验的短波工作者来说,选频并不困难,其中有明显的规律性可循。一般来说:日频高于夜频(相差约一半);远距离频率高于近距离;夏季频率高于冬季;南方地区使用频率高于北方;等等。另外,在东西方向进行远距离通信时,因为受地球自转影响,最好采用异频收发才能取得良好通信效果。如果所用的工作频率不能顺畅通信时,可按照以下经验变换频率: (1)接近日出时,若夜频通信效果不好,可改用较高的频率; (2)接近日落时,若日频通信效果不好,可改用较低的频率; (3)在日落时,信号先逐渐增强,而后突然中断,可改用较低频率; (4)工作中如信号逐渐衰弱,以致消失,可提高工作频率; (5)遇到磁暴时,可选用比平常低一些的频率。 计算机测频 利用计算机测频软件预测可用频率对短波通信很有帮助,是国外经常采用的先进技术手段。计算机测频系统能够根据太阳黑子活动规律等因素,结合不同地区的历史数据,预测两点之间在未来一段时期每天各时节的可用频段,具有较高参考价值。 美国、欧盟、澳大利亚政府的计算机测频系统数据比较准确,它们通过分布在全球的监测点采集和跟踪各种环境参数的变化提供频率依据。其中澳大利亚的ASPAS系统面向全世界提供测频服务,安装和服务费用不高,很有使用价值。 1.2 正确选择和架设天线地线 天线和地线是很多短波用户容易忽视的问题。当通信质量不好时,很多人习惯于从电台上找原因,而实际上信号不良常常源自天线或地线。 短波和超短波使用的天线是完全不同的。超短波通信因为使用频率高,波长短,天线

Ansoft HFSS在设计对数周期天线时的仿真方法

ANSYS 2011中国用户大会优秀论文 Ansoft HFSS在设计对数周期天线时的仿真方法 孙凤林黄克猛 中国西南电子技术研究所,成都,610036 [ 摘要 ] 本文通过ANSOFT HFSS设计了一个对数周期天线,在仿真分析时,发现随着求解频率的不同,天线的求解结果差别较大,求解误差较大。通过在HFSS中尝试不同的求解设置方法, 最终通过将天线模型剖分网格最大长度限定在1/50λ的方法,使的求解结果在不同频率求解 时的一致性较好,提高了仿真的准确性。为设计者在仿真类似问题时,提供了一种提高求解准 确性的方法。 [ 关键词]HFSS;网格设置;对数周期天线 The Simulation Method on designing of a Log-Periodic Dipole Antenna on Ansoft HFSS Sun Feng-lin,Huang Ke-meng Southwest China Institute of Electronic Technology, Chengdu, 610036, China [ Abstract ] A method of simulating Log-Periodic Dipole Antenna on Ansoft HFSS is introduced in this paper. When simulating the Log-periodic antenna model, it was found that the simulation results are difference with different Solution Frequency on HFSS, The solution error is high. The accuracy of the solution depends on the size of each of the individual elements, to generate a precise simulation result, applying mesh operations ,assigning Maximum length of Elements mesh to 1/50λ, the results shows that the difference is reduced obviously, the simulation accuracy is improved. [ Keyword ] HFSS; mesh operations; log-periodic dipole antenna 1前言 对数周期偶极子天线(log-periodic dipole antenna),由于其工作频带宽、增益高、前后比好、结构简单、成本低等众多优点,在短波、超短波、微波等波段的通信、侧向、侦察、电子对抗等方面得到了广泛的应用。本文利用Ansoft HFSS软件对这种传统的对数周期天线进行了设计,在软件中直接建立了天线的仿真模型,并进行了相应的端口和边界设置,然而在仿真求解时却发现,随着求解频率的不同,得到的求解结果差别较大,为了获得一个较可信的分析结果,提高仿真的准确性,对HFSS一些参数设置进行了分析和验证。

短波天线常见故障及维护

短波天线常见故障及维护 短波天线多用于定向广播或通讯,所以要求天线具有很强的方向性,故多采用由多个天线振子组成的天线阵,短波天线的塔桅杆仅起支撑作用。一副天线架设的高低和跨度的大小,即天线层数和振子多少是由其服务区域决定的。一般地讲,较大的天线阵,方向性强,天线架得高,仰角低,传播距离远;反之,天线架得低、仰角高、传播距离较近。一般短波天线向两边的发射场强是相等的。若要使天线只向一个方向发射,就需在天线的后面加上反射幕或反射网,反射幕的高度与天线完全一样。 短波天馈线的维护与中波一样,也分为一般性维护和定期维护两个方面:(1)一般性维护:重点巡视全部天线馈线塔杆,雷雨、大风、冰凌后,应及时进行检查。(2)定期维护:重点是沿馈电线路检查馈线杆、双门和馈线的情况;检查塔杆、拉线拉杆、天线幕、反射网是否断线、下引线松紧度以及场地开关和交换闸的情况。 短波天线的主要维护内容 (1)每年冬夏到来之前,应调整馈线和天线下引线的松紧度以避免季节变化对馈线造成的不利影响。在温差变化太大地区,比如,我国东北、西北等地,根据气温变化及时调整天线和馈线的垂度和张力,使天线和馈线始终保持技术指标要求的范围之内。 (2)每五年一次调整天线幕的垂度和天线振子张力,同时调整塔身的垂直弯曲度和拉线的拉力。 (3)每年六月给拉线馈线花兰螺丝涂抹黄油,以保证调整时灵活。 (4)每年十月给馈线基坑,拉线址锚培土,并夯实。一般应高出自然地面20cm。 (5)每月一次检查场地开关的传动部分和接头。并清洁绝缘子及接点。馈线下面农作物离馈线距离应大于1m,馈线两旁的树枝离开馈线要在5m以上,不符合要求的应与有关单位联系及时去除。 短波天馈线常见故障和处理 (1)天线幕打火:可能是天线振子或下引线太松,在大风摇曳下造成断线虚接,故障多出在馈电点部位。 (2)下引线打火:下引线上出现局部高电位造成,可在打火部位绑一段同等直径的铜线以降低电位;要检查馈电线路,找出造成高电位的原因。 (3)反射网打火:原因多是频率不太合适引起。一般来讲短波天线频带较宽,而反射网是按某一固定频率设计的,当使用频率与设计频率相差较大时易使反射网打火甚至断线。以上故障可在两塔上串绳,若打火断线严重可建议改换频率。 (4)天线幕振子上哑铃绝缘断裂:应检查天线幕,清洁绝缘子或调整尾巴线张力。 (5)馈线杆倾斜;雨后馈线基坑塌陷或大风过后及外力碰撞拉线造成,应及时扶正馈杆,填实基坑并加装拉线,加强巡视杆路。 (6)阻抗失配:馈线太松或改变了几何形状所造成,应及时调整馈线垂度,使3000平行输出的两条馈线保持一致。 (7)馈线打火:功率容量不够、电位梯度超过馈线的临界电位梯度。在海拔较高的地区,馈线的临界电位梯度变低。 (8)铁塔校正垂直弯曲度困难:短波塔主要起支撑作用,一般在塔的一侧悬挂天线幕或反射幕等。对铁塔来说,天线的跨度越大,荷载越重,在大风时,因天线幕的挡风面更增加了对铁塔的荷载,造成塔身向天线一侧倾斜,这样会造成天线幕加大垂度,使下引线变松。而维护时,往往因力所不及。只能调整下引线来维特播音。故调整短波塔时,应把天线下端的固定点,包括下引线、重垂线、接地线等全部放松,再校正铁塔。一般来说,塔身的顶部应向天线外侧倾斜一些,调整结束后,再恢复下引线的固定点。 综上分析,要从根本解决天馈线存在问题,应从设备的日常维护上入手,定期对天馈线进行检查、测试,发现问题及时处理。维护人员要加强自身素质培训,学习掌握天馈线的维护方法,提高维护水平,能够快速、准确地诊断和排除故障,确保安全传输发射。

智能婴儿车方案设计

智能婴儿车设计方案 --《传感器原理与应用》 专业:电子信息科学与技术 班级:0 8 1 2 姓名:李光花(0820108232) 邱海艳(0820108233) 郭婷(0820108234) 指导教师:王俭 2011年5 月25 日

一.设计介绍 1.标题:智能婴儿车 2.背景 随着科学技术的发展,消费者对婴儿车的需求越来越大、对婴儿车的要求也越来越高。消费者希望婴儿车能最大可能地模仿人的操作,让孩子的生活环境更安全、更舒适、更健康、更美好。 3.功能介绍 ①安全功能:防丢失。婴儿是好动的,ta会坐在婴儿车上到处乱跑,为了确保安全,必须要保证其在大人的视野范围以内。超过一定的安全距离,车就会报警。 ②检测功能:对于婴儿的温度以及周围空气湿度测试,光靠大人的感觉是不可靠的,因此要用到温度、湿度超限报警器电路。当婴儿体温或者周围空气湿度不正常时,婴儿车就会发出声音提醒。 ③监护功能:当婴儿踢被、尿湿时,婴儿车会报警;有蚊虫时能灭虫;婴儿哭闹的时候婴儿车前面的玩具狗听到后会发出“汪汪”的叫声,同时两眼闪闪发光,叫声停止后,还能奏出一曲优美的音乐。 二.设计电路及其所选器件 1.防丢失报警器电路 此电路用于控制婴儿在安全距离之内,防止婴儿丢失。使用时,将发射器放在婴儿身上,接收器放置在大人身上,一旦婴儿离开超过一定距离(8m)时,接收器便会发出“嘟嘟,请注意!”的报警声。 ①电路工作原理 该防丢失报警器电路由无线发射器电路和无线接收器电路,如图所示 电路中,无线发射器电路由超短波无线遥控发射模块IC1和电源开关S1、电池GB1组成;无线接收电路由电源开关S2、电池GB2、无线遥控接收模块IC2、语音集成电路IC3、电阻器R、晶体管V和扬声器BL组成;当无线接收器和无线

天线介绍

介紹 在過去的十年,網路技術有著爆炸性的進步。我們可以在網路的世界裡找到我們需要的資料且我們的日常生活也變得更依賴他了。大部分的人其生活作息已經與網路世界融合在一起了。因此,在我們的生活中無線的網路連接變成一個必要的方式,亦就是所有攜帶式裝置都要有無線通訊的能力。更進一步,物聯網勢必變成科技業發展的一個焦點。最終,每一個物件將會透過無線通訊裝置連接在一起。在無線產業的競爭環境裡,一個微型天線技術可使得攜帶式裝置更薄、更小與更輕,讓您的產品更具有競爭力,也讓您的產品在這個廣大的市場中獲得勝利。 觀察過去電子產品的發展軌跡,我們可以知道,如何依新世代產品的需求先期開發關鍵元件,即時推出新產品所需要的元件,或提供性能優越的替代元件,將能使該新產品在市場上佔有相對優勢及增加競爭力。就無線通訊產品而言,天線產品或技術,就是佔有重要地位的關鍵零組件。為了能有穩定的上網能力與資料下載速度,個人行動裝置都需要效能優越的天線裝置,來強化其訊號收發能力,以便能隨時輕輕鬆鬆上網無障礙。而詠業科技獨特的專利晶片天線(Chip Antenna)技術,能提供給客戶高收訊效率的微小型晶片天線,提高客戶無線通訊產品的效能。 以網路連線相當重要的無線路由器(WiFi AP Router)為例,大多數市售機種還是採用外置雙極(Dipole)棒狀天線,不但影響外觀設計、佔用很大的體積、使用不方便,材料與組裝成本也都很高。尤其是商務人士用的口袋型路由器,如果還要外掛一支棒狀天線,更是不搭調。 以平板電腦當例子,FPC天線仍被廣泛的使用。但要使用FPC天線,必須先將FPC天線用人工組裝的方式黏貼到平板電腦的外殼上,並在主板上焊接兩個彈片,以便讓FPC天線與主板做電性連接。這樣的做法不只是總成本高,而且人工組裝之FPC天線的穩定性不佳。但以詠業的晶片天線而言,只需將晶片天線利用SMT製程打件在主板上,即可完成,具有方便性、穩定性與總成本低等特點。 如何設計一個內建型的天線 智慧型手機、平板電腦、手持式裝置等產品的天線,主要仍以內建型天線為主。想要將天線設計為內置,目前主要有幾種形式可供選擇,包括:金屬片沖壓成型天線、印刷電路板(PCB)或軟板(FPC)天線、LDS天線以及晶片天線。模具沖壓成型金屬天線,在生產上都需要開發金屬加工成型模具,開模具不但貴而且時程長,對於新產品開發的成本與時程控制甚為不利。而且不論是使用印刷電路板製成的天線、模具沖壓成型金屬天線或LDS天線,最後都需要用人工組裝於行動裝置內,不僅人工成本高昂,而且人工組裝的良率較不穩,對品質的管控較困難。而且,不管是金屬沖壓天線或是LDS天線,其尺寸都相當大,並不符合個人可攜式產品輕薄短小的趨勢需求。所以,具有輕薄短小優勢的晶片天線,便成為另一種頗具吸引力之選擇,晶片天線之設計方式,主要以單極(Monopole或PIFA)天線與迴路(Loop)天線為主。 而內建型的天線在實際應用上會遭遇哪些主要問題呢?我們例舉如下: 1.人體靠近時對天線特性的影響 2.天線尺寸與效率的關係 3.輻射場型對有效訊號傳輸能力的影響 4.是否需針對每一機型製作客製化天線 5.生產成本 而詠業的專利晶片天線,採用改良的迴路天線設計原理,在上述的幾個問題領域,都有優越的表現。詠業的晶片天線如何克服以上的問題,並與其他類型的天線做一比較,敘述如下:

相关文档
最新文档