TD-LTE 基站寻呼容量计算方法

TD-LTE 基站寻呼容量计算方法
TD-LTE 基站寻呼容量计算方法

TD-LTE 基站寻呼容量计算方法

1计算方法

1.1输入参数计算

1、业务模型参数

根据业务模型计算忙时每用户呼叫次数,例如可假设为2.5次。

2、覆盖区的用户数

根据目标区域特点设置用户密度,例如可设置为表1-1。

表1-1典型区域用户密度

3、计算单小区寻呼用户数

单小区寻呼用户数计算公式为

单小区寻呼用户数=覆盖面积*用户密度*运营商渗透率*业务渗透率

其中覆盖面积S ,R为小区覆盖半径,对应站间距为1.5R。例如,如果站间距为400m,则单小区覆盖面积为0.13856平方公里,假设目标区域为商用区,则用户密度25,000个/平方公里,运营商渗透率设为0.8,业务渗透率设为1,则

密集城区内单小区寻呼用户数=0.13856×25000×0.8×1=2772

按照以上假设,单小区可能发生的寻呼次数为2772*2.5=6930次/小时,折算到秒为6930/3600=1.925次/s。

1.2根据配置获取每小区每秒支持的最大寻呼数

根据3GPP 36.331,一个子帧中寻呼的UE最多为16个。计算不同Nb配置下的寻呼个数,1s寻呼的UE个数/小区=1000/10×PO×16,各配置下每小区每秒支持的最大寻呼数见表

1-2。

表1-2各配置下每小区每秒支持的最大寻呼数

nB配置为T/2和T时,单小区每秒支持的最大寻呼UE数分别为800个和1600个。

1.3根据配置获取每小区每秒支持的最大寻呼数

统计TA List内的小区数,获取TA List内每秒寻呼用户数,即

每秒内TA List的首次寻呼次数=TA List内小区数×单小区寻呼用户数

假设一个TA List内包含150个小区,则每秒内TA List的首次寻呼次数为1.925×150=288.75。根据需要发起二次寻呼的用户比例,即可计算每秒TA List内需要发起的寻呼数,即TA List内需要发起的寻呼数=每秒内TA List的首次寻呼次数×(1+发起二次寻呼的用户比例)

例如,如果发起二次寻呼的用户比例为5%,则为288.75×(1+5%)=303。

2配置建议

nB配置为T/2和T时,单小区每秒支持的最大寻呼UE数分别为800个和1600个,基本满足容量需求。修改MME的寻呼周期,不会影响容量,但修改MME寻呼周期时,不应小于寻呼响应的正常延时,建议不要小于2秒。

SBR反应池容积计算方法

SBR反应池容积计算方法及评价 SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR 改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。 现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。 1 现行设计方法 负荷法 该法与连续式曝气池容的设计相仿。已知SBR反应池的容积负荷或污泥负 荷、进水量及进水中BOD 5 浓度,即可由下式迅速求得SBR池容: 容积负荷法V=nQ 0C /Nv (1) V min =[SV I·MLSS/106]·V 污泥负荷法 Vmin=nQ 0C ·SVI/Ns (2) V=Vmin+Q 曝气时间内负荷法 鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式: 容积负荷法V=nQ 0C tc/Nv·ta(3) 污泥负荷法 V=24QC 0/nt a ·MLSS·N S (4) 动力学设计法

由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。根据动力学原理演算(过程略),SBR反应池容计算公式可分为下列三种情况: 限制曝气 V=NQ(C 0-Ce)t f /[MLSS·Ns·ta] (5) 非限制曝气V=nQ(C 0-Ce)t f /[MLSS·Ns(ta+tf)](6) 半限制曝气V=nQ(C 0-Ce)t f /[LSS·Ns(ta+tf-t0)] (7) 但在实际应用中发现上述方法存有以下问题: ① 对负荷参数的选用依据不足,提供选用参数的范围过大[例如文献推荐Nv=~(m3·d)等],而未考虑水温、进水水质、污泥龄、活性污泥量以及SBR池几何尺寸等要素对负荷及池容的影响; ② 负荷法将连续式曝气池容计算方法移用于具有二沉池功能的SBR池容计算,存有理论上的差异,使所得结果偏小; ③ 在计算公式中均出现了SVI、MLSS、Nv、Ns等敏感的变化参数,难于全部同时根据经验假定,忽略了底物的明显影响,并将导致各参数间不一致甚至矛盾的现象; ④ 曝气时间内负荷法与动力学设计法中试图引入有效曝气时间ta对SBR 池容所产生的影响,但因其由动力学原理演算而得,假定的边界条件不完全适应于实际各个阶段的反应过程,将有机碳的去除仅限制在好氧阶段的曝气作用,而忽略了其他非曝气阶段对有机碳去除的影响,使得在同一负荷条件下所得SBR 池容惊人地偏大。 上述问题的存在不仅不利于SBR法对污水的有效处理,而且进行多方案比较时也不可能全面反映SBR法的工程量,会得出投资偏高或偏低的结果。

安防监控硬盘容量计算公式

1080P、720P、4CIF、CIF所需要的理论带宽在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以先容。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;假如比特率越少则情况恰好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上往,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,50米红外摄像机理论上其上行带宽是512kbps=64kb/s,其下行带宽是2Mbps=256kb/。 例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为

影响寻呼成功率的因素

GSM网寻呼成功率指标的优化方法(2009-04-01 13:50:21) 标签:gsm网寻呼成功率优化指标分类:知识积累 1. 影响寻呼成功率的因素 网元MSC、BSC、BTS、MS,以及网络覆盖、干扰、信道拥塞以及设备硬件等因素都会影响到系统的寻呼成功率,例如: λ硬件故障 λ传输问题 λ参数设置问题 λ干扰问题 λ覆盖问题 λ上下行平衡问题 λ其它原因。 1.1 硬件故障 当出现TRX或合路器故障的情况时,将会造成MS难以相应寻呼,寻呼成功率下降。 1.2 传输问题 由于各种情况导致的Abis接口、A接口链路等传输质量不好,传输链路不稳定,也会导致寻呼成功率上升。 1.3 参数设置问题 BSC侧和MSC侧的一些参数设置会影响寻呼成功率,主要包括: MSC侧寻呼相关参数:

1.N侧位置更新时间(IMSI隐形分离定时器):2.首次寻呼方式: 3.首次寻呼间隔: 4.二次寻呼方式: 5.二次寻呼间隔: 6.三次寻呼方式: 7.三次寻呼间隔: 8.MSC重发寻呼次数: 9.全网下发寻呼: 10.预寻呼功能: 11.位置更新优化(MSC软参): 12.呼叫早释功能(MSC软参): 13.寻呼优化控制(MSC软参): BSC侧寻呼相关参数: 14.CCCH信道配置: 15.RACH最小接入电平: 16.MS最小接收信号等级 17.基站寻呼重发次数 18.接入允许保留块数

19.相同寻呼间帧数编码 20.MS最大重发次数 21.SDCCH动态分配允许 22.随机接入错误门限 23.T3212(周期性位置更新定时器) 24.RACH忙门限 25.CCCH负荷门限 26.Abis流量控制允许 27.A口协作寻呼开关(软参) 28.寻呼生存周期(软参29) 1.4 干扰问题 当存在网内、网外干扰时,都会影响系统的接入成功率,这样就直接影响到系统寻呼响应,使寻呼成功率下降。 1.5 覆盖问题 可能影响寻呼成功率的覆盖问题: 1.不连续覆盖(盲区) 由于基站所覆盖的区域地形复杂(如山区公路)、地势起伏,无线传播环境复杂,信号受阻挡,覆盖不连续等造成MS无法响应寻呼。 2. 室内覆盖差

广州规划管理容积率指标计算办法

附件 广州市规划管理容积率指标计算办法 (征求意见稿) 第一条(目的、依据) 为规范规划管理中容积率指标的计算,根据《建筑工程建筑面积计算规范》(GB/T50353-2013)、《广州市城乡规划技术规定》(广州市人民政府令第133号)等国家标准及规章的规定,结合本市实际,制定本办法。 第二条(适用范围) 广州市行政区域内城乡规划管理中的建筑工程容积率指标计算应当按照本办法执行。 房屋预售及房屋产权登记时的建筑面积测算,不适用本规定,按照《房屋测量规范》(GB/T17896.1-2000)、《广州市房屋面积测算规范》(DBJ440100/T204-2014)及有关规定执行。 第三条(建筑面积计算规则) 本市建筑工程建筑面积的计算,应当按照《建筑工程建筑面 1

积计算规范》(GB/T50353-2013)执行。 第四条(不计入容积率建筑面积的一般计算规则) 建筑避难层中用作消防避难的空间以及地下公共通道、地下公交站场、地铁站台层、地铁站厅层(除商业设施外)、地下停车库、地下非机动车库、非平战结合的人防工程和地下市政公用设施及地下设备用房等地下空间的建筑面积,不计入容积率。 既有房屋为改善人流疏散、垂直交通等而增设的消防楼梯、连廊、无障碍设施、电梯等配套服务设施的建筑面积不计入容积率。 对因实施绿色建筑技术而必须增加的建筑面积,符合现行政策法规的规定并经城乡建设主管部门认定后,可不纳入计算容积率。具体认定办法由城乡建设主管部门会同城乡规划主管部门另行制订,报市政府批准后执行。 第五条建筑公共开放空间应当符合下列要求: (一)架空层应有公共垂直交通设施可达,其净高应≥3.6米,且架空层开敞面累计长度应不小于架空层周长的40%; (二)位于首层的单个架空空间面积应不少于150平方米,其进深应不小于4.0米; 2

3G寻呼量较少网络下寻呼成功率指标较低问题分析专题

3G寻呼量较少网络下寻呼成功率指标较低 问题分析专题

目录 一、背景介绍 (3) 二、故障现象描述 (3) 三、原因分析及定位 (4) 四、处理方法介绍 (12) 五、经验总结 (12) 2 / 122

一、背景介绍 随着全省3G网络建设步伐的加快,各地3G网络覆盖范围快速增加,紧跟建设步伐的网络优化活动也大规模开展。盐城公司在本地的3G网络优化过程中遇到了一些端局下3G寻呼成功率较低问题。例如在NJGS24等2/3G融合端局,在3G无线覆盖水平明显较2G存在较大差距的情况下,从端局话务统计上看,3G网络的寻呼成功率明显偏低,本文就此问题进行了分析。 本专题主要包含如下内容: ◆现象描述 ◆原因分析与定位 ◆处理方法介绍 ◆经验总结 二、故障现象描述 端局接入RNC数据增加后,近日交换侧指标监控发现,建湖NJGS24下一个RNC下挂的5个3G LAC的寻呼成功率较低,最低的甚至为0。相关的统计指标如下。 3 / 123

4 / 124 表1 3月8日晚间寻呼统计表 从上表中,我们可以得出一个规律: 1、Iu 口的第一次寻呼次数低。5个LAC 中只有1个覆盖县城的LAC 的一次寻呼次数达到100次以上,其他乡镇的LAC 一次寻呼次数都在30次一下,甚至有的一个晚忙时只有7次。 2、重复寻呼次数远远高于一次寻呼总次数。 3、一次寻呼次数越多的LAC ,它的寻呼成功率越高。这5个 LAC 中,次数较多的成功率越高,次数越少成功率越低。例如D156,3个时段的成功率在80%以上,其他4个LAC 最高的只有36%,最低的只有0%。 下面是市区一个端局下的3G LAC 寻呼指标统计: 表2 寻呼较多的一个LAC 的成功率统计 从上表可以看出,市区的一个LAC 下的寻呼次数在达到几千次后,一次寻呼成功率的指标明显高于寻呼次数只有几十次的乡镇覆盖区的LAC 。 三、原因分析及定位 分析指标偏低可能出现的原因: ? 核心网和无线侧关于寻呼相关的软参设置不合理; ? 实际寻呼次数与端局话统的数据有误差; ? 无线环境特别恶劣,造成寻呼得不到用户终端的响应; ? 其他可能性,如核心网统计指标点的定义问题等。

房产项目容积率计算公式

房产项目容积率计算公式 房产项目容积率计算公式 一、专业解释 容积率:项目用地范围内总建筑面积与项目总用地面积的比值。 计算公式: 容积率=总建筑面积÷总用地面积 当建筑物层高超过8米,在计算容积率时该层建筑面积加倍计算。 容积率越低,居民的舒适度越高,反之则舒适度越低。 所谓“容积率”,是指一个小区的总建筑面积与用地面积的比率。对于发展商来说,容积率决定地价成本在房屋中占的比例,而对于住户来说,容积率直接涉及到居住的舒适度。绿地率也是如此。绿地率较高,容积率较低,建筑密度一般也就较低,发展商可用于回收资金的面积就越少,而住户就越舒服。这两个比率决定了这个项目是从人的居住需求角度,还是从纯粹赚钱的角度来设计一个社区。一个良好的居住小区,高层住宅容积率应不超过5,多层住宅应不超过3,绿地率应不低于30%。但由于受土地成本的限制,并不是所有项目都能做得到。 二、通俗解释 说到底就是小区里户数、人数和小区面积的关系,当然户越少、人越少,面积越大越舒服了。 三、容积率多少合适? 以下是我查到的资料,仅供参考: 1、容积率低于0.3,这是非常高档的独栋别墅项目。 2、容积率0.3--0.5,一般独栋别墅项目,环境还可以,但感觉有点密了。如果穿插部分双拼别墅、联排别墅,就可以解决这个问题了。 3、容积率0.5--0.8,一般的双拼、联排别墅,如果组合3--4层,局部5层的楼中楼,这个项目的品位就相当高了。 4、容积率0.8--1.2,全部是多层的话,那么环境绝对可以堪称一流。如果其中夹杂低层甚至联排别墅,那么环境相比而言只能算是一般了。 5、容积率1.2--1.5,正常的多层项目,环境一般。如果是多层与小高层的组合,环境会是一大卖点。 6、容积率1.5--2.0,正常的多层+小高层项目。 7、容积率2.0--2.5,正常的小高层项目。 8、容积率2.5--3.0,小高层+二类高层项目(18层以内)。此时如果做全小高层,环境会很差。 9、容积率3.0--6.0,高层项目(楼高100米以内)。 10、容积率6.0以上,摩天大楼项目 感谢您的阅读!

关于寻呼成功率的提高方式

关于寻呼成功率的提高方式 1.位置区更新、小区重选等都会影响PAGING。 https://www.360docs.net/doc/207591420.html,C划分和LAC区容量分析,合理的设置位置区范围,避免基站LAC插话现象。这样可以减少所有BSC 系统从交换接收寻呼消息的负担,保证在一个LAC区内尽快把所有寻呼消息发出去。 3.手机是否在服务区将直接影响系统所发寻呼消息能否被手机响应,保证手机在服务区则需要网络的覆盖达到一定要求。因此网络的健全程度将从根本上制约无线系统接通率的提高。寻呼成功率反映的是网络的覆盖问题, 4.减少网络干扰(外界干扰、CDMA干扰、一些特殊机关部门的干扰机); 5.交换追出寻呼无响应多的小区,针对性的解决; 6.通常情况下,网络拥塞是影响无线系统接通率提不上去最大的因素。如果出现信令信道拥塞,就可能造成寻呼消息丢失,直接影响寻呼成功率。 7.处理传输等影响较大的硬件问题(射频单元、CDU、天馈系统等)。小区信号不稳定时,寻呼成功率会相当差。如此,需要尽可能少用微波传输。 8.有时候断站会影响相邻LAC的寻呼成功率的 9.用户的个人行为,比如正在进行短信、彩信的发送等。短信中心的寻呼机制也应关注。我们曾碰到一个案例,由于新建的短信中心的寻呼重发次数与其它短信中心不同,导致全网寻呼成功率大幅下降。 14.如果上下行信号不平衡,可能出现上行或下行信号很差,导致寻呼不到。 寻呼成功率的定义(C4.9): l寻呼响应次数(C11.3)/ 寻呼请求次数(C11.1)

a MSC判断为1次移动台被呼,向被呼MS当前的服务区域所属的BS发送寻呼请求(Paging Re quest)。并启动定时器T3113。上报1次“寻呼次数”。 b BS在前向寻呼信道上传送寻呼消息(page),寻呼消息中带有移动台地址。 c MS通过接入信道应答Page Res ponse消息。 d BS收到寻呼响应消息后,上报1次“寻呼响应”。BS构造A1口的Paging Response消息,通过完全层3消息发送给MSC,并启动定时器T303。 e BS收到Page Res ponse消息,给MS应答基站证实指令(Base Station A cknowledgment Order )。 MSC向BS发送指配请求(Assignme nt Re quest)消息,BS调用资源分配接口,分配无线信道的相关无线资源;然后配置业务信道单元。MSC收到寻呼响应消息后,F 停止定时器T3113。这条消息中同时带有MSC指定的地面电路。MSC启动定时器T10。BS收到来自MSC的指配请求(Assignme nt Request)消息后,

GSM无线网络优化流程华为寻呼成功率分析

GSM无线网络优化-STS数据采集分析(华为分册) 四川移动网管中心 技术支持中心 2020年8月16日

2010-07-27版本号:

目录 第1章、寻呼成功率的定义...................... 错误!未定义书签。 1、NSS的定义................................ 错误!未定义书签。 2、BSS的定义................................ 错误!未定义书签。 3、 NSS的寻呼成功率和BSS的寻呼成功率的差异 . 错误!未定义书签。 4、信令流程及统计点.......................... 错误!未定义书签。第2章、BSS侧相关因素分析及提高手段 .......... 错误!未定义书签。 1、BSS侧相关因素............................ 错误!未定义书签。 2、分析流程图................................ 错误!未定义书签。 3、寻呼成功率问题定位及BSS侧提高寻呼成功率的措施错误!未定义 书签。 、硬件和传输上存在问题 ................... 错误!未定义书签。 、寻呼过载和突发性大话务占用SDCCH信道 ... 错误!未定义书签。 、参数配置上的问题....................... 错误!未定义书签。 、干扰问题影响寻呼成功率 ................. 错误!未定义书签。 、覆盖问题影响寻呼成功率 ................. 错误!未定义书签。 、上下行平衡问题影响寻呼成功率 ........... 错误!未定义书签。

容积率的计算方法

容积率的术语释义为:容积率是指某一基地范围内,地面以上各类建筑的建筑面积总和与基地总面积的比值。 与容积率密切相关的一个指标就是建筑密度,术语释义为:建筑密度是指某一基地范围内,所有建筑物底层占地面积与基地面积的比率(%)。 从上面两个释义可以看出:如果基地面积和建筑密度不变,那么建筑物的层数越多,容积率就越大。 充分了解容积率对项目品质的影响,对我们的项目定位和规划是非常有帮助的。在此我简单说一说各类建筑分别对应的容积率数值。 容积率数值对应的建筑类型 1、容积率低于0.3,这是非常高档的独栋别墅项目。 2、容积率0.3~0.5,一般独栋别墅项目,环境还可以,但感觉有点密了。如果穿插部分双拼别墅、联排别墅,就可以解决这个问题了。 3、容积率0.5~0.8,一般的双拼、联排别墅,如果组合3~4层,局部5层的楼中楼,这个项目的品位就相当高了。 4、容积率0.8~1.2,全部是多层的话,那么环境绝对可以堪称一流。如果其中夹杂低层甚至联排别墅,那么环境相比而言只能算是一般了。 5、容积率1.2~1.5,正常的多层项目,环境一般。如果是多层与小高层的组合,环境会是一大卖点。 6、容积率1.5~2.0,正常的多层+小高层项目。 7、容积率2.0~2.5,正常的小高层项目。 8、容积率2.5~3.0,小高层+二类高层项目(18层以内)。此时如果做全小高层,环境会很差。 9、容积率3.0~6.0,高层项目(楼高100米以内)。 10、容积率6.0以上,摩天大楼项目。 这是一般情况下可以套用和参考的公式,在此基础上我们必须结合拿到的土地的实际经济指标系数来判定最佳的产品组合方式。 这是一个关于最佳容积率的问题,解决这个问题从下面两个步骤进行:

寻呼成功率信令流程

寻呼原理 当一个位置区下的移动台被寻呼时,MSC就会通过基站控制器(BSC)向这一位置区内的所有BSC发出寻呼消息,BSC收到寻呼消息后,向该BSC下属于此位置区的所有小区发出寻呼命令消息?当基站收到寻呼命令后,将在该寻呼组所属的寻呼子信道上发出寻呼请求消息,该消息中携带有被寻呼用户的IMSI或者TMSI号码。移动台在收到寻呼请求消息后,通过随机接入信道(RACH)请求分配SDCCH。BSC则在确认基站激活了所需的SDCCH 信道后,在接入允许信道(AGCH)通过立即指配命令消息,将该SDCCH指配给移动台。移动台则使用该SDCCH发送寻呼响应(Paging Resp)消息给BSC,BSC将PagingResp消息转发给MSC,完成一次成功的无线寻呼? 如下图1: 寻呼相关指标定义: 从寻呼信令流程中我们得出几个主要可能影响寻呼成功率的对应节点,每个节点所对应的指标计算公式如下:

MSC 寻呼成功率定义: (PAGING_NPAG1RESUCC+PAGING_NPAG2RESUCC)/(PAGING_NPAG1LOTOT+ PAGING_NPAG1GLTOT) LAC寻呼成功率定义: (LOCAREAST_NLAPAG1RESUCC+LOCAREAST_NLAPAG2RESUCC)/ (LOCAREAST_NLAPAG1LOTOT) UM口寻呼成功率定义: sum(RANDOMACC_RAANPAG + RNDACCEXT_ RAAPAG1 + RNDACCEXT_ RAAPAG2) / LOCAREAST_ NLAPAG1LOTOT 随机接入成功率: RANDOMACC_CNROCNT / (RANDOMACC_ RAACCFA +RANDOMACC_CNROCNT) SD建立成功率: CLSDCCH_CMSESTAB /CELTCHFP_ TFCONGPGSM

容积率计算公式

容积率计算公式:项目总建筑面积÷项目总占地面积=容积率。一个良好的居住小区, 高层住宅容积率应不超过5,多层住宅应不超过3,绿化率应不低于30%。 容积率计算公式: 项目总建筑面积÷项目总占地面积=容积率 在建设用地范围内所有建筑物地面以上各层建筑面积之和与建设用地面积的比率(%) 容积 建筑容积率计算规则 建筑容积率计算规则 颁布部门:鹤壁市城市规划管理局 颁布日期:2007/01/01 实施日期:2007/01/01 一、为进一步规范建筑容积率(以下简称容积率)计算方法,统一容积率计算规则,明确计入容积率的建筑面积数值和计入方式,根据有关法律法规及国家标准的规定,结合我市实际情况,制订本规则。二、一般情况下,计入容积率的建筑面积的计算按照《建筑工程建筑面积计算规范》(GB/T50353-2005)的规定执行;遇有下列情况,按照本规则规定执行。 三、标准层层高超出常规指标的建筑

(一)住宅建筑标准层层高大于等于4.5米的,不论层内是否有隔层,均按该层水平投影面积的1.5倍计入容积率;住宅建筑标准层层高大于等于5.0米 (2.8米+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的2.0倍计入容积率。 跃层式住宅、低层住宅等当起居室层高在户内通高时可按其实际面积计入容积率。 (二)办公建筑(包括写字楼)标准层层高大于等于4.8米的,不论层内是否有隔层,均按该层水平投影面积的1.5倍计入容积率;办公建筑标准层层高大于等于5.8米(3.6米+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的2.0倍计入容积率;办公建筑标准层层高大于等于9.4米(3.6米×2+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的3.0倍计入容积率。 门厅、大堂、中庭、内廊、采光厅等可按其实际建筑面积计入容积率。(三)普通商业建筑标准层层高大于等于5.1米和建筑面积2000平方米以上的大型商业建筑(如超市、大型商场、专卖店、餐饮酒店、娱乐等功能集中布置的商业用房)标准层层高大于等于6.1米的,不论层内是否有隔层,均按该层水平投影面积的1.5倍计入容积率;普通商业建筑标准层层高大于6.1米 (3.9米+2.2米)的,不论层内是否有隔层,均按该层水平投影面积的2.0倍计入容积率;普通商业建筑标准层层高大于10米(3.9米×2+2.2米)的,不论层内是否有隔层,

浅谈提高寻呼成功率的几种方法

浅谈提高寻呼成功率的几种方法 摘要在过去一年中,北京CDMA网络寻呼成功率有了较大幅度攀升。本文详细说明了提高寻呼成功率的几种方法,并介绍了其在北京现网中的实际应用情况。 关键词寻呼成功率CDMA SCI ISPAGING 1.引言 在CDMA网络中,寻呼成功率的公式为“(寻呼成功总次数/寻呼请求总次数)*100%”。其中寻呼请求总次数统计了MSC发出对被叫用户的寻呼消息的次数;寻呼成功总次数统计的是MSC收到被叫用户的寻呼响应消息的次数。 寻呼成功率是关系网络通信质量的一个重要指标,不但衡量了手机是否能够接收到交换机下发的寻呼消息,而且也考察了交换机是否能收到手机上发的寻呼响应消息。 2003年春天,北京CDMA网络的寻呼成功率较低。通过1年多的努力,该项指标上升了将近5个百分点,成果显著。在此,谈谈我们在提高寻呼成功率方面的一些经验和方法,供大家借鉴。 2.方法一:提高网络覆盖率 这是提高寻呼成功率最容易想到的方法。网络覆盖的面积大了,手机移动到无信号地区的概率自然就减小了,其能够成功响应寻呼消息的概率也就增加了。 然而网络不是一天建成的,网络覆盖空洞和弱覆盖地区也不是旦夕间灰飞烟灭的。因此,在实际实施中,这却是花费时间最长,需要长期积累才能看出明显效果的方法。但“不积跬步无以致千里,不积小流无以致江河”。这恰恰是这我们应该长期坚持努力的方向。 2003年是北京CDMA网络的建设年,基站覆盖的广度和深度都有了质的飞越。不论城区还是郊区的覆盖率都大为提升,成为寻呼成功率持续上升的重要保证。其中最为明显的一个例证是2003年年末伴随着地铁站台的全面覆盖,北京C网寻呼成功率迅速攀升了0.5个百分点。 3.方法二:减轻寻呼信道负荷 如图3.1所示,在CDMA系统中,一个80ms的寻呼信道时隙分成4个20ms的子时隙,每个子时隙中仅能容纳最多一条寻呼消息。因此,一个寻呼信道时隙中最多容纳4个寻呼消息。

水质均化池容积计算方法

水质均化池容积计算方法 张玉镭 提要明确了水质均化的均化要求和两类水质均化的特征,给出了水质均化过程的数学模型及水质均化池最小有效容积的迭代计算算法。用多周期均化过程的计算示例,说明了该计算方法的使用。 关键词均化池工业废水水质均化调节池 对于一个水处理系统,当废水的水量和水质(浓度、水温等指标)变幅较大时,一般要设置均化池(也称为调节池)。通过水质均化可以均衡和稳定水质负荷从而改善废水的可处理性。在工业废水处理工艺中均化预处理操作常常是必要的、有时甚至是关键性的。均化池工艺计算主要是确定水质均化池最小有效容积;这个池容是在完全混合条件下的理论计算值,其大小由水质、水量的不均匀特性和后续工艺对水质及水量均化的要求决定。给出水质均化池最小有效容积的计算方法其意义不仅在于它对工艺设计中确定水质均化池容积是必要的;并且计算所得出水水质的时序数据,还可作为后续工艺进水的时序数据和工艺模拟的基础。 1计算方法 1.1直观的计算方法 现行水质均化池容积计算方法一般是:取浓度较大的若干时间段内进水体积之和作为理论容积,取这段时间内废水的平均水质数据为其均化出水的水质指标最大值;在确定水质均化池的实际设计容积时,考虑到池中废水流态不能完全符合瞬间完全混合的理论假设,对理论计算容积要作经验校正。 从总体上看,现行设计方法属于直观简便的方法,由于它没有体现出废水流量和浓度大小变化特征及水质水量变化特殊趋势的相互关联这两个基本因素,因而致使直观的方法很难做到合理地确定水质均化池容积。 1.2其它均化池容积计算方法 概率统计方法:当废水流量接近常数且废水水质为随机分布时可用概率统计方法确定均化池的池容。显然,废水的不均匀特性符合一定随机规律的情况不是多见的,因此概率统计方法的适用范围较小。 有限差分法:在连续流完全混合条件下,各种不均匀特性的废水进行定容积均化或变容积均化时,可对其混合过程数学模型用有限差分法求解。使用求得的浓度迭代式,取不同的池容作多次尝试以考察浓度的均化程度是否满足要求,刚好能满足要求的池容即为均化池最小有效容积。 这两种计算方法都可以更稳定且准确地算出水质均化池的理论容积[1][2]。 本文由简单的数学模型更简捷清晰地获得水质均化池最小有效容积的算法。 2水质均化池的均化要求 决定水质均化池容积的因素之一就是水处理系统对进水水质水量的均化要求。水质均化要求和流量均化要求是计算均化池最小有效容积的条件和算法依据之一。 一般水质均化池的后续工艺对水质均化池出水在流量上要求连续均匀出水,对水质要求均化到一定程度[1]。水质的均化程度可用如下方法表示:出水水质指标的(1)最大值与平均值之比,即峰值(用PF表示);(2)平均值与最低值之比;(3)最大值与最小值之差;(4)最大限定值等。 按均化池功能不同,可把水质均化池分成两种类型:恒水位水质均化池和变水位水质均化池。为叙述方便,以下把浓度作为待均化的水质指标。 3恒水位水质均化池 3.1恒水位水质均化池特征 恒水位水质均化池是池内水量恒定而出水流量与进水流量相等的水质均化池。它仅对水质起到均匀化的作用、而对水量无均化作用。 3.2恒水位水质均化池数学模型 均化池容积恒为V;在废水不均匀变化周期内,水量和水质测定的时间间隔为Δt;第i个时间间隔内的平均废水流量为q i,平均溶质浓度为c i,i=0,1,2…n-1;当进入均化池时池中的溶质浓度为C i;假定溶质在水质均化池中无相转移和化学变化,并且废水在瞬间均匀混合;混合后浓度为C i+1,自池中流出流量为q i、浓度为C i+1的废水;如此往复进行使废水浓度得以均化。如图1所示: 第i时段: q i ,C i+1 第i+1时段: 出水

移动LTE专项优化CSFB成功率提升思路

移动LTE CSFB成功率提升思路

1CSFB成功率提升思路 1.1CSFB寻呼成功率提升思路 1)、先行核查站点是否存在告警,重点是驻波类告警、传输链路类问题及时钟类告警。2)、核查站点功率设定是否满足规范要求(具体方法后续发送),需要区分单双模功率。 如下为单通道功率标称值,若单模可以直接以如下功率来进行设定;若双模就需要核实TDS 侧功率设定,TDS+TDL功率之和不能超过设备支持功率。 3)、核实小区数据设定是否符合规范要求,主要包含如下几项:端口数、收发模式与设备 特性、射频规划方式是否一致;如RRU3161-FA仅为单通道,就需要在小区属性中设定为单端口、单发单收;若设定为其它就需要核实RRU级联方式及扇区布置方式是否常规设定。4)、核查站点4G邻区关系是否完整(由于邻区不完整而无法顺利重选导致的假弱覆盖问题)。5)、核查U2000寻呼测量话统是否存在S1接口寻呼下发次数为0的问题,确定是否eNodeB ID重复所致; 6)、核查共站点LAC及TAC是否设定一致(由于经纬度问题或者规划问题导致的异常),是否存在跨MSC Pool的问题。 7)、分析MR数据RSRP及上行干扰数据来判断是否弱覆盖问题导致的寻呼黑洞问题,若是建议调整寻呼次数来加大空口寻呼力度。 8)、对于无线弱覆盖十分严重的小区就需要通过接入类参数进行优化调整,该重选到GSM

或者TDS网络的就要重选过去,避免弱覆盖异常导致的寻呼交互无法顺利进行的问题。1.2CSFB回落成功率提升思路 1)对LTE侧CSFB相关的开关及CSFB优先级参数进行核查,必须依照规范来设定。 2)核查GSM侧CSFB license资源是否充足,华为GSM还需要核实支持CSFB开关及未 知寻呼响应开关是否开启; 3)从U2000话统台对CSFB成功率及准备成功率进行分析,是否存在失败偏高90%以上 的小区,如果失败率高通常都是邻区及频点未添加所致,或者盲切换优先级、 connection态优先级未设定所致,需要依照规范来设定。 4)对TAC-LAC一致性进行核查,需要割接调整的就提单调整,配置不一致的就提单修改, 避免位置更新过程中容易导致的回落失败问题。 5)对TOP小区邻区关系进行核查,漏配、错配及频点不全、频点冗余等问题需要及时予 以整改,避免回落频点不合理而导致失败问题。 6)全网GSM站点及LTE站点加入Pool归属,若未组Pool需要加入MSC归属,对于Pool 间的邻区关系建议删除,具体频点也要做出相应的删减(具体需要依照该频点覆盖范围及LTE站点覆盖范围来确定);对于未组Pool的就需要将不同MSC的邻区关系进行删除,频点也如Pool间方式操作。 7)对TOP小区的MR数据进行解析,分析RSRP、上行干扰及UE功率余量话统来综合判 断是否网络干扰导致回落失败。 8)从GSM网络侧分析是否存在SDCCH溢出的问题,需要GSM日常优化去优化。1.3CSFB呼叫成功率提升思路 CSFB呼叫成功率阶段导致失败更多的是在GSM侧,需要重点从GSM网络侧进行优化。1)、对TCH话务溢出问题进行专题优化提升。 2)、结合A+Abis平台对GSM侧接通率TOP小区进行质差及干扰排查优化。 3)、对回落伴随位置更新频繁小区进行专题分析优化。 在LTE侧回落频点不合理时可能会造成回落小区不是最优小区,引发弱覆盖及质差问题,导致CSFB呼叫失败,对此需要重点从如下方面入手: 1)、对于呼叫失败TOP小区周围LTE站点邻区关系的合理性进行核查,避免4G侧邻区关系漏配及错配导致的回落频点不合理问题。

视频存储容量的计算

视频存储总容量的计算 视频存储容量的计算公式如下: 容量=码流/8 X视频路数X监控天数X 24小时X 3600秒 注:码流是以Mbps或Kbps为单位,码流除以8是把码流从bit转换为byte,结果相应的是MB或KB 按计算公式,以一个中小规模的例子计算: 500路监控路数,2Mbps D1格式,数据存储30天,需要的存储容量: 2Mbps/8 X 500 路X 30 天X 24 小时X 3600 秒/1024/1024 ?300TB 存储空间单位换算:1TB = 1024GB = 1024 X 1024MB = 1024 X 1024 X 1024KB = 1,073,741,824Byte 硬盘容量单位换算:1TB = 1000GB = 1000 X 1000MB = 1000 X 1000 X 1000KB = 1,000,000,000Byte

基本的算法是: 【码率】(kbps )=【文件大小(字节)】X8/【时间(秒)】/1024 码流(Data Rate )是指视频文件在单位时间内使用的数据流量,也叫码率,是 他是视频编码中画面质量控制中最重要的部分。 同样分辨率下,视频文件的码流 越大,压缩比就越小,画面质量就越高。 所以应该是一样的,只是称谓不同 分薪率耒示静的尺寸犬小(或廉素埶重)I 用于设養录蟻的囹禄尺寸?正 如前面所谬 在监^申常用的曲粹有QOF 、CIFs HD1s 2CF ,DCIF. 4CIF 和D1.720P. 1060P?几和 分莽聿是决走傥率(码率〉的主叢因靑,不同的 分笹至要采用不同的位華,它们之问的关粟如下罔所示' P>p 計 : > 10M 图棘廉里 压翳码奉 倍输希竞(平均 Q ) 录蟻文件尺寸上瞑 兆学和 小时3&) 「 512Kbps 540Kbps ^225 352&28* 384Kbps 400Kbps <169 晋通 256KDP5 280Kbps 5112 DCF 最堺 1.2Mbps ULI&pS ^540 528*384 7C0KDPS 730Kt )DS 1333 普通 512Kbps 540 Kbps ^225 D1 2Mbps 2.2Mt )p£ iQOO 704^576 1.75Mbps 1.0Mt )ps ^?ea 普通 1.5Mbps 1.7 Mbps <675 720P 最毎 10M&D3 11Mbps 1260*720 6Mbps 6.6 Mbps ^2700 晋通 2Mbps 2.2tflt )ps £900 分赫輩、咼車、帯宽及埶榻重耐昵表《囹像師至:乃帧电审柔件下) I SIJk JGfiR LL1 1 JM

寻呼成功率优化

1寻呼成功率优化 1.1概述 寻呼成功率是移动通讯系统中一项基本功能。他直接影响来话接通率和系统接通率等其它网络指标,影响用户的感受。 寻呼成功率由MSC统计,该指标优化提高要通过交换和无线优化共同努力解决。指标定义如下 寻呼成功率:寻呼相应次数/寻呼请求次数×100% 寻呼响应次数:只MSC收到的PAGING RES消息的总和,包括重复寻呼的响应,统计点为MSC 寻呼请求次数:指MSC首次发送的PAGING消息的总和,统计点为MSC。 1.2寻呼流程简介 寻呼成功率主要涉及到A接口和空口的流程: A1:MSC发来的电路业务请求次数 B1:Abis口电路业务寻呼下发次数 C1:Abis口电路业务寻呼成功次数。

当MSC从VLR中获得MS的LAC后,将向该LAC区域所有BSC发送PAGING消息。BSC收到消息后,向该BSC所属全部小区发送Paging Command。基站收到寻呼命令后,将在无线信道的该IMSI或TMSI所在寻呼组的寻呼子信道上发送Paging Request,该消息携带被寻呼用户的TMSI或IMSI。MS收到Paging Request 后,通过RACH请求分配SDCCH。BSC确认后激活相应的SDCCH信道后,在AGCH信道通过 immediate assignment 将该SD信道指配给MS。MS占用该SD信道成功后,发送Paging Response。BSC将该消息转发给MSC,完成一次寻呼。 1.3寻呼丢失原因分析 1.3.1电路寻呼损失的分析 如下图所示我们根据寻呼的基本信令流程,将寻呼损失分为3部分,再结合现网无线与交换的统计,对无线侧的寻呼损失进行量化分析。(因为MSC与BSC之间,BSC和BTS之间为有线连接,几乎不存在信令在传送过程中的丢失,为了简化分析我们不考虑MSC,BSC和BTS三者之间的信令丢失)。

SBR反应池容积计算方法及评价

SBR反应池容积计算方法及评价 简介:从SBR反应池的功能出发,通过对现行SBR反应池容积的各类计算方法比较和合理性分析,提出了总污泥量综合设计法,并以工程算例结果鉴别各类方法的适用性,供设计借鉴。 关键字:SBR池容积污泥负荷污泥龄干污泥总量沉降距离 SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。 现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。 1现行设计方法 1.1负荷法 该法与连续式曝气池容的设计相仿。已知SBR反应池的容积负荷或污泥负荷、进水量及进水中BOD5浓度,即可由下式迅速求得SBR池容: 容积负荷法V=nQ0C0/Nv(1) V min=[SVI·MLSS/106]·V 污泥负荷法Vmin=nQ0C0·SVI/Ns(2) V=Vmin+Q0 1.2曝气时间内负荷法 鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式: 容积负荷法V=nQ0C0tc/Nv·ta(3) 污泥负荷法V=24QC0/nt a·MLSS·N S(4) 1.3动力学设计法 由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。根据动力学原理演算(过程略),SBR 反应池容计算公式可分为下列三种情况: /[MLSS·Ns·ta](5) 限制曝气V=NQ(C 0-Ce)t f /[MLSS·Ns(ta+tf)](6) 非限制曝气V=nQ(C 0-Ce)t f 半限制曝气V=nQ(C0-Ce)t f/[LSS·Ns(ta+tf-t0)](7)

磁盘存储容量计算

存储系统计算总结 一.磁盘存储容量计算 磁盘容量有两种指标,一种是非格式化容量,指一个磁盘所能存储的总位数;另一种是格式化容量,指各扇区中数据区容量总和。 公式有: 记录密度(存储密度):一般用磁道密度和位密度来表示。 磁道密度:指沿磁盘半径方向,单位长度内磁道的条数。 (1)总磁道数=记录面数×磁道密度×(外直径-内直径)÷2 (2)非格式化容量=位密度×3.14×最内圈直径×总磁道数 (3)格式化容量=每道扇区数×扇区容量×总磁道数 (4)平均数据传输速率=最内圈直径×3.14×位密度×盘片转速 或: 非格式化容量=面数×(磁道数/面)×内圆周长×最大位密度 格式化容量=面数×(磁道数/面)×(扇区数/道)×(字节数/扇区) 例1:假设一个硬盘有3个盘片,共4个记录面,转速为7200r/min,盘面有效记录区域 的外直径为30cm ,内直径为10cm ,记录位密度为250b/mm ,磁道密度为8道/mm , 每磁道分16个扇区,每扇区512字节,试计算该磁盘的非格式化容量,格式化容量 和数据传输率。 答: 非格式化容量=最大位密度×最内圈周长×总磁道数 最内圈周长=100*3.1416=314.16mm 每记录面的磁道数=(150-50)×8=800道; 因此,每记录面的非格式化容量=314.16×250×800/8=7.5M 格式化容量=每道扇区数×扇区容量×总磁道数=16×512×800×4/1024/1024=25M 硬盘平均数据传输率公式: 平均数据传输率=每道扇区数×扇区容量×盘片转速=16×512×7200/60=960kb/s 二.数据线和地址线的计算: 的位数,这里算出来是11位;4是一个存储单元的位数,也就是数据线的位数,所以这个芯片的地址线11位,数据线4位。 三.存储容量(1字节=8位二进制信息)及换算: 例:CPU 地址总线为32根则可以寻址322=4G 的存储空间 1KB=102B=1024Byte 1MB=202B=1024KB 1GB=302B=1024MB 1TB=402B=1024GB 1PB=502B=1024TB 1EB=602B=1024PB 四.用存储器芯片构成半导体存储器(主存储器组成) 用现成的集成电路芯片构成一个一定容量的半导体存储器,大致要完成以下四项工作: 1、根据所需要的容量大小,确定所需芯片的数目 2、完成地址分配,设计片号信号译码器 3、实现总线(DBUS ,ABUS ,CBUS )连接 4、解决存储器与CPU 的速度匹配问题 下面通过一个简单例子,说明如何用现成芯片来构成一个存储器。 扇区 磁道

LTE网络寻呼容量评估

LTE网络寻呼容量评估

目录

1概述 1.1TAC介绍 LTE网络现行寻呼策略为:精准寻呼+普通的寻呼,即UE上次驻留的eNodeB发起寻呼->精准寻呼2S响应超时寻呼下级,最近TAC ->精准寻呼2S响应超时寻呼下级,TAL->精准寻呼2S响应超时重新寻呼, TAL ->寻呼6S超时后重新寻呼,TAL ->寻呼6S超时后寻呼失败。 注:若UE在一个eNodeB下的驻留时间小于2分钟(eNodeB粘性时长),MME将跳过该UE对应的寻呼规则中“最近eNodeB”的寻呼范围,直接跳转到下一级范围(TAC或TA List)进行寻呼。 TAC区作为LTE网络寻呼过程中重要的一环,配置即不能过大也不能过小: 过大:会导致核心侧、无线侧资源消耗过大,引起过载、挤占业务信道资源或需要的配置过高问题。 过小:会导致TAC级寻呼成功率偏低、从而触发过多不心要的TAC List级寻呼,并导致TAC编号资源紧张。 1.2TAC区约束条件 TAC区最大寻呼能力需要考虑以下2方面的约束条件: 1、核心侧MME现网配置条件下的寻呼能力。 2、无线侧寻呼对空口资源占用合理比例下的寻呼能力。 2TAC寻呼能力分析 2.1核心侧MME分析 核心网进行TAC合并的条件是,一个TAL下挂基站数量不超过150,否则在用户数突增情况下可能造成MME侧设备的负荷问题。 TAL下TAC数量减少对核心网设备负荷的影响在5%左右。 统计现网TAL下挂基站数目情况,150个基站以上的TAL数目达到53个,其中衡水最高达到一个TAL下面825个BBU(TAL:18929),部分过大的TAL需要进行分裂后再进行TAC合并。

相关文档
最新文档