电子技术实验报告7-计数器及其应用(葛楚雄)

电子技术实验报告7-计数器及其应用(葛楚雄)
电子技术实验报告7-计数器及其应用(葛楚雄)

学生实验报告

集成计数器及寄存器的运用 实验报告

电子通信与软件工程 系2013-2014学年第2学期 《数字电路与逻辑设计实验》实验报告 --------------------------------------------------------------------------------------------------------------------- 班级: 姓名: 学号: 成绩: 同组成员: 姓名: 学号: --------------------------------------------------------------------------------------------------------------------- 一、 实验名称:集成计数器及寄存器的运用 二、实验目的: 1、熟悉集成计数器逻辑功能与各控制端作用。 2、掌握计数器使用方法。 三、 实验内容及步骤: 1、集成计数器74LS90功能测试。74LS90就是二一五一十进制异步计数器。逻辑简图为图8、1所示。 四、 五、 图8、1 六、 74LS90具有下述功能: ·直接置0(1)0(2)0(.1)R R ,直接置9(S9(1,·S,.:,=1) ·二进制计数(CP 、输入QA 输出) ·五进制计数(CP 2输入Q D Q C Q B 箱出) ·十进制计数(两种接法如图8.2A 、B 所示) ·按芯片引脚图分别测试上述功能,并填入表 8、1、表8、2、表8、3中。

图8、2 十进制计数器 2、计数器级连 分别用2片74LS90计数器级连成二一五混合进制、十进制计数器。 3、任意进制计数器设计方法 采用脉冲反馈法(称复位法或置位法)。可用74LS90组成任意模(M)计数器。图8、3就是用74LS90实现模7计数器的两种方案,图(A)采用复位法。即计数计到M异步清0。图(B)采用置位法,即计数计到M一1异步置0。 图8、3 74LS90 实现七进进制计数方法 (1)按图8、3接线,进行验证。 (2)设计一个九进制计数器并接线验证。 (3)记录上述实验的同步波形图。 四、实验结果:

电工和电子技术(A)1实验报告解读

实验一 电位、电压的测定及基尔霍夫定律 1.1电位、电压的测定及电路电位图的绘制 一、实验目的 1.验证电路中电位的相对性、电压的绝对性 2. 掌握电路电位图的绘制方法 三、实验内容 利用DVCC-03实验挂箱上的“基尔霍夫定律/叠加原理”实验电路板,按图1-1接线。 1. 分别将两路直流稳压电源接入电路,令 U 1=6V ,U 2=12V 。(先调准输出电压值,再接入实验线路中。) 2. 以图1-1中的A 点作为电位的参考点,分别测量B 、C 、D 、E 、F 各点的电位值φ及相邻两点之间的电压值U AB 、U BC 、U CD 、U DE 、U EF 及U FA ,数据列于表中。 3. 以D 点作为参考点,重复实验内容2的测量,测得数据列于表中。 图 1-1

四、思考题 若以F点为参考电位点,实验测得各点的电位值;现令E点作为参考电位点,试问此时各点的电位值应有何变化? 答: 五、实验报告 1.根据实验数据,绘制两个电位图形,并对照观察各对应两点间的电压情况。两个电位图的参考点不同,但各点的相对顺序应一致,以便对照。 答: 2. 完成数据表格中的计算,对误差作必要的分析。 答: 3. 总结电位相对性和电压绝对性的结论。 答:

1.2基尔霍夫定律的验证 一、实验目的 1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。 2. 学会用电流插头、插座测量各支路电流。 二、实验内容 实验线路与图1-1相同,用DVCC-03挂箱的“基尔霍夫定律/叠加原理”电路板。 1. 实验前先任意设定三条支路电流正方向。如图1-1中的I1、I2、I3的方向已设定。闭合回路的正方向可任意设定。 2. 分别将两路直流稳压源接入电路,令U1=6V,U2=12V。 3. 熟悉电流插头的结构,将电流插头的两端接至数字电流表的“+、-”两端。 4. 将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。 5. 用直流数字电压表分别测量两路电源及电阻元件上的电压值,记录之。 三、预习思考题 1. 根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定电流表和电压表的量程。 答: 2. 实验中,若用指针式万用表直流毫安档测各支路电流,在什么情况下可能出现指针反偏,应如何处理?在记录数据时应注意什么?若用直流数字电流表进行测量时,则会有什么显示呢? 答:

实验六计数器及其应用

实验六计数器及其应用 一、实验目的 1、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法 3、运用集成计数计构成1/N分频器 二、实验原理 1、用D触发器构成异步二进制加/减计数器 图1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T'触发器,再由低位触发器的Q端和高一位的CP端相连接。 图1 四位二进制异步加法计数器 2、中规模十进制计数器 CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图2所示。 图2 CC40192引脚排列及逻辑符号 图中LD—置数端 CP U —加计数端 CP D —减计数端

CO—非同步进位输出端BO—非同步借位输出端 D 0、D 1 、D 2 、D 3 —计数器输入端 Q 0、Q 1 、Q 2 、Q 3 —数据输出端 CR—清除端 CC40192(同74LS192,二者可互换使用)的功能如表9-1,说明如下: 表9-1 3、计数器的级联使用 图3是由CC40192利用进位输出CO控制高一位的CP U 端构成的加数级联图。 图3 CC40192级联电路 4、实现任意进制计数 (1) 用复位法获得任意进制计数器 假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。如图4所示为一个由CC40192 十进制计数器接成的6进制计数器。 (2) 利用预置功能获M进制计数器 图4 六进制计数器

三、实验设备与器件 1、+5V直流电源 2、双踪示波器 3、连续脉冲源 4、单次脉冲源 5、逻辑电平开关 6、逻辑电平显示器 7、译码显示器 8、 CC4013×2(74LS74)、CC40192×3(74LS192)、CC4011(74LS00) CC4012(74LS20) 四、实验内容 1、用CC4013或74LS74 D触发器构成4位二进制异步加法计数器。 (1) 按图9-1接线,R D 接至逻辑开关输出插口,将低位CP 端接单次脉冲源, 输出端Q 3、Q 2 、Q 3 、Q 接逻辑电平显示输入插口,各S D接高电平“1”。 (2) 清零后,逐个送入单次脉冲,观察并列表记录 Q 3~Q 状态。 (3) 将单次脉冲改为1HZ的连续脉冲,观察Q 3~Q 的状态。 (4) 将1Hz的连续脉冲改为1KHz,用双踪示波器观察CP、Q 3、Q 2 、Q 1 、Q 端波 形,描绘之。 5) 将图9-1电路中的低位触发器的Q端与高一位的CP端相连接,构成减法计 数器,按实验内容2),3),4)进行实验,观察并列表记录Q 3~Q 的状态。 2、测试CC40192或74LS192同步十进制可逆计数器的逻辑功能 (1) 清除:CR=1 (2) 置数:CR=0,数据输入端输入任意一组二进制数,令LD= 0,观察计数译码显示输出。 (3) 加计数:CR=0,LD=CP D =1,CP U 接单次脉冲源。 (4) 减计数:CR=0,LD=CP U =1,CP D 接单次脉冲源。 3、图9-3所示,用两片CC40192组成两位十进制加法计数器,输入1Hz连续计数脉冲,进行由00—99累加计数,记录之。 4、按图4电路进行实验,记录之。

计数器的设计实验报告

计数器的设计实验报告 篇一:计数器实验报告 实验4 计数器及其应用 一、实验目的 1、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL还是

CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。 1、中规模十进制计数器 CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如图5-9-1所示。 图5- 9-1 CC40192引脚排列及逻辑符号 图中LD—置数端CPU—加计数端CPD —减计数端CO—非同步进位输出端BO—非同步借位输出端 D0、D1、D2、D3 —计数器输入端 Q0、Q1、Q2、Q3 —数据输出端CR—清除端 CC40192的功能如表5-9-1,说明如下:表5-9-1 当清除端CR为高电平“1”时,计数

器直接清零;CR置低电平则执行其它功能。当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3 置入计数器。 当CR为低电平,LD为高电平时,执行计数功能。执行加计数时,减计数端CPD 接高电平,计数脉冲由CPU 输入;在计数脉冲上升沿进行8421 码十进制加法计数。执行减计数时,加计数端CPU接高电平,计数脉冲由减计数端CPD 输入,表5-9-2为8421 码十进制加、减计数器的状态转换表。加法计数表5-9- 减计数 2、计数器的级联使用 一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。 同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。 图5-9-2是由CC40192利用进位

电子技术基础实验报告要点

电子技术实验报告 学号: 222014321092015 姓名:刘娟 专业:教育技术学

实验三单级交流放大器(二) 一、实验目的 1. 深入理解放大器的工作原理。 2. 学习测量输入电阻、输出电阻及最大不失真输出电压幅值的方法。 3. 观察电路参数对失真的影响. 4. 学习毫伏表、示波器及信号发生器的使用方法。 二. 实验设备: 1、实验台 2、示波器 3、数字万用表 三、预习要求 1、熟悉单管放大电路。 2、了解饱和失真、截止失真和固有失真的形成及波形。 3、掌握消除失真方法。 四、实验内容及步骤 ●实验前校准示波器,检查信号源。 ●按图3-1接线。 图3-1 1、测量电压参数,计算输入电阻和输出电阻。 ●调整RP2,使V C=Ec/2(取6~7伏),测试V B、V E、V b1的值,填入表3-1中。 表3-1 Array ●输入端接入f=1KHz、V i=20mV的正弦信号。 ●分别测出电阻R1两端对地信号电压V i及V i′按下式计算出输入电阻R i : ●测出负载电阻R L开路时的输出电压V∞,和接入R L(2K)时的输出电压V0 , 然后按下式计算出输 出电阻R0;

将测量数据及实验结果填入表3-2中。 2、观察静态工作点对放大器输出波形的影响,将观察结果分别填入表3-3,3-4中。 ●输入信号不变,用示波器观察正常工作时输出电压V o的波形并描画下来。 ●逐渐减小R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真的波形描 画下来,并说明是哪种失真。( 如果R P2=0Ω后,仍不出现失真,可以加大输入信号V i,或将R b1由100KΩ改为10KΩ,直到出现明显失真波形。) ●逐渐增大R P2的阻值,观察输出电压的变化,在输出电压波形出现明显失真时,把失真波形描画 下来,并说明是哪种失真。如果R P2=1M后,仍不出现失真,可以加大输入信号V i,直到出现明显失真波形。 表 3-3 ●调节R P2使输出电压波形不失真且幅值为最大(这时的电压放大倍数最大),测量此时的静态工 作点V c、V B、V b1和V O 。 表 3-4 五、实验报告 1、分析输入电阻和输出电阻的测试方法。 按照电路图连接好电路后,调节RP2,使Vc的值在6-7V之间,此时使用万用表。接入输入信号1khz 20mv后,用示波器测试Vi与Vi’,记录数据。用公式计算出输入电阻的值。在接入负载RL和不接入负载时分别用示波器测试Vo的值,记录数据,用公式计算出输出电阻的值。 2、讨论静态工作点对放大器输出波形的影响。 静态工作点过低,波形会出现截止失真,即负半轴出现失真;静态工

实验七 计数器及其应用学生版

实验七计数器及其应用 一、实验目的 1.学习用集成触发器构成计数器的方法 2.掌握中规模集成计数器的使用方法及功能测试方法 3.运用集成计数器构成1∕N分频器 二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数器的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数电路。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。 1、用D触发器构成异步二进制加∕减计数器 图7-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D触发器接成T′触发器,再由低位触发器的Q端和高一位的CP端相连接。 图7-1 若将图7-1稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器 三、实验内容 1.用74LS74触发器构成4位二进制一步加法计数器。 (1)按图7-1连接,R D接至逻辑开关输出插口,将低位CP O端接单次脉冲源,输出端Q3、Q2、Q1、Q0接逻辑电平显示输入插口。 (2)清零后,逐个送入单次脉冲,观察并列表记录Q3~Q0状态。 (3)将图7-1电路中的底位触发器的Q端与高一位的CP端相连接,构成减法计数器,按实验内容(2)、(3)进行实验,构成并列表记录Q3~Q0的状态。

模4计数器

实验一 模4计数器 一、实验目的 采用图形输入法设计模4计数器,并进行下载验证;能基本熟练其使用方法。 二、实验设备及内容 1)PC一台; 2)QuartusII配套软件; 以模4计数器为例,完成QuartusII工程设计过程:创建工程文件、电路设计、编译综合、仿真验证、管脚配置、编程下载、硬件验证测试等等。 三、实验方法 实验方法: 采用基于FPGA进行数字逻辑电路设计的方法。 采用的软件工具是QuartusII软件仿真平台,采用的硬件平台是Altera EPF10K20TI144_4的FPGA试验箱。 实验步骤: 1、创建工程文件 1)指定工程文件名。选择File---> New Project Wizard命令,要求工程文件名和顶层实体名一致。 2)添加源文件和用户库。本实验略去。 3)选择目标器件。Family中选Flex10k ,Target device选中Specific device selected in “Avaiable device”list 确定器件型号EPF10K20TI144-4。 4)选择第三方EDA工具。本工程默认为None. 5)工程信息确认。 2、设计输入(图形法) 1)创建设计文件。选择File-→new命令,然后选中Block Diagram/Schematic File。2)元件的放置,元件命名及连接,完成后保存文件。 3、编译 选择Processing→Compiler Tool,然后单击Start进行全编译。 4、仿真功能验证 1)建立波形文件。菜单File→New,选择Vector Waveform File。 2)添加节点。菜单Edit→Insert→Insert Node or Bus 添加相应的节点,在Radix 列表中选Binary。 3)参数设置。菜单Edit→End Time仿真结束时间改为2us,菜单Edit→Grid Size ,Period设置为100ns。 4)输入信号激励。设置时钟信号周期100ns、相位偏移0ns和占空比50%,然后保存波形文件。 5)仿真a)功能仿真,菜单Processing→Generate Functional Simulation Netlist命令,产生功能仿真网表。Assignments→Settings,单击Simulator Settings,在右侧

实验五--时序逻辑电路实验报告

实验五时序逻辑电路(计数器和寄存器)-实验报告 一、实验目的 1.掌握同步计数器设计方法与测试方法。 2.掌握常用中规模集成计数器的逻辑功能和使用方法。 二、实验设备 设备:THHD-2型数字电子计数实验箱、示波器、信号源 器件:74LS163、74LS00、74LS20等。 三、实验原理和实验电路 1.计数器 计数器不仅可用来计数,也可用于分频、定时和数字运算。在实际工程应用中,一般很少使用小规模的触发器组成计数器,而是直接选用中规模集成计数器。 2.(1) 四位二进制(十六进制)计数器74LS161(74LS163) 74LSl61是同步置数、异步清零的4位二进制加法计数器,其功能表见表5.1。 74LSl63是同步置数、同步清零的4位二进制加法计数器。除清零为同步外,其他功能与74LSl61相同。二者的外部引脚图也相同,如图5.1所示。 表5.1 74LSl61(74LS163)的功能表 清零预置使能时钟预置数据输入输出 工作模式R D LD EP ET CP A B C D Q A Q B Q C Q D 0 ××××()××××0 0 0 0 异步清零 1 0 ××D A D B D C D D D A D B D C D D同步置数 1 1 0 ××××××保持数据保持 1 1 ×0 ×××××保持数据保持 1 1 1 1 ××××计数加1计数3.集成计数器的应用——实现任意M进制计数器 一般情况任意M进制计数器的结构分为3类,第一类是由触发器构成的简单计数器。第二类是由集成二进制计数器构成计数器。第三类是由移位寄存器构成的移位寄存型计数器。第一类,可利用时序逻辑电路的设计方法步骤进行设计。第二类,当计数器的模M较小时用一片集成计数器即可以实现,当M较大时,可通过多片计数器级联实现。两种实现方法:反馈置数法和反馈清零法。第三类,是由移位寄存器构成的移位寄存型计数器。 4.实验电路: 十进制计数器 同步清零法 同步置数法

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

实验十一 同步计数器的逻辑功能测试及应用

实验十一计数器74LS161的逻辑功能测试及应用 一、实验目的 1、熟悉集成计数器触的逻辑功能和各控制端作用。 2、掌握集成计数器逻辑功能测试方法。 3、掌握计数器使用方法。 二、实验设备与器件 1、实验设备:DLBS系列数字逻辑实验箱1个,MF47型万用表1台。 2、实验器件:74LS161集成同步计数器×2片,四二输入与非门74LS00×1块。 三、实训器件说明 1、 74LS161集成同步计数器 74LS161是一种同步四位二进制同步加法计数器,计数范围是0~15,具有异步清零、同步置数、保持和二进制加法计数等逻辑功能。图11.1所示为74LS161的管脚图和逻 辑功能示意图。图中CR端是异步清零控制端,当CR=0时,输出Q3Q2Q1Qo全为零,实现异步清除功能。LD是同步置数控制端,当CR=1,LD=0,且CP=CP↑时,输出 Q3Q2Q1Qo=D3D2D1Do,实现同步预置数功能。CTP和CTT是计数控制端,CP是上升沿有效的时钟脉冲输入端,D0~D3是并行数据输入端,Q0~Q3是计数输出端,CO是进位输出端,且进位输出信号CO=CTt=Q3Q2Q1Qo ,它可以用来实现电路的级联扩展。 74LS161的逻辑功能如表6.9所示。表中各控制输入端按优先级从高到低的次序排列, 依次为CR、LD、CTp和CTt,其中CR优先级最高。计数输出Q3为最高位,Qo为最低 位。

由表6.9可知,74LS161具有以下逻辑功能: (1)异步清零。当CR=0时,计数器清零,与CP脉冲无关,所以称为异步清零。(2)同步置数。当CR=1,LD=0 ,CP脉冲上升沿到来时,并行输入数据D3—Do被 置入计数器,计数器输出为D3D2D1Do 。由于置数发生在脉冲CP上升沿时段,故称为同步置数。 (3)保持功能。当CR=LD=1,且CTp?CTt=0时,输出Q3Q2Q1Qo=Q3Q2Q1Qo。保持不变。 (4)计数功能。当CR=LD=CTp=CTt=1时,且CP=CP↑时,计数器处于计数状态才开 始加法计数,实现计数功能。随着CP脉冲上升沿的到来,计数器对CP脉冲进行二进制加法计数,每来一个CP脉冲,计数值加“1”。当计数值达到15 时,进位输出CO为“1”。 2、由74LS161同步计数器构成任意(N)进制计数器方法 (1)直接清零法 直接清零法是利用芯片的复位端CR和与非门,将N所对应的输出二进制代码中等于“1”的输出端,通过与非门反馈到集成芯片的复位端CR,使输出回零。 例如,用74LS161芯片构成十进制计数器电路如图11.2所示。 (2)预置数法 预置数法是利用芯片的预置数端LD和预置输入端D3D2D1Do,因74LS161芯片的LD是同步预置数端,所以只能采用N-1值反馈法,其计数过程中不会出现过渡状态。例如图10.3所示的七进制计数器电路。

数字钟设计报告——数字电路实验报告

. 数字钟设计实验报告 专业:通信工程 :王婧 班级:111041B 学号:111041226 .

数字钟的设计 目录 一、前言 (3) 二、设计目的 (3) 三、设计任务 (3) 四、设计方案 (3) 五、数字钟电路设计原理 (4) (一)设计步骤 (4) (二)数字钟的构成 (4) (三)数字钟的工作原理 (5) 六、总结 (9) 1

一、前言 此次实验是第一次做EDA实验,在学习使用软硬件的过程中,自然遇到很多不懂的问题,在老师的指导和同学们的相互帮助下,我终于解决了实验过程遇到的很多难题,成功的完成了实验,实验结果和预期的结果也是一致的,在这次实验中,我学会了如何使用Quartus II软件,如何分层设计点路,如何对实验程序进行编译和仿真和对程序进行硬件测试。明白了一定要学会看开发板资料以清楚如何给程序的输入输出信号配置管脚。这次实验为我今后对 EDA的进一步学习奠定了更好的理论基础和应用基础。 通过本次实验对数电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。也明白了一个道理:成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。 2

二、设计目的 1.掌握数字钟的设计方法。 2熟悉集成电路的使用方法。 3通过实训学会数字系统的设计方法; 4通过实训学习元器件的选择及集成电路手册查询方法; 5通过实训掌握电子电路调试及故障排除方法; 6熟悉数字实验箱的使用方法。 三、设计任务 设计一个可以显示星期、时、分、秒的数字钟。 要求: 1、24小时为一个计数周期; 2、具有整点报时功能; 3、定时闹铃(未完成) 四、设计方案 一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器和定时器组成。干电路系统由秒信号发生器、“时、 3

数字电子技术实验报告汇总

《数字电子技术》实验报告 实验序号:01 实验项目名称:门电路逻辑功能及测试 学号姓名专业、班级 实验地点物联网实验室指导教师时间2016.9.19 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。线接好后经实验指导教师检查无误方可通电实验。实验中

1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显 图 1.1 示发光二极管D1~D4任意一个。 (2)将逻辑开关按表1.1的状态,分别测输出电压及逻辑状态。 表1.1 输入输出 1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v) H H H H 0 0 L H H H 1 1 L L H H 1 1 L L L H 1 1 L L L L 1 1 2. 异或门逻辑功能的测试

图 1.2 (1)选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接逻辑开关(K1~K4),输出端A、B、Y接电平显示发光二极管。 (2)将逻辑开关按表1.2的状态,将结果填入表中。 表1.2 输入输出 1(K1) 2(K2) 4(K35(K4) A B Y 电压(V) L H H H H L L L H H H H L L L H H L L L L L H H 1 1 1 1 1 1 1 1

实验四、 计数器的设计 电子版实验报告

实验四:计数器的设计 实验室:信息楼247 实验台号: 4 日期: 专业班级:机械1205 姓名:陈朝浪学号: 20122947 一、实验目的 1. 通过实验了解二进制加法计数器的工作原理。 2. 掌握任意进制计数器的设计方法。 二、实验内容 (一)用D触发器设计4位异步二进制加法计数器 由D触发器组成计数器。触发器具有0和1两种状态,因此用一个触发器 就可以表示1位二进制数。如果把n个触发器串起来,就可以表示N位二进制 数。(用两个74LS74设计实现) (二)利用74LS161设计实现任意进制的计数器 设计要求:学生以实验台号的个位数作为所设计的任意进制计数器。 先熟悉用1位74LS161设计十进制计数器的方法。 ①利用置位端实现十进制计数器。 ②利用复位端实现十进制计数器。 提示:设计任意计数器可利用芯片74LS161和与非门设计,74LS00为2输 入与非门,74LS30为8输入与非门。 74LS161为4位二进制加法计数器,其引脚图及功能表如下。

三、实验原理图 1.由4个D触发器改成的4位异步二进制加法计数器 2.由74LS161构成的十进制计数器

四、实验结果及数据处理 1.4位异步二进制加法计数器实验数据记录表 2. 画出你所设计的任意进制计数器的线路图,并说明设计思路。

设计思路:四进制为四个输出Q3Q2Q1Q0=0000,0001,0010,0011循环,第一个无效状态为0100 1,置位法设计四进制计数器:当检测到输入为0011时,先输出显示3,然后再将D 置于低电位,计数器输出Q3Q2Q1Q0复位。 2,复位法设计四进制计数器:当检测到第一个无效状态0100时,通过与非门的反馈计数器的Cr首先置于低电平使计数器复位为0000。 五、思考题 1. 由D触发器和JK触发器组成的计数器的区别? 答:D触发器是cp上升沿触发,JK触发器是下降沿触发。 2. 74LS161是同步还是异步,加法还是减法计数器? 答:同步。加法计数器。 3. 设计十进制计数器时将如何去掉后6个计数状态的? 答:加一个与非门形成负反馈。当计数到第一个无效状态Q3Q2Q1Q0==1010时,Q3和Q1全为1,Q1,Q3接与非门,输出作为复位信号,使所有触发器复位,从而去掉了后6个状态。

电工电子技术实验报告

电工电子技术实验报告 学院 班级 学号 姓名 天津工业大学电气工程与自动化学院电工教学部 二零一三年九月

目录 第一项实验室规则------------------------------------------------------------------ i 第二项实验报告的要求------------------------------------------------------------ i 第三项学生课前应做的准备工作------------------------------------------------ii 第四项基本实验技能和要求----------------------------------------------------- ii 实验一叠加定理和戴维南定理的研究------------------------------------------ 1实验二串联交流电路和改善电路功率因数的研究--------------------------- 7实验三电动机的起动、点动、正反转和时间控制--------------------------- 14实验四继电接触器综合性-设计性实验----------------------------------------20 实验五常用电子仪器的使用---------------------------------------------------- 22实验六单管低频电压放大器---------------------------------------------------- 29实验七集成门电路及其应用---------------------------------------------------- 33 实验八组合逻辑电路------------------------------------------------------------- 37实验九触发器及其应用---------------------------------------------------------- 40 实验十四人抢答器---------------------------------------------------------------- 45附录实验用集成芯片---------------------------------------------------------- 50

实验四 计数器及其应用

实验四计数器及其应用 一、实验目的 l、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法 3、运用集成计数计构成l位分频器 二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。 l、用D触发器构成异步二进制加/减计数器 图4-1是用四只D触发器构成的四位二进制异步加法计数器,它的连接特点是将每只D 触发器接成T’触发器,再由低位触发器的Q端和高—位的CP端相连接。 图4-1 四位二进制异步加法计数器 若将图4-l稍加改动,即将低位触发器的Q端与高一位的CP端相连接,即构成了一个4位二进制减法计数器。 2、中规模十进制计数器 CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,具引脚排列及逻辑符号如图4-2所示。

图4-2 CC40192引脚排列及逻辑符号 图中LD一置数端CP L一加计数端CP D一减计数端 CO一非同步进位输出端BO一非同步借位输出端 D0、D1、D2、D3一计数器输入端 Q0、Q1、Q2、Q3一数据输出端CR一清除端 CC40192(同74LS192,二者可互换使用)的功能如表4-1,说明如下:表4-1 当清除端CR为高电平“1”时,计数器直接清零;CR置低电平则执行其它功能。 当CR为低电平,置数端LD也为低电平时,数据直接从置数端D0、D1、D2、D3置入计数器。 当CR为低电平,LD为高电平时,执行计数功能。执行加计数时,减计数端CP D接高 电平,计数脉冲由CP U输入;在计数脉冲上升沿进行842l码十进制加法计数。执行减计数时,加计数端CPu接高电平,计数脉冲由减计数端CP D输入,表4-2为8421码十进制加、减计数器的状态转换表。 表4-2 3、计数器的级联使用 一个十进制计数器只能表示0~9十个数,为了扩大计数器范围,常用多个十进制计数器级联使用。 同步计数器往往设有进位(或借位)输出端,故可选用其进位(或借位)输出信号驱动下一级计数器。 图4-3是由CC40192利用进位输出CO控制高一位的CP U端构成的加数级联图。

EDA实验报告-实验3计数器电路设计(DOC)

暨南大学本科实验报告专用纸 课程名称EDA实验成绩评定 实验项目名称计数器电路设计指导教师郭江陵 实验项目编号03 实验项目类型验证实验地点B305 学院电气信息学院系专业物联网工程 组号:A6 一、实验前准备 本实验例子使用独立扩展下载板EP1K10_30_50_100QC208(芯片为EP1K100QC208)。EDAPRO/240H实验仪主板的VCCINT跳线器右跳设定为3.3V;EDAPRO/240H实验仪主板的VCCIO跳线器组中“VCCIO3.3V”应短接,其余VCCIO均断开;独立扩展下载板“EP1K10_30_50_100QC208”的VCCINT跳线器组设定为 2.5V;独立扩展下载板“EP1K10_30_50_100QC208”的VCCIO跳线器组设定为3.3V。请参考前面第二章中关于“电源模块”的说明。 二、实验目的 1、了解各种进制计数器设计方法 2、了解同步计数器、异步计数器的设计方法 3、通过任意编码计数器体会语言编程设计电路的便利 三、实验原理 时序电路应用中计数器的使用十分普遍,如分频电路、状态机都能看到它的踪迹。计数器有加法计数器、可逆计数器、减法计数器、同步计数器等。利用MAXPLUSII已建的库74161、74390分别实现8位二进制同步计数器和8位二——十进制异步计数器。输出显示模块用VHDL实现。 四、实验内容 1、用74161构成8位二进制同步计数器(程序为T3-1); 2、用74390构成8位二——十进制异步计数器(程序为T3-2); 3、用VHDL语言及原理图输入方式实现如下编码7进制计数器(程序为T3-3): 0,2,5,3,4,6,1 五、实验要求 学习使用Altera内建库所封装的器件与自设计功能相结合的方式设计电路,学习计数器电路的设计。 六、设计框图 首先要熟悉传统数字电路中同步、异步计数器的工作与设计。在MAX+PLUS II中使用内建的74XX库选择逻辑器件构成计数器电路,并且结合使用VHDL语言设计转换模块与接口模块,最后将74XX模块与自设计模块结合起来形成完整的计数器电路。并借用前面设计的数码管显示模块显示计数结果。 ◆74161构成8位二进制同步计数器(程序为T3-1)

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

实验七计数器及其应用

实验七计数器及其应用 The Standardization Office was revised on the afternoon of December 13, 2020

实验七计数器及其应用 一、实验目的 1、学习用集成触发器构成计数器的方法 2、掌握中规模集成计数器的使用及功能测试方法 3、运用集成计数计构成1/N分频器 二、实验原理 计数器是一个用以实现计数功能的时序部件,它不仅可用来计脉冲数,还常用作数字系统的定时、分频和执行数字运算以及其它特定的逻辑功能。 计数器种类很多。按构成计数器中的各触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器。根据计数制的不同,分为二进制计数器,十进制计数器和任意进制计数器。根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等等。目前,无论是TTL还是CMOS集成电路,都有品种较齐全的中规模集成计数器。使用者只要借助于器件手册提供的功能表和工作波形图以及引出端的排列,就能正确地运用这些器件。 1、中规模十进制计数器 CC40192是同步十进制可逆计数器,具有双时钟输入,并具有清除和置数 等功能,其引脚排列及逻辑符号如图7-1

图7-1 CC40192引脚排列及逻辑符号 图中 LD —置数端 CP U —加计数端 CP D —减计数端 CO —非同步进位输出端 BO —非同步借位输出端 D 0、D 1、D 2、D 3 —计数器输入端 Q 0、Q 1、Q 2、Q 3 —数据输出端 CR —清除端 CC40192(同74LS192,二者可互换使用)的功能如表7-1,说明如下: 表7-1 当清除端CR 为高电平“1”时,计数器直接清零;CR 置低电平则执行其它功能。 当CR 为低电平,置数端LD 也为低电平时,数据直接从置数端D 0、D 1、D 2、D 3 置入计数器。当CR 为低电平,LD 为高电平时,执行计数功能。执行加计数时,减计数端CP D 接高电平,计数脉冲由CP U 输入;在计数脉冲上升沿进行 8421 码十进制加法计数。执行减计数时,加计数端CP U 接高电平,计数脉冲由减计数端CP D 输入,表9-2为8421码十进制加、减计数器的状态转换表。 表7-2 加法计数

数电实验报告:实验4-计数器及应用161

广东海洋大学学生实验报告书(学生用表) 实验名称 课程名称 课程号 学院(系) 专业 班级 学生姓名 学号 实验地点 实验日期 实验4 计数器及其应用 一、实验目的 1、熟悉中规模集成计数器的逻辑功能及使用方法 2、掌握用74LS161构成计数器的方法 3、熟悉中规模集成计数器应用 二、实验原理 计数器是典型的时序逻辑电路,它是用来累计和记忆输入脉冲的个数.计数是数字系统中很重要的基本操作,集成计数器是最广泛应用的逻辑部件之一。计数器种类较多,按构成计数器中的多触发器是否使用一个时钟脉冲源来分,有同步计数器和异步计数器;根据计数制的不同,可分为二进制计数器、十进制计数器和任意进制计数器;根据计数的增减趋势,又分为加法、减法和可逆计数器。还有可预置数和可编程序功能计数器等。本实验主要研究中规模十进制计数器74LS161的功能及应用。 1、中规模集成计数器 74LS161 是四位二进制可预置同步计数器,由于它采用4 个主从JK 触发器作为记忆单元,故又称为四位二进制同步计数器,其集成芯片管脚如图1所示: 管脚符号说明:电源正端Vcc ,接+5V ;异步置零(复位)端Rd ;时钟脉冲CP ;预置数控制端 A 、B 、C 、D ;数据输出端 QA 、QB 、QC 、QD ;进位输出端 RCO :使能端EP ,ET ;预置端 LD ; 图1 74LS161 管脚图 GDOU-B-11-112

该计数器由于内部采用了快速进位电路,所以具有较高的计数速度。各触发器翻转是靠时钟脉冲信号的正跳变上升沿来完成的。时钟脉冲每正跳变一次,计数器内各触发器就同时翻转一次,74LS161的功能表如表1所示: 表1 74LS161 逻辑功能表 2、实现任意进制计数器 由于74LS161的计数容量为16,即计16个脉冲,发生一次进位,所以可以用它构成16进制以内的各进制计数器,实现的方法有两种:置零法(复位法)和置数法(置位法)。 (1) 用复位法获得任意进制计数器假定已有N进制计数器,而需要得到一个M进制计数器时,只要M<N,用复位法使计数器计数到M时置“0”,即获得M进制计数器。 (2) 利用预置功能获M进制计数器置位法与置零法不同,它是通过给计数器重复置入某个数值的的跳越N-M个状态,从而获得M进制计数器的,如图所法。置数操作可以在电路的任何一个状态下进行。这种方法适用于有预置功能的计数器电路。图2是上述二种方法的原理示意图。 图2(a) 图2(b) 三、实验内容与步骤 1、测试74LS161的逻辑功能。 2、在熟悉74LS161逻辑功能的基础上,利用74LS161设计9进制计数器。 附图74ls00和74ls20

相关文档
最新文档