高等数学作业 .doc

高等数学作业 .doc
高等数学作业 .doc

高等数学作业

AⅢ

吉林大学公共数学教学与研究中心

2013年9月

第一次作业

学院 班级 姓名 学号

一、单项选择题

1.设L 是圆周222x y a +=,则22()d n

L x y s +=??( ) .

(A )2n a π; (B )12n a π+; (C )22n a π; (D )212n a π+.

2.设L 是由(0, 0), (2, 0), (1, 1)三点连成的三角形边界曲线,则d L y s =??( ).

(A

(B )2+

(C )

(D )2+.

3.设∑是锥面222x y z +=在01z ≤≤的部分,则22()d x y S ∑

+=??( ). (A )1

300d d r r πθ??; (B )21

300d d r r πθ??;

(C 1

300d d r r π

θ?;

(D 21

300d d r r π

θ?.

4.设∑为2222(0)x y z a z ++=≥,1∑是∑在第一卦限中的部分,则有( ). (A )1

d 4d x S x S ∑

∑=????;

(B )1

d 4d y S x S ∑

∑=????;

(C )1

d 4d z S x S ∑

∑=????;

(D )1

d 4d xyz S xyz S ∑

∑=????.

二、填空题

1.设曲线L 为下半圆y =22()d L x y s +=? . 2.设L 为曲线||y x =-上从1x =-到1x =的一段,则d L y s =? .

3.设Γ表示曲线弧,,,(02)2

t

x t y t z t π=

=≤≤,则2

22()d x

y z s Γ++=? .

4.设∑是柱面222(0)x y a a +=>在0z h ≤≤之间的部分,则2d x S ∑

=?? . 5.设∑是上半椭球面22

21(0)94

x y z z ++=≥,已知∑的面积为A ,则

222

(4936)d x y z xyz S ∑

+++=?? .

三、计算题

1.计算L s ??,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围

成的扇形的整个边界.

2.2

d z s Γ??,其中2222,

:0.x y z a x y z ?++=Γ?++=?

3.计算曲面积分

()d xy yz zx S ∑

++??,其中曲面:z ∑=被柱面

222x y x +=所截得部分。

4.求222

d S

x y z

++??

,其中∑是介于0z =与4z =之间的柱面224x y +=.

四、应用题

1.求底圆半径相等的两个直交圆柱面222x y R +=及222x z R +=所围立体的表面积.

2.求面密度1ρ=的均匀半球壳2222(0)x y z a z ++=≥关于z 轴的转动惯量.

第二次作业

学院 班级 姓名 学号

一、单项选择题

1.设L 是圆周222(0)x y a a +=>负向一周,则曲线积分

3

223()d ()d L x

x y x xy y y -+-=?? ( ) .

(A )0;

(B )4

2

a π-

; (C )4a π-; (D )4a π.

2.设L 是椭圆2248x y x +=沿逆时针方向,则曲线积分

2

e d d y

L x x y +=?? ( ).

(A )2π; (B )π;

(C )1; (D )0.

3. 设曲线积分

2

d ()d L xy

x y x y ?+?与路径无关,其中()x ?具有连续的导数,且

(0)0?=,则(1,1)

2(0,0)d ()d xy x y x y ?+?等于( )

(A )3

8

(B )12 (C )34 (D )1

4.已知2

()d d ()x ay y y x

x y +-+为某函数的全微分,则a = ( )正确. (A )1-; (B )0; (C )2 (D )1.

二、填空题

1.设L 为22(1)4x y +-=正向一周,则22

d d (1)L

x y y x

x y -=+-?? .

2.设L 为封闭折线||||1x x y ++=正向一周,则22

d cos()d L x y x x y y -+=?? .

3.设L 为0tan d x

y t t =?从x=0到4

x π

=一段弧,将(,)d (,)d L P x y x Q x y y +?化为第一型

曲线积分为 .

4.设L 为封闭折线||||1x y +=沿顺时针方向,则22d d L xy x x y x y +=+?? .

三、计算题

1.计算2d d L y x x y -?,其中L 是抛物线2y x =上从点(1,1)A 到(1,1)B -,再沿直线到(0,2)C 的曲线.

2.计算2()d (sin )d L x y x x y y --+?,其中L 是圆周y =(2,0)A 到(0,0)O 的一段弧.

3.设()f x 在(,)-∞+∞内具有一阶连续导数,L 是半平面(0)y >内的有向分段光滑曲线,其起点为(,)a b ,终点为(,)c d .证明

2221[1()]d [()1]d L x

I y f xy x y f xy y y y

=++-?

(1)证明曲线积分I 与路径L 无关

(2)当ab cd =时,求I 的值

4.设力2

y x y -+=i j

F ,证明力F 在上半平面内所作的功与路径无关,并求从点

(1,2)A 到点(2,1)B 力F 所作的功.

5.计算[]?[]()cos d ()sin d AMB

I y x y x y x y ?π?π'=-+-?,其中?AMB 在连结点(,2)A π与(3,4)B π的线段之下方的任意路线,且该路线与AB 所围成的面积为2,()y ?具有连续的

导数。

四.证明题

证明

d d d P x Q y R z s Γ++≤??,并由此估计

d d d z x x y y z Γ++??的上界。

其中Γ为球面2222x y z a ++=与平面0x y z ++=的交线并已取定方向

第三次作业

学院 班级 姓名 学号

一、单项选择题

1.设Γ是球面2222(0)x y z a a ++=>外侧,则曲面积分

2

22()d d x

y z x y ∑

++=??ò ( ) .

(A )0; (B )2

4a π; (C )2

a π;

(D )3

43

a π.

2.设空间闭区域Ω由曲面222z a x y =--与平面0z =围成(0)a >,记Ω的表面外侧

为∑,Ω的体积为V ,则2222

d d d d (1)d d I x yz y z xy z z x z xyz x y ∑

=-++=??ò( )

(A )0; (B )V ; (C )2V ; (D )3V . 3.设∑是球面2222x y z a ++=的外侧,则曲面积分

32222

d d d d d d ()

x y z y z x z x y x y z ∑

++=++??ò ( ).

(A )0;

(B )1;

(C )2π;

(D )4π.

4设222d d d d d d I x y z y z x z x y ∑

=++??,其中∑为锥面222x y z +=介于平面0z =及z h =之间部分的下侧,则I =( )

(A )412h π-; (B )4h π-; (C) 41

2h π; (D )4h π

二、填空题

1.设∑为球面2229x y z ++=,法向量向外,则d d z x y ∑

=??ò . 2.向量场22

e ln(1)z A xy i y j x z k =+++r r r 在点(1,1,0)M 处的散度divA= .

3.设向量场(sin )(cos )A z y i z x y j =+--r r

,则rot A = .

4.设∑是平

面326x y ++=在第一卦限部分的下侧,则I =

d d d d d d P y z Q z x R x y ∑

++??化为对面积的曲面积分为I = .

5.设∑为球面2222x y z a ++=,法向量向外,则3

d d x y z ∑=??ò .

6.设22u x y yz =++,则div(grad )u = .

三、计算题

1.计算2cos d x y s γ∑

??,其中∑是球面2222x y z a ++=的下半球面,法线朝上,γ是

法线正向与z 轴正向的夹角。

2.计算

[][][](,,)d d 2(,,)d d (,,)d d f x y z x y z f x y x y z x f x y z z x y

+++++??,其中

(,,)f x y z 为连续函数,∑为平面1x y z -+=在第四卦限部分的上侧。

3.计算曲面积分333d d d d d d x y z

I y z z x x y r r r

=++??ò

其中,22

2:149

x y r z =∑++= 方向外侧

4.计算3322d d 2d d 3(1)d d I x y z y z x z x y ∑

=++-??,其中∑是曲面221(0)z x y z =--≥的

上侧.

5.计算22d d d I y x x y z z Γ=-++??,其中Γ是平面2y z +=与柱面22

1x y +=的交线,

从z 轴正向看去,Γ取逆时针方向.

6. 计算曲面积分[]22

()2d ,I x y z yz S ∑=+++??ò其中∑是球面22222.x y z x z ++=+

第四次作业

学院 班级 姓名 学号

一、单项选择题

1.设1

0(1,2,3,)n a n n <<=L ,则下列级数中肯定收敛的是 ( ).

(A )1

n n a ∞

=∑;

(B )1

(1)n

n n a ∞=-∑; (C )n ∞

=

(D )1n

n a n

=∑

. 2.若级数1

1

,n n n n u v ∞

==∑∑都发散,则 ).

(A )1()n n n u v ∞

=+∑发散;

(B )1n n n u v ∞

=∑发散;

(C )1

(||||)n n n u v ∞

=+∑发散;

(D )22

1

()n n n u v ∞

=+∑发散.

3.设级数1

n n u ∞

=∑收敛,则必收敛的级数为 ).

(A )1(1)n

n

n u n

=-∑;

(B )2

1n n u ∞

=∑;

(C )2121

()n n n u u ∞

-=-∑;

(D )11

()n n n u u ∞

+=+∑.

4.设a 为常数,则级数∑∞

=???? ?

?-121sin n n n α( ). (A )绝对收敛; (B )条件收敛; (C )发散;(D )收敛性取决于a 的值.

5.设1

(1)ln(1)n n a n

=-+,下列结论中正确的是( )

(A )级数1

n n a ∞

=∑和2

1

n n a ∞

=∑都收敛 (B )级数1

n n a ∞

=∑和21

n n a ∞

=∑都发散

(c )级数1

n n a ∞=∑收敛,而21

n n a ∞=∑都发散 (D )级数1

n n a ∞=∑发散,而21

n n a ∞

=∑收敛

6.0(1,2,3,),n u n ≠=L 设lim

1,n

n u n →∞

=且则级数(

)

1

1

11

1

(1)

(

).n

n n u u n +∞

+=-+∑

(A ) 发散 ; (B ) 绝对收敛;

(C )条件收敛 ; (D ) 收敛性根据条件不能确定.

二、填空题

1.若级数12111

(1)2,5n n n n n u u ∞

--==-==∑∑,则级数1

n n u ∞

=∑= .

2.设级数11

ln p

n n n

=∑

收敛,则p 满足什么条件 3.当 a ∈ 时,级数1

n n a ∞=∑的收敛 三、计算题 1.判别级数11

(0)n

n a n a

=>+∑的敛散性

2.求级数1ln 312

(1)n n n n n ∞

=??

+ ?+??∑的和.

3.设正项数列{}n a 单调减少,且1(1)n n n a ∞

=-∑发散,试问级数111n

n n a ∞

=??

?+??

∑是否收敛?并说明理由.

4.判别级数

n

n ∞

=的敛散性

5.判别级数2!

n n n a n n

=∑的敛散性(0a >)

6.讨论级数2

1

(1)(0)n

n n n a a ∞

=->∑的敛散性

四.证明题

1.若正项数列{}n a 单调增加且有上界,证明11ln 2n n n a a ∞=+??

- ??

?∑收敛

2.若级数1

n n a ∞=∑绝对收敛,证明11n n n a

a ∞=+∑绝对收敛

第五次作业

学院 班级 姓名 学号

一、单项选择题

1.设1

lim 2n n n

a a +→∞=,则幂级数211n n n a x ∞+=∑的收敛半径( ).

(A )2R =;

(B )1

2

R =

; (C

)R =; (D )R =+∞. 2.已知函数∑∞

=-0

)1(n n n x a 在2-=x 处收敛,则在0=x 处,该级数为( ).

(A )发散; (B )条件收敛; (C )绝对收敛; (D )收敛性不定.

3.幂级数113n

n

n x n ∞

=∑

的收敛域是 ( ). (A )11[-,]33; (B )11

[-,)33;

(C )[-3, 3]; (D )[3,3)-.

4.2x 展开为x 的幂级数是 ( ).

(A )0!

n

n x n ∞

=∑;

(B )0(1)!n n n x n ∞

=-∑; (C )0(ln 2)!n n x n ∞=∑

; (D )0

(ln 2)n

n x n ∞

=∑. 5. 设2

()(01)f x x x =<<,而1

()sin ,(,)n n s x b n x x π∞

==∈-∞+∞∑,其中

102()sin d ,1,2,.n b f x n x x n π==?L 则12s ??

= ???

( )

(A )14- (B )14 (C )12- (D )1

2

二、填空题

1.若幂级数1n n n a x ∞

=∑在2x =处条件收敛,则幂级数收敛半径为 .

2.设幂级数1

n

n n a x ∞=∑的收敛半径为2,则幂级数11

(1)n n n na x ∞

+=+∑的收敛区间为 .

3.幂级数212(3)

n n n

n n

x ∞

=+-∑

的收敛半径为 . 4.设函数2(),[0,1]f x x x =∈,而01

()cos ,2n n a s x a n x π∞

==

+∑ (,)x ∈-∞+∞,其中1

02()cos d ,0,1,2,n a f x n x x n π==?L ,则(1)s -的值为 .

三、计算题 1.设幂级数1

1

!n n n x n ∞

+=∑

,求 (1)收敛域及其和函数; (2)112!

n

n n n ∞

=-∑的和。

2.将函数0sin ()d x

t

f x t t

=?展开成x 的幂级数

高等数学作业上-1 (答案)

第一章函数 极限 连续 §1函数 1. 解:(1) 要使24sin x -有意义,必须.2,042≤≥-x x 即使所以定义域为[-2,2]. (2)当时,且1 3≠≠x x 3 41 2+-x x 有意义;而要使2+x 有意义,必须,2-≥x 故函数 的定义域为:).,3()3,1()1,2[+∞-、、 (3),1010.101110ln 110ln arccos e x e e x e x x ≤≤∴≤≤≤≤-,即有意义,则使要使即 定义域为].10,10 [ e e (4)要使)1(+x tg 有意义,则必有.,2,1,0,2 1 ±±=+≠ +k k x ππ ;即函数定义域为 .,2,1,0,12? ?? ?? ?±±=-+≠∈ k k x R x x ππ且 (5)当有意义,时有意义;又当时x arctg x x x 1 033≠-≤故函数的定义域为: ].3,0()0(、,-∞ (6)x k k x k sin )2,1,0()12(2时当 ±±=+≤≤ππ有意义;有要使216x -有意义, 必须有.44≤≤-x 所以函数的定义域为:].,0[],4[ππ、 -- 2. .2)2 1(,2)21 (,2)0(,1)2(,2)3(2 1-=-====f f f f f 3. 解:3134,34)]([22≤≤-+--+-= x x x x x x g f 有意义;必须因此要使, 即[])(x g f 的定义域为[1,3]。 4.解? ?? ??>-=<=???? ???>-=<=; 0,1,0,0,0, 1,1, 1,1, 0, 1,1)]([x x x e e e x g f x x x ?????????>=<==, 1,1,1,1,1,)]([) (x e x x e e x f g x f 。 5.有意义,时当)(sin 1sin 0x f x ≤≤故其定义域为).2,1,0]()12(,2[ ±±=+k k k ππ。 6.???-<++-≥+=+?? ?<+-≥-=-; 1,52, 1,32)1(;1,52, 1,12)1(2 2 x x x x x x f x x x x x x f

高等数学作业下-2 (答案)

第八章 习题答案 8.1 多元函数基本概念 1.解:=),(y x f )225(9 1 22y x xy --。 2.解:).sin sin())(,(),sin sin(sin )],([x x x x f x g y x y x y x g f =?= 3.解:(1)0。(2)a e 。(3)1。(4)0。(利用有界量乘以无穷小量仍为无穷小量。) (5)y x y x y x y x y x 1102222+≤++≤++≤ ,且.0)11(lim =+∞ →∞→y x y x 从而.0lim 22=++∞ →∞→y x y x y x (6)22)21()( 022x x y x xy ≤+≤ ,且0)21(lim 2=+∞→x x ,所以原式0=。 4.解:不存在。因沿不同路径趋近时极限值不同。 5.解:⑴),(y x f 的定义域为0≠+y x 。 )(a 当0≠+y x ,1≠+y x 时),(y x f 的表达式为初等函数,故连续。 )(b 当100=+y x 时,=-++-+=→+→+211 )11ln(11lim ),(lim y x y x y x f y x y x =+→20)1ln(1 lim t t t ),(200y x f =,即),(y x f 在 100=+y x 时也连续。故),(y x f 的间断线为0=+y x 。 ⑵)(a 当02 2 ≠+y x 时),(y x f 的表达式为初等函数,故连续。 )(b 当02 2 =+y x 时,2222001)1(lim ),(lim k k x k kx y x f x kx y x +=+=→=→,显然k 取不同值时得不同极限,即),(lim 0 0y x f y x →→不存在,故),(y x f 在)0,0(点不连续。 ⑶)(a 当022≠+y x 时),(y x f 连续。)(b 当02 2=+y x 时,因y x y x f +≤),(,故 0),(lim 00 =→→y x f y x ,从而)0,0(0),(lim 0 f y x f y x ==→→,即),(y x f 处处连续。 8.2 偏导数与全微分 1.解:(1) )2cos(4),2cos()2sin(2222222y x ye y z y x e y x xe x z x x x +=??+++=??。

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

高等数学(同济五版)第五章-定积分-练习题册

42 / 9 第五章 定积分 第一节 定积分的概念与性质 一、填空题: 在 ? +10 3 1dx x 与? +1 41dx x 中值比较大的是 . 二、选择题(单选): 1.积分中值定理 ? -=b a a b f dx x f ))(()(ξ,其中: (A) ξ是[]b a ,上任一点; (B) ξ是[]b a ,上必定存在的某一点; (C) ξ是[]b a ,唯一的某点; (D) ξ是[]b a ,的中点. 答:( ) 2.曲线x e y =与该曲线过原点的切线及y 轴所围成图形的面积值为: (A) ?-10)(dx ex e x ; (B) ?-e dy y y y 1 )ln (ln ; (C) ? -e x x dx xe e 1 )(; (D) ?-1 )ln (ln dy y y y . 答:( ) 第二节 微积分基本公式 一、填空题: 1.=-? -212 12 11dx x . 2. 0)32(0 2=-? k dx x x )0(>k ,则=k . 二、选择题(单选): 若)(x f 为可导函数,且已知0)0(=f ,2)0(='f ,则 2 )(lim x dt t f x x ?→ (A)0; (B)1; (C)2; (D)不存在. 答:( ) 三、试解下列各题: 1.设??? ??>≤+=1,2 11 ,1)(32x x x x x f ,求?20 )(dx x f .

43 / 9 2.设?? ???><≤≤=ππ x x x x x f ,0,00,sin 21 )(,求?=x dt t f x 0 )()(?在),(∞+-∞上的表达式. 四、设)(x f 在],[b a 上连续,且0)(>x f ,? ? += x a x b t f dt dt t f x F ) ()()(.证明: (1)2)('≥x F ; (2)方程0)(=x f 在),(b a 内有且仅有一个根. 第三节 定积分的换元法和分部积分法

高等数学同济第七版7版下册习题 全解

数,故 /, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,,A 为两个 I) b\ lh 尤公共内点的W K域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

高等数学上册练习题

高数练习题 一、选择题。 4、1 1lim 1 --→x x x ( )。 a 、1-= b 、1= c 、=0 d 、不存在 5、当0→x 时,下列变量中是无穷小量的有( )。 a 、x 1sin b 、x x sin c 、12--x d 、x ln 7、()=--→1 1sin lim 21x x x ( )。 a 、1 b 、2 c 、0 d 、2 1 9、下列等式中成立的是( )。 a 、e n n n =??? ??+∞ →21lim b 、e n n n =? ?? ??++∞→2 11lim c 、e n n n =??? ??+∞→211lim d 、e n n n =?? ? ??+∞ →211lim 10、当0→x 时,x cos 1-与x x sin 相比较( )。 a 、是低阶无穷小量 b 、是同阶无穷小量 c 、是等阶无穷小量 d 、是高阶无穷小量 11、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( )。 a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件 12、 数列{y n }有界是数列收敛的 ( ) . (A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件 13、当x —>0 时,( )是与sin x 等价的无穷小量. (A) tan2 x (B) x (C)1 ln(12) 2x + (D) x (x +2) 14、若函数()f x 在某点0x 极限存在,则( ). (A )()f x 在0x 的函数值必存在且等于极限值

(B )()f x 在0x 的函数值必存在,但不一定等于极限值 (C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 15、如果0 lim ()x x f x →+ 与0 lim ()x x f x →- 存在,则( ). (A )0 lim ()x x f x →存在且00 lim ()()x x f x f x →= (B )0 lim ()x x f x →存在但不一定有00 lim ()()x x f x f x →= (C )0 lim ()x x f x →不一定存在 (D )0 lim ()x x f x →一定不存在 16、下列变量中( )是无穷小量。 0) (x e .A x 1-→ 0) (x x 1 sin .B → )3 (x 9x 3x .C 2→-- )1x (x ln .D → 17、=∞→x x x 2sin lim ( ) 2 18、下列极限计算正确的是( ) e x 11lim .A x 0x =??? ??+→ 1x 1sin x lim .B x =∞→ 1x 1sin x lim .C 0x =→ 1x x sin lim .D x =∞→ 19、下列极限计算正确的是( ) 1x x sin lim .A x =∞→ e x 11lim .B x 0x =??? ??+→ 5126x x 8x lim .C 232x =-+-→ 1x x lim .D 0x =→ A. f(x)在x=0处连续 B. f(x)在x=0处不连续,但有极限 C. f(x)在x=0处无极限 D. f(x)在x=0处连续,但无极限 23、1 lim sin x x x →∞ =( ). (A )∞ (B )不存在 (C )1 (D )0 24、221sin (1) lim (1)(2) x x x x →-=++( ). (A )13 (B )13- (C )0 (D )23 ) ( , 0 x 1 x 2 0 x 1 x ) x ( f . 20、 则下列结论正确的是 设

高等数学作业下-5 (答案)

第十一章 习题答案 1. 1常数项级数的概念及基本性质 1.解:(1) +?+?+ ?+?+ ?6515 414 31321211 (2) -+ -+ -5 14 13 12 11 (3) +++ ++5 4 3 2 5 !54 ! 43 !32 !21!1 (4) +????????+ ??????+ ????+??+ 10 8642975318 64275316 425314 2312 1 2. 解:(1)1 21-= n u n (2)1 2+-= n n u n (3)) 2(6422 n x u n n ??= (4)1 2) 1(1 1 +-=++n a u n n n 3. 解:(1)013 1lim lim ≠==∞→∞ →n n n n u ,∴级数发散(不满足级数收敛的必要条件) 。 (2)原级数可写为 )4 13 12 11(3 1 +++ + 。∵括号内级数为调和级数发散,∴原级数发散。 (3)原级数为公比等于2 3的几何级数,∵ 123>,∴原级数发散。 (4)原级数为发散的调和级数 +++++ 5 14 13 12 11去掉前三项,∴原级数发散。 (5)原级数为公比等于9 8-的几何级数,19 8<- ,∴原级数收敛。 (6)∵级数 ++ + 3 2 2 12 12 1收敛(公比 12 1<的几何级数) ,级数 ++ + 3 2 3 13 13 1收敛 (公比 13 1<的几何级数) ,∴原级数收敛(收敛级数可以逐项相加减)。 4. 解:(1)a a a a a a a a a a S n n n n -= - ++- +- +-=+-+1 21 2125 73 53)()()()( , a a a S n n n n -=-=+∞ →∞ →1)(lim lim 12,∴此级数收敛。 (2)]) 2)(1(1) 1(1 [ 21 ) 2)(1(1 ++- += ++= n n n n n n n u n +?- ?+ ?- ?+ ?- ?= ∴)5 414 31 (21 )4 31321 ( 21)3 212 11 ( 21 n S ])2)(1(1 ) 1(1 [ 21 ++- ++ n n n n =]) 2)(1(1 21[21++-n n , 4 1 ])2)(1(121[21lim =++-= ∞ →n n S n n ,∴此级数收敛。

版更新高等数学作业题参考答案新

东北农业大学网络教育学院 高等数学作业题(2014更新版) 一、单项选择题 1. x y 1 sin =在定义域内是( )。 A. 单调函数 B. 周期函数 C. 无界函数 D. 有界函数 2. 24 lim 22--→x x x =( ) A . -6 B. 4 C. 0 D . 2 3. x e x f 2)(=,则 )1(f '=( ) A . 2e B . 2 2e C. e D. 2 4. ?= dx e x ( ) A . 2C e x + B .2 C e x + C .C e x + D .C e x 1+ 5. 若曲线上任一点切线的斜率与切点横坐标成正比,则这条曲线是( ) A.圆 B.抛物线 C.椭圆 D.双曲线 6. 下列函数是初等函数的是( )。 A. 3sin -=x y B.1sin -=x y C. ??? ??=≠--=1,01, 112x x x x y D. ?? ?≥<+=0 ,0 , 1x x x x y 7. x x x sin lim 0→的值为( )。 A.1 B.∞ C.不存在 D.0 8. )12ln(-=x y ,则)1(f '=( ) A . 0 B. 2 C. 1 D. 3

9. 若 ()()x f x F= ',则() ()= ?dx x f d () A. ()x f B. ()dx x f C. ()x F D. ()dx x F 10. 方程 2= -'y y的通解是() A x y sin = B x e y2 4 = C x ce y2 = D x e y= 11. 下列函数是初等函数的是()。 A. 3 sin- =x y B. 1 sin- =x y C. ?? ? ? ? = ≠ - - = 1 , 1 , 1 1 2 x x x x y D. ? ? ? ≥ < + = , , 1 x x x x y 12. x x x 2 sin lim → A. 1 B. 2 C. 0 D. 1 - 13. )1 2 ln(- =x y,则)1( f' =() A . 0 B. 2 C. 1 D. 3 14. 若 ()()x f x F= ',则() ()= ?dx x f d () A. ()x f B. ()dx x f C. ()x F D. ()dx x F 15. 方程 2= -'y y的通解是() A x y sin = B x e y2 4 = C x ce y2 = D x e y= 16. 下列函数是初等函数的是()。 A. 3 sin- =x y B. 1 sin- =x y C. ?? ? ? ? = ≠ - - = 1 , 1 , 1 1 2 x x x x y D. ? ? ? ≥ < + = , , 1 x x x x y 17. 下列函数在指定的变化过程中,()是无穷小量。 A.e 1 x x ,() →∞ B. sin ,() x x x→∞

华东理工大学高等数学(下册)第9章作业答案

第9章(之1) (总第44次) 教学内容:§微分方程基本概念 *1. 微分方程7 359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A ) 解 微分方程的阶数是未知函数导数的最高阶的阶数. *2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) ( (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D ) 解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ; (B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解; (C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了 x C x C y 2sin 12cos 2 ++=,实质上只有一个任意常数; (D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解. *3.在曲线族 x x e c e c y -+=21中,求出与直线x y =相切于坐标原点的曲线. : 解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由x x e c e c y -+=21, x x e c e c y --='21,可得1,02121=-=+c c c c , 故21,2121-==c c ,这样就得到所求曲线为)(2 1 x x e e y --=,即x y sinh =. *4.证明:函数y e x x =-233321 2 sin 是初值问题??? ????===++==1d d ,00d d d d 0022x x x y y y x y x y 的解.

《高等数学基础》作业

高等数学基础 形成性考核册 专业:建筑 学号: 姓名:牛萌 河北广播电视大学开放教育学院 (请按照顺序打印,并左侧装订)

高等数学基础形考作业1: 第1章 函数 第2章 极限与连续 (一)单项选择题 ⒈下列各函数对中,( C )中的两个函数相等. A. 2 )()(x x f =,x x g =)( B. 2)(x x f = ,x x g =)( C. 3 ln )(x x f =,x x g ln 3)(= D. 1)(+=x x f ,1 1 )(2--=x x x g ⒉设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f -+的图形关于( C )对称. A. 坐标原点 B. x 轴 C. y 轴 D. x y = ⒊下列函数中为奇函数是( B ). A. )1ln(2 x y += B. x x y cos = C. 2 x x a a y -+= D. )1ln(x y += ⒋下列函数中为基本初等函数是( C ). A. 1+=x y B. x y -= C. 2 x y = D. ?? ?≥<-=0, 10 ,1x x y ⒌下列极限存计算不正确的是( D ). A. 12lim 2 2 =+∞→x x x B. 0)1ln(lim 0 =+→x x C. 0sin lim =∞→x x x D. 01 sin lim =∞→x x x ⒍当0→x 时,变量( C )是无穷小量. A. x x sin B. x 1 C. x x 1 sin D. 2)ln(+x ⒎若函数)(x f 在点0x 满足( A ),则)(x f 在点0x 连续。 A. )()(lim 00 x f x f x x =→ B. )(x f 在点0x 的某个邻域内有定义 C. )()(lim 00 x f x f x x =+→ D. )(lim )(lim 0 x f x f x x x x -+→→=

高等数学习题册参考答案

《高等数学》习题册参考答案 说明 本参考答案与现在的习题册中的题目有个别的不同,使用时请认真比对,以防弄错. 第一册参考答案 第一章 §1.1 1.??? ????+≤≤--<≤<≤+=--. ),(2, , , 0 , 211010101T t T T t a v T t v t at v v a v a v v a v v 图形为: 2.B. 3.)]()([)]()([)(2 121x f x f x f x f x f --+-+=, 其中)]()([)(21x f x f x F -+=为偶函数,而)]()([)(2 1x f x f x G --=为奇函数. 4.??? ????=<≤-<≤-<≤=.6 ,0, 64 ,)4(, 42 ,)2(, 20 ,)(22 2x x x x x x x x f 5.???.)]([,)2()]([,)1(单调减单调性相反,则单调增;单调性相同,则x g f g f x g f g f 6.无界. 7.(1)否,定义域不同;(2)否,对应法则不同;(3)否,定义域不同. §1.2 1.(1))1 ,0()0 ,1(?-=D ;(2)} , ,{2 Z ∈+≠=k k k x x D πππ;(3))1 ,0(=D . 2.1 ,4-==b a . 3.?????>-=<=,0 ,1,0 ,0 , 0 ,1 )]([x x x x g f ???? ???>=<=-. 1 ,,1 ,1 ,1 , )]([1x e x x e x f g 4.(1)]2 ,0[,)1arcsin(2 =-=D x y ; (2)Y ∞ =+=+=0 2 2),( , )(tan log 1k a k k D x y πππ. 5.(1)x x x f f 1 )]([-= ; (2)x x f f 1 )(1][=. 6.+∞<<=-h r V r h h r 2 ,2312 2π. 7.(1)a x =)(?; (2)h x x +=2)(?; (3)h a a h x x ) 1()(-= ?. §1.9 1.1-=e a . 2.(1)1=x 和2=x 都是无穷间断点(属第Ⅱ类); (2)1 ,0==x x 和1-=x 是间断点,其中:1是可去间断点(极限为21)(属第Ⅰ类); 0是跳跃间断点(左极限1-,右极限1)(属第Ⅰ类);-1 是无穷间断点(属第Ⅱ类); (3)0=x 为无穷间断点(属第Ⅱ类),1=x 为跳跃间断点(属第Ⅰ类) (注意:+∞==∞ +-→- e e x x x 11 lim ,而0lim 11 ==∞--→+ e e x x x );

高等数学(下)课后习题答案

高等数学(下) 习题七 1. 在空间直角坐标系中,定出下列各点的位置: A(1,2,3); B(-2,3,4); C(2,-3,-4); D(3,4,0); E(0,4,3); F(3,0,0). 解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限; 点D在xOy面上;点E在yOz面上;点F在x轴上. 2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢? 答: 在xOy面上的点,z=0; 在yOz面上的点,x=0; 在zOx面上的点,y=0. 3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢? 答:x轴上的点,y=z=0; y轴上的点,x=z=0; z轴上的点,x=y=0. 4. 求下列各对点之间的距离: (1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4); (3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3). 解:(1)s= (2) s== (3) s== (4) s== 5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 s== s== x s== y s==. 5 z 6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则

222222 (4)1(7)35(2) z z -++-=++-- 解得14 9 z= 即所求点为M(0,0, 14 9 ). 7. 试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC为等腰直角三角形. 8. 验证:()() ++=++ a b c a b c. 证明:利用三角形法则得证.见图7-1 图7-1 9. 设2,3. u v =-+=-+- a b c a b c试用a , b, c表示23. u v - 解: 232(2)3(3) 224393 5117 u v -=-+--+- =-++-+ =-+ a b c a b c a b c a b c a b c 10. 把△ABC的BC边分成五等份,设分点依次为D 1,D2,D3,D4,再把各分点与A连接, 试以AB=c,BC=a表示向量 1 D A, 2 D A, 3 D A和 4 D A. 解: 11 1 5 D A BA BD =-=-- c a 22 2 5 D A BA BD =-=-- c a 33 3 5 D A BA BD =-=-- c a 44 4 . 5 D A BA BD =-=-- c a 11. 设向量OM的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M的投影为M',则 1 Pr j cos604 2. 2 u OM OM =?=?= 12. 一向量的终点为点B(2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量

高等数学练习册

高等数学(下)练习册 专业班级:___________________________________________ 姓名:___________________________________________ 学号:___________________________________________ 西南科技大学城市学院数学教研室编

第七、八章 向量、空间解析几何、多元微分法 一、填空题 1、从点)7,1,2(-A 沿向量k j i a 1298-+=的方向取一段长34||=,则点B (_______). 2、已知两个力)3,2,1(1=,)4,3,2(2--=F ,则合力的大小||F =________,合力的方向为___________________. 3、设向量+=2,b a k B +=,其中1||=,2||=,且⊥,若⊥,则k =_____. 4、已知3+=,3+=,则ABC ?得面积是________. 5、已知平面π过点)21,3(-且过直线1 2354z y x =+=-,则平面π的方程为_____________. 二、选择题 1、方程0242222=++-++z y x z y x 表示的曲面是( ) A 、球面 B 、椭球面 C 、柱面 D 、锥面 2、若直线l :3 7423z y x =-+=-+,平面π:3224=--z y x ,则l 与π( ) A 、平行 B 、垂直 C 、相交而不垂直 D 、l 在平面π内 3、设直线l 为?? ?=+--=+++0 31020 123z y x z y x 平面π为0224=-+-z y x ,则( ) A 、l ∥π B 、l ?π C 、l ⊥π D 、l π但l 与π不垂直 4、已知向量)1,1,2(-=a ,)1,3,1(-=,求,b 所确定的平面方程为( ) A 、02=+-z y x B 、03=-+z y x C 、01632=---z y x D 、a ,b 不共面无法确定平面 5、球面92 22=++z y x 与平面1=+z x 的交线在xoy 面上的投影方程是( ) A 、082222=--+x y x B 、082222=--+z z y C 、92 2 =+y x D 、? ??==--+00 82222z x y x 三、设)4,1,1(=a ,)2,2,1(-=b ,求b 在方向上的投影向量.

华东理工大学高等数学(下册)第11章作业答案

第 11 章(之1)(总第59次) 教材内容:§11.1多元函数 1.解下列各题: **(1). 函数连续区域是 ??????? . 答: **(2). 函数 , 则( ) (A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续 答:(A ) **2. 画出下列二元函数的定义域: (1)= u y x -; 解:定义域为:{ } x y y x ≤) ,(,见图示阴影部分: (2))1ln(),(xy y x f +=; 解:{} 1),(->xy y x ,第二象限双曲线1-=xy 的上方,第四象限双曲线1-=xy 的下方(不包括边界,双曲线1-=xy 用虚线表示). (3)y x y x z +-= . 解:()()? ? ?-≠≥????≠+≥+-?≥+-y x y x y x y x y x y x y x 000.

***3. 求出满足2 2, y x x y y x f -=?? ? ??+的函数()y x f ,. 解:令?? ? ??=+=x y t y x s , ∴?? ???+=+=t st y t s x 11 ∴()() ()t t s t t s s t s f +-=+-=111,22 222, 即 ()()y y x y x f +-=11,2. ***4. 求极限: ()() 2 2 0,0,11lim y x xy y x +-+→. 解:()( )( ) ( )( ) 2 222 2 22 2 112111110y x xy y x y x xy xy y x xy ++++≤ +++= +-+≤ () 01 122 2→+++= xy y x (()()0,0,→y x ) ∴ ()() 011lim 2 2 0,0,=+-+→y x xy y x . **5. 说明极限()()2 22 20,0, lim y x y x y x +-→不存在. 解:我们证明()y x ,沿不同的路径趋于()0,0时,极限不同. 首先,0=x 时,极限为()()1lim 22 22220,0,0-=-=+-→=y y y x y x y x x , 其次,0=y 时,极限为()()1lim 22 22220,0,0==+-→=x x y x y x y x y , 故极限()()2 22 20,0,y y lim +-→x x y x 不存在. **6. 设1 12sin ),(-+= xy x y y x f ,试问极限 ),(lim ) 0,0(),(y x f y x →是否存在?为什么? 解:不存在,因为不符合极限存在的前提,在)0,0(点的任一去心邻域内函数 1 12sin ),(-+= xy x y y x f 并不总有定义的,x 轴与y 轴上的点处函数),(y x f 就没有定义.

高等数学下(B)作业题

《 高等数学B (下) 》练习题 提交作业要求: 1、在规定的时间内,按下列格式要求准确上传作业!(不要上传别的科目作业, 也不要上传其他学期的作业,本次作业题与其他学期作业题有很大变化) 2、必须提交word 文档! (1)不按要求提交,会极大影响作业分数(上学期很多同学直接在网页上答题,结果只能显示文本,无法显示公式,这样得分会受很大影响) (2)若是图片,请将图片大小缩小后插入到一个word 文件中。 (3)图片缩小方式:鼠标指向图片,右键,打开方式,画图,ctrl w ,调整大小和扭曲,依据(百分比),将水平和垂直的原始数值100都改为40,另存为jpg 格式。这样处理后,一个大约3M 的照片会缩小至几百K ,也不影响在word 中的清晰度。 网上上传也快! 3、直接上传单个的word 文件!(不要若干张图片压缩成一个文件) 一、判断题 1. 设函数(,)f x y 在00(,)x y 点的偏导数连续,则(,)f x y 在00(,)x y 点可微. 答:对 2. 设函数(,)f x y 在00(,)x y 点可微,则(,)f x y 在00(,)x y 点的偏导数连续. 答:错 3. 二重积分(,)d D f x y σ??表示以曲面(,)z f x y =为顶,以区域D 为底的曲顶柱体的体积. 答:错 4. (,)0f x y ≥若, 二重积分(,)d D f x y σ??表示以曲面(,)z f x y =为顶,以区域D 为底的曲 顶柱体的体积. 答:对 5. 若积分区域D 关于y 轴对称,则32sin()d 0.D x y σ=?? 答:对 6. 微分方程4()1y y y ''''-=-是四阶微分方程. 答:错 7. 微分方程cos sin sin cos x ydx y xdy =是变量可分离微分方程. 答:对 8. 微分方程cos sin sin cos x ydx y xdy =是一阶线性微分方程. 答:错

吉林大学作业及答案-高数A1作业答案

高等数学作业 AⅠ 吉林大学数学中心 2017年8月

第一次作业 学院 班级 姓名 学号 一、单项选择题 1.下列结论正确的是( A ). (A )x arctan 是单调增加的奇函数且定义域是),(∞+∞- ; (B )x arc cot 是单调减少的奇函数且定义域是),(π0; (C )x arctan 是无界函数; (D )4 -22arccos π =. 2.下列函数中不是奇函数的为( B ). (A )x x x x e e e e --+-;(B )x x cos 3+;(C ))1ln(2 x x ++;(D )x arcsin . 3.函数x x y 3cos 2sin +=的周期为( C ). (A )π; (B )π3 2 ; (C )π2; (D )π6. 4.. ??? ??-??? ??-??? ? ? -∞→22211311211lim n n Λ=( C ) (A )0; (B )1; (C )0. 5; (D )2. 5.已知数列{}n x 是单调增加的.则“数列{}n x 收敛”是“数列{}n x 有上界”的( A )条件 (A )充分必要;(B )必要非充分;(C )充分非必要;(D )即非充分也非必要. 6.设数列{}n a (Λ,2,1,0=>n a n )满足,0lim 1 =+∞→n n n a a 则( D ). (A ){}n a 的敛散性不定; (B )0lim ≠=∞ →c a n n ; (C )n n a ∞ →lim 不存在; (D )0lim =∞ →n n a . 二、填空题

1.=???? ??-+ +-+-∞→n n n n n 2 2241 2 411 41 lim Λ 0. 5 . 2.设? ? ?<+≥+=,0,2, 0,12)(2 x x x x x f 42)(-=x x g . 则)]([x g f = ? ??<+-≥-2,181642, 742x x x x x . 3.函数1 )(+=x x e e x f 的反函数)(1x f -= )1,0(,1ln ∈-x x x . 4.“数列{}n x 2及数列{}12+n x 同时收敛”是“数列{}n x 收敛” 必要 条件. 5. =++--+++∞ →])2()11(1sin [lim 1 n n n n n n n n n 22e + . 三、计算题 1.设6 331 34)11(x x x f ++=+ ,求)(x f . 解:令31 1x t +=,则3 1 1-=t x 代入已知的式子中得, 2)1)1(34)(-+-+=t t f t 即有 22)(t t f ++=t 2.求n n n x 13)|1(lim | +∞ →, 解:(1)当1||>x 时 由于311 33||2)||1(|| x x x n n n <+< 以及 331||||2lim x x n n =∞ → 所以有 313||)|1(lim x x n n n =+∞ →| (2)当1||≤x 时

高等数学下册复习题及答案

一、解答下列各题(本大题共3小题,总计15分) 1、( 本 大 题5分 ) 设L 由y =x 2及y =1所围成的区域D 的正向边界, 求 ?+++L dy y x x dx y x xy )()(2 4233 2、(本小题5分) 设f (x ,y )是连续函数,交换二次积分??2 3 ),(10x x dy y x f dx 的积分次序。 3、(本小题5分) 设()f x 是以2π为周期的函数,当 x ∈-?? ?? ?ππ232, 时, ()f x x =。又设()S x 是()f x 的 以2π为周期的Fourier 级数之和函数。试写出()S x 在 []-ππ,内的表达式。 二、解答下列各题(本大题共7小题,总计42分) 1、(本小题6分) 设z=z(x,y)由方程x 2 +y 2 +z 2 =ln(y z )确定,求z z x y ,。 2、(本小题6分) 设z y xy x =++232 (),求z z x y ,。 3、(本小题6分) 设f x y (,)有连续偏导数,u f e e x y =(,),求d u 。

利用极坐标计算二次积分 5、(本小题6分) 求微分方程''-'+=y y y x e x 22的一个特解。 6、(本小题6分) 求幂级数n n x n )3 2(11 -∑ ∞ =的收敛域。 7、(本小题6分) 求微分方程0)42()2(32=-+++dy y x y x dx y y 的通解。 三、解答下列各题 (本大题共2小题,总计13分) 1、(本小题7分) 求曲面x xy xyz ++=9在点(,,)123处的切平面和法线方程 。 2、(本小题6分) 试求由x 2+y 2+z 2≤4与x 2+y 2≤3z 所确定的立体的体积。 四、解答下列各题 (本大题共2小题,总计13分)

相关文档
最新文档