结构稳定性有限元理论分析

结构稳定性有限元理论分析
结构稳定性有限元理论分析

结构稳定性有限元理论分析

梁壳组合结构的有限元合理建模

2 梁壳组合结构的有限元建模 2.1 单元类型的选择 对于需要混合使用多种类型单元的梁壳组合结构而言,为了在不同类型的单元间实现无缝连接,保证相互间载荷传递的正确性,根据所分析问题的要求选择合适的单元类型是非常重要的。要实现这一点,最基本的就是要保证所选梁单元和壳单元具有相同的结点自由度类型及数量,进一步的,对于一些特殊类型的结构保证单元具有相同的阶次或相近的形函数形式也是非常重要的。此外,为了保证加强板的作用能被充分考虑,加强板需要用多个单元离散,与之焊接的梁也相应的需要划分多个单元,这可能导致最终的梁单元为深梁,此时就应考虑选用计及剪切变形影响的梁单元。 ANSYS提供了多种用于梁、壳建模的单元类型,以满足不同分析场合的要求。由于工程机械结构的重要性,在设计时不需要考虑其塑性的扩展和利用、其始终处于弹性阶段,因此对梁构件可选用BEAM188单元类型、壳体构件可选用SHELL43单元类型。BEAM188单元与SHELL43单元均为一次单元,每个单元结点均有6个自由度:三个平动自由度(ux,uv,uz)和三个转动自由度(θx ,θv,θz),可以保证受力的正确传递。Shell43单元考虑了剪切变形的影响,适合于中等厚度的壳体建模。Beam188单元是Timoshenko梁单元,采用如下形式的形函数: (1) 式中:ui—某方向位移场;s—ui方向的自然坐标; 梁壳组合结构的有限元合理建模 王强 贵州交通职业技术学院 550008 1 引言 在当前实际应用的工程结构中,出于结构形式、连接条件、承载要求等方面的考虑,很多工程结构都采用梁壳组合结构的形式作为各种外加载荷的支撑件,如工程机械领域的港口起重机、动臂式塔机等的桁架吊臂往往在臂头和臂根焊接钢板以局部加强。此外,为了分析的需要或简化建模与计算,也往往将一些纯板壳焊接结构作为梁壳组合结构进行分析。 对梁壳组合结构进行力学分析以保证其强度和刚度满足使用要求是设计中必不可少的一环。显然要获得此类结构的理论解析解几乎是不可能的,在工程实际中往往要借助于有限元方法。有限元分析中最重要的步骤是有限元模型的建立和约束、载荷的施加,后者需要满足特定行业设计规范的要求,有一定的程式可循,而针对此类结构的特点,快速、合理建模问题还少有谈及。因此,本文以当前应用较为广泛的通用有限元软件ANSYS为平台,探讨复杂梁壳组合结构有限元模型的快速、合理建模方法及在建模过程中应注意的问题,对同类结构的有限元建模提供一些可供借鉴的有益经验。 uiI、uiJ—ui方向的单元始、终结点位移。与Euler-Bernoulli梁相比,其计入了剪切变形对梁弯曲的影响,适合于短粗梁的有限元建模。 2.2 有限元模型的建立 ANSYS提供了两种建模方式:一是首先建立结构的几何模型,通过对几何模型进行有限元网格离散而获得有限元模型;二是首先生成结点,随后由结点直接生成单元而获得有限元模型。至于具体使用何种建模方式或综合使用此两种建模方式应依据结构的实际情况灵活决定。 工程机械等领域中的梁壳组合结构往往以梁为主要承载构件,板壳仅起局部加强作用。有限元方法中的梁单元属线单元,当使用二结点线性梁单元时,其有限元模型的几何表现为一条直线,通常在其形心轴线位置上建立有限元模型。在梁壳组合结构中,梁是主要构件,且需要与其它构件相连,因此在其有限元建模时位置不能改变,即仍应按其形心轴线建模;板壳属附属构件,在对其进行有限元建模时,由于壳体构件需要使用许多单元离散,而通过结点生成单元的方式逐一生成这些单元无疑将非常烦琐,尤其是当加强板较多时,因此对壳体应采用第一种建模方式。 综合上述分析,工程机械中复杂梁壳组合结构的有限元建模有两种方法,本文通过图1(a)中所示结构为例加以说明,图中两根梁之间焊接了一块加强板,在此假设梁为圆管(工程机械的此类结构中的梁大部分为圆管,对其它截面形式的梁建模方法基本相同)。第一种建模方法的步骤如下: (1)在梁的形心线和加强板的中平面位 图3 港口起重机桁架吊臂的有限元模型和分析结果 图1 梁壳组合结构几何模型和有限元模型示意图图2 梁壳组合结构及其有限元模型

《结构分析中的有限元法》2015-有限元习题-参考答案

本科有限元习题参考答案

2015年3月10日作业 1、简述力学课程中介绍的各种力学模型的简化条件、基本假设和适用范围(包括有拉压杆模型、弯曲梁模型、平面应力和平面应变模型、轴对称模型、板模型、壳模型等) 2、给出弹性力学问题中平衡方程、几何方程、物理方程的表达式及其意义。 (1)平衡方程:

zy yz xz zx yx xy z yz xz z y xy zy y x zx yx x f y x z f x z y f z y x ττττττττσττσττσ====+??+??+??=+??+??+??=+??+??+??,000, 物理意义:应力分量与体力分量之间的关系。 (2)几何方程: z u x w y w z v x v y u z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,, 物理意义:应变分量与位移分量之间的关系。 (3)物理方程: [] [] [] zx zx yz yz xy xy y x z z z x y y z y x x G G G E E E τγτγτγσσμσεσσμσεσσμσε1,1,1) (1 ) (1 )(1 ===+-=+-=+-= 物理意义:应变分量与应力分量之间的关系。 3、简述最小势能原理的主要内容和主要公式。 根据虚功原理得到:??=-Γ T Ω T T 0Td Γδu d Ω)F δu -σδε(,由 )(21εδσεδδεU T T =?? ? ??=则0)21((=Γ-Ω-=∏??ΩΓ)Td u d F u T T T p σεδδ 其中,??ΩΓ Γ-Ω-=∏Td u d F u T T T p )21 (σε即为系统的总势能,它是弹性体变 形势能和外力势能之和。上面变分为零式表明:在所有区域内满足几何关系,在边界上满足给定位移条件的可能位移中,真实位移使系统的总势能取驻值(可证

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

各种有限元分析软件比较

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1.模流分析;2.结构强度分析;3.电磁场分析;4.谐响应分析(比如查找共振频率);5. 铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 workbench是一个综合性的有限元分析软件,几乎囊括了所有有限元分析领域,传统的优势领域有强度分析、谐响应分析和电磁分析。workbench是ansys

各大CAE软件特点比较

有限元分析软件比较 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS 专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA 是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:1、ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:1、ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:1、ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS软件与ANSYS软件的对比分析 1.在世界范围内的知名度: 两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。 由于ANSYS产品进入中国市场早于ABAQUS,并且在五年前ANSYS的界面是当时最好的界面之一,所以在中国,ANSYS软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域: ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次

岩土工程有限元分析软件

岩土工程有限元分析软件 PLAXIS 2D 2015? 案例教程 北京市古城西街19号研发主楼4层,100043

目录 新奥法(NATM)隧道开挖 (1) 1.1 输入 (2) 1.2生成网格 (5) 1.3计算 (6) 1.4 结果 (8)

新奥法(NATM)隧道开挖 本例利用PLAXIS分析NATM隧道施工过程。NATM是在地下开挖时,利用喷射混凝土作为临时支护,保证开挖稳定性的一种施工方法。 图1.1 项目几何尺寸 目标: ●模拟NATM隧道施工(β法)。 ●用重力加载生成初始应力。

PLAXIS 2D AE案例教程:新奥法(NATM)隧道开挖 1.1 输入 1.1.1一般设置 ●打开PLAXIS 2D AE软件,在出现的快速选择对话框中选择一个新的项目。 ●在工程属性窗口的工程标签下,键入一个合适标题。 ●在模型标签下,模型(平面应变)和单元(15-Node)保持默认选项。 ●保持单位和一般设置框为默认值。 ●在几何形状设定框中设定土层模型尺寸xmin=-50,xmax=50,ymin=0,ymax=35。 ●点击OK即关闭工程属性窗口,完成设定。 1.1.2土层定义 利用钻孔生成土层,模型中考虑11m厚的泥灰岩,这层的底部y min=0作为参考点,定义土层: 在x=-22处创建第一个钻孔。 ●修改土层窗口将出现。为钻孔添加三层土。钻孔Borehole_1第一层的深度为0.指 定第一层土的顶部和底部值为24。第二层土层的顶部=24和底部=11.第三层土层的 顶部=11和底部=0。 ●单击在修改土层窗口的底部钻孔按钮。 ●在出现的菜单中选择添加选项。添加钻孔窗口出现。 ●指定第二个钻孔的位置为x=-14. ●注意:钻孔Borehole_1的特性复制给了Borehole_2。 ●Borehole_2第一层的深度也是0。修改土层的顶部=30和底部=30.第二层土顶部=30 和底部=11。第三层土顶部=11和底部=0. ●指定第三个钻孔的位置为x=-7. ●Borehole_3第一层土顶部=35和底部=30.第二层土顶部=30和底部=11,。第三层土 的顶部=11和底部=0. ●所有钻孔设置水头高度为y=0m。土层分布如图1.2。 ●根据表1.1定义土层材料属性,并分别指定给相应土层(图1.2). ●关闭修改土层窗口,切换到结构模式定义结构单元。 图1.2 土层分布

(完整)各种有限元分析软件比较

(完整)各种有限元分析软件比较 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)各种有限元分析软件比较)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)各种有限元分析软件比较的全部内容。

各种有限元分析软件比较 有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统. 有限元分析具有确保产品设计的安全合理性,同时采用优化设计,找出产品设计最佳方案,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题;模拟各种试验方案,减少试验时间和经费等作用,越来越被应用,越来越的有限元分析也不断被开发出来,当我们在做有限元分析时,我们该选择什么样的软件?或者我们该学习什么软件?成了大多数人困惑的问题。看板网根据自己超过十年的有限元分析项目经验和培训经验,对各种有限元分析软件进行了一些比较,希望大家在选择时能够大家做参考。 有限元分析常用软件 国外软件 大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。还有三维结构设计方面的UG,CATIA,Proe等都是比较强大的。 国内软件 国产有限元软件:FEPG,SciFEA,JiFEX,KMAS等。 当然首先要明确你要用这个软件进行什么分析,一般会用到有限元分析的地方有:1。模流分析;2.结构强度分析;3。电磁场分析;4。谐响应分析(比如查找共振频率);5。铸造分析。等等 ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下.ABAQUS 专注结构分析目前没有流体模块.MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。

多体动力学软件和有限元软件的区别(优.选)

有限元软件与多体动力学软件 数值分析技术与传统力学的结合在结构力学领域取得了辉煌的成就,出现了以ANSYS 、NASTRAN 等为代表的应用极为广泛的结构有限元分析软件。计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS 和DADS 为代表的动力学分析软件。两者共同构成计算机辅助工程(CAE )技术的重要内容。 商业通用软件的广泛应用给我们工程师带来了极大的便利,很多时候我们不需要精通工程问题中的力学原理,依然可以通过商业软件来解决问题,不过理论基础的缺失还是会给我们带来不少的困扰。随着动力有限元与柔性多体系统分析方法的成熟,有时候正确区分两者并不是很容易。 机械领域应用比较广泛的有两类软件,一类是有限元软件,代表的有:ANSYS, NASTRAN, ABAQUS, LS-DYNA, Dytran 等;另一类是多体动力学软件,代表的有ADAMS, Recurdyn , Simpack 等。在使用时,如何选用这两类软件并不难,但是如果深究这两类软件根本区别并不容易。例如,有限元软件可以分析静力学问题,也可以分析“动力学”问题,这里的“动力学”与多体动力学软件里面的动力学一样吗?有限元软件在分析动力学问题时,可以模拟物体的运动,它与多体动力学软件中模拟物体运动相同吗?多体动力学软件也可以分析柔性体的应力、应变等,这与有限元软件分析等价吗? 1 有限元软件 有限单元法是一种数学方法,不仅可以计算力学问题,还可以计算声学,热,磁等多种问题,我们这里只探讨有限元法在机械领域的应用。 计算结构应力、应变等的力学基础是弹性力学,弹性力学亦称为弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而为工程结构或构件的强度、刚度设计提供理论依据和计算方法。也就是说用有限元软件分析力学问题时,是用有限元法计算依据弹性力学列出的方程。 考虑下面这个问题,在()0t , 时间内给一个结构施加一个随时间变化的载荷()P t ,我们希望得到结构的应力分布,在刚刚施加载荷的时候,结构中的应力会有波动,应力场是变化的,但很久以后,应力场趋于稳定。 如果我们想得到载荷施加很久以后,稳定的应力场分布,那么应该用静力学分析方法分析

基于有限元软件ABAQUS的组合结构分析

基于有限元软件ABAQUS的组合结构分析 摘要:本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板组合梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 关键词:组合梁、有限元 Abstract: this paper through the large finite ABAQUS software engineering simulation of the corrugated steel beams webs, a finite element model and with the test data as compared to test the validity of the finite element analysis. Key words: the composite beams, finite element 0引言 有限元数值分析方法起源于20世纪50年代飞机结构分析,并由其理论依据的普遍性己被推广到其它很多领域。在结构分析领域,几乎所有的弹塑性结构静、动力学问题都可以用它求得满意的数值结果。桥梁结构作为众多结构中的一种,利用有限元数值方法分析其力学特性同样可以得到很好的数值分析结果。 波纹钢腹板预应力组合箱梁桥是20世纪80年代起源于法国的一种新型组合桥梁,此类新型结构与传统的混凝土箱梁相比有以下优点:(1) 自重降低,抗震性能好。腹板采用较轻的波形钢板,其桥梁自重与一般的预应力混凝土箱梁桥相比大为减轻,地震激励作用效果显著降低,抗震性能获得一定的提高。(2) 改善结构性能,提高预应力效率。波形钢腹板的纵向刚度较小,几乎不抵抗轴向力,因而在导入预应力时不受抵抗,从而有效地提高预应力效率。(3)充分发挥各种材料特性。在波形钢腹板预应力箱梁桥中,混凝土用来抗弯,而波形钢腹板用来抗剪,几乎所有的弯矩与剪力分别由上、下混凝土翼缘板和波形钢腹板承担,而且其腹板内的应力分布近似为均布图形,有利于材料发挥作用。[1-5] 本文通过大型有限元工程模拟软件ABAQUS对波纹钢腹板试验梁建立有限元模型,并与试验数据作对比,检验有限元分析的正确性。 1 有限元建模 1.1单元选择 有限元工程模拟软件的实体单元库包含二维和三维的一阶插值单元和二阶插值单元,积分方式有完全积分和减缩积分。三维实体单元有四面体和六面体。四面体单元有4节点12自由度和10节点30自由度的四面体单元,六面体单元

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

有限元分析软件及应用

3.5 ANSYS软件加载、求解、后处理技术 3.5.1 ANSYS 3.5.1 ANSYS 荷载概述荷载概述 在这一节中将讨论: 有限元分析软件及应用 8 有限元分析软件及应用 8 A. 载荷分类 3.5 ANSYS 软件加载、求解、后处理技术 3.5 ANSYS 软件加载、求解、后处理技术 B. 加载 C. 节点坐标系 D. 校验载荷 孙瑛 孙瑛 E. 删除载荷 哈哈尔尔滨滨工工业业大学空大学空间结间结构研构研究中心究中心 2010秋 2010秋 SSRC SSRC 1/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

理技术 A. 载荷分类 B. 加载 A. 载荷分类 B. 加载 ANSYS中的载荷可分为: 可在实体模型或 FEA 模型节点和单元上加载自由度DOF - 定义节点的自由度( DOF )值结构分析_ 沿单元边界均布的压力 沿线均布的压力 位移集中载荷 - 点载荷结构分析_力面载荷 - 作用在表面的分布载荷结构分析_压力 在关键点处 在节点处约 约束体积载荷 - 作用在体积或场域内热分析_ 体积膨胀、内生 束 成热、电磁分析_ magnetic current density等实体模型 FEA 模型惯性载荷 - 结构质量或惯性引起的载荷重力、角速度等 在关键点加集中力在节点加集中力 SSR SSRC C SSR SSRC C 2/ 76 3/ 76 S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A S Space pace S Stru truc ctu ture re R Res esear earc ch h C Center enter, H , HI IT, T, CH CHIN INA A

基于ANSYS的有限元分析

有限元大作业 基于ansys的有限元分析 班级: 学号: 姓名: 指导老师: 完成日期:

ANSYS软件是美国ANSYS公司研制的大型通用有限元分析(FEA)软件,是世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计(CAD,computer Aided design)软件接口,实现数据的共享和交换,如Creo,NASTRAN, Alogor, I-DEAS, AutoCAD 等。是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。在核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等领域有着广泛的应用。ANSYS功能强大,操作简单方便,现在已成为国际最流行的有限元分析软件,在历年的FEA评比中都名列第一。目前,中国100多所理工院校采用ANSYS软件进行有限元分析或者作为标准教学软件。 2D Bracket 问题描述: We will model the bracket as a solid 8 node plane stress element. 1.Geometry: The thickness of the bracket is 3.125 mm 2.Material: steel with modulus of elasticity E=200 GPa. 3.Boundary conditions: The bracket is fixed at its left edge. 4.Loading: The bracket is loaded uniformly along its top surface. The load is 2625 N/m. 5.Objective: a.Plot deformed shape b.Determine the principal stress and the von Mises stress. (Use the stress plots to determine these) c.Remodel the bracket without the fillet at the corner or change the fillet radius to 0.012 and 0.006m, and see how d.principal stress and von Mises stress chang e.

主流CAE有限元分析软件的比较

随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA 在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PAFEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件 LS-DYNA是一个通用显式非线性动力分析有限元程序,最初是1976年在美国劳伦斯利弗莫尔国家实验室(Lawrence Livermore National Lab.)由J.O.Hallquist 主持开发完成的,主要目的是为核武器的弹头设计提供分析工具,后经多次扩充和改进,计算功能更为强大。此软件受到美国能源部的大力资助以及世界十余家著名数值模拟软件公司(如ANSYS、MSC.software、ETA等)的加盟,极大地加强了其的前后处理能力和通用性,在全世界范围内得到了广泛的使用。在软件的广告中声称可以求解各种三维非线性结构的高速碰撞、爆炸和金属成型等接触非线性、冲击载荷非线性和材料非线性问题。即使是这样一个被人们所称道的数值模拟软件,实际上仍在诸多不足,特别是在爆炸冲击方面,功能相对较弱,其欧拉混合单元中目前最多只能容许三种物质,边界处理很粗糙,在拉格朗日——欧拉结合方面不如DYTRAN灵活。虽然提供了十余种岩土介质模型,但每种模型都有不足,缺少基本材料数据和依据,让用户难于选择和使用。2. MSC.software公司的DYTRAN软件 当前另一个可以计算侵彻与爆炸的商业通用软件是MSC.Software Corporation ( MSC公司) 的MSC.DYTR AN程序。该程序在是在LS-DYNA3D的框架下,在程序中增加荷兰PISCES INTERNATIONAL公司开发的PICSES的高级流体动力学和流体——结构相互作用功能,还在PISCES的欧拉模式算法基础上,开发了物质流动算法和流固耦合算法。在同类软件中,其高度非线性、流—固耦合方面有独特之处。MSC.DYTR AN的算法基本上可以概况为:MSC.DYTRAN采用基于Lagrange格式的有限单元方法(FEM)模拟结构的变形和应力,用基于纯Euler格式的有限体积方法(FVM)描述材料(包括气体和液体)流动,对通过流体与固体界面传递相互作用的流体—结构耦合分析,采用基于混合的Lagrange格式和纯Euler 格式的有限单元与有限体积技术,完成全耦合的流体-结构相互作用模拟。MSC.DYTRAN用有限体积法跟踪

有限元软件介绍和比较

有限元软件介绍和比较 一、msc/patran+nastran, ansys, abaqus 三者的比较 俺最喜欢的是msc/patran+nastran,因为当年国内飞机公司最先引进的就是nastran,其菜单式的操作,比用手写有限元程序,爽多了!!特别是建立飞机这类巨大型结构,可以说,只有patran的建模最强!!(有人在仿真说abaqus能建整个飞机模型,哈哈,吹牛不上税,就凭其目前功能,要花一百年!!) 另外,msc财大气粗,其教程是手把手式,航空上最常用的有限元分析,都有现成的例题,step by step,傻瓜都会很快地入门!!由于其广泛应用于航空航天/汽车工业,所以,至今为止,如果要学CAE软件,俺认为应首选msc/patran+nastran。 与patran+nastran相比,ansys的界面就低了一些,操作也没有patran舒服。不过,差别不是很大。ansys据俺的体会,唯一的强项就是多场耦合。其他的功能, msc/patran+nastran都有。不过,ansys的apdl语言比较高级,是其最大优势,或者说,msc 应向这一方向发展!!不过,apdl最开始学也很费事,得一条一条查,一条一条记,这个过程没有两三个月下不来。由此,ansys的清爽度比msc差一些。 abaqus,如果自己用手编写过有限元程序的,入门应该不难。其命令格式,跟自己用手编程序一个套路。abaqus的强项是其分析功能很全面,特别是非线性部分,基本上都包含了。abaqus最大的缺点是上手慢,其教程太差,除了几本手册,基本上等于没有教程。要学abaqus,其时间要比msc, ansys长多了!!现在看,学abaqus实在没什么省时间的方法(比如它的 training lecture,一本250$,买来一看,气晕俺,还没手册说得详细!!),所以唯一的笨方法就是要看手册啦。(如果说msc是windows点鼠标时代的水平,abaqus就是敲dos命令的原始时代。不过,如果愣要用非线性分析,而nastran/ansys都没用,也只能用abaqus了。估计几年后,其CAE应能发展patran的水平,其教程应有step by step的水平。否则,为了一个非线性,多花数倍的时间,实在不爽!!或者说,花一辈子时间,才会用其中一部分功能,真可谓生也有涯,学也无涯,以有涯学无涯,不如不学算了!! 二、MSC.PATRAN和ANSYS比较 MSC.PATRAN最早由美国宇航局(NASA)倡导开发的, 是工业领域最著名的并行框架式有限元前后处理及分析系统,其开放式、多功能的体系结构可将工程设计、工程分析、结果评估、用户化身和交互图形界面集于一身,构成一个完整 CAE集成环境。 ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Algor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAD工具之一。 在建立复杂模型上ANSYS不如PATRAN,但PATRAN很繁琐。ANSYS比较适合于教学和科研,但ANSYS的求解效率确实不如NASTRAN。所以NASTRAN比较适合于工程。比较如下: 1、PATRAN界面层次分明,建模思路清晰;ANSYS界面菜单重叠、繁杂、互相覆盖,建模思路交替杂乱,条理不清。 2、PATRAN在一个界面内完成所有的同类模型(Geo. Fem BC. Mat. Prop.等各自为一类)操作。而ANSYS要重复打开和关闭多个相互重叠覆盖的界面,才能完成一个特征的创建和参数的输入等操作,非常烦琐。 3、PATRAN将计算任务提交给NASTRAN在后台运算后,在前台PATRAN仍然可以进行各种建模操作。而ANSYS提交了计算任务后,就不能再使用其前后处理功能。ANSYS的使用效率就大大地降低。

结构分析中有限元法课程建设的问题和方式

结构分析中有限元法课程建设的问题和 方式 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 随着复杂工程结构及巨型结构的大量出现,在土木、水利等工程专业本科生中加强结构分析能力(包括电算能力)的培养显得尤为迫切。笔者将结构力学中的“矩阵位移法”和弹性力学中的“有限元法”有机结合,按照培养创新型高级专门人才的要求建设了结构分析中的有限元法课程,精心编写并出版了该课程所用的教材和电算程序。根据该课程的特点,对课堂教学、上机实习和考试等教学环节进行了改革,充分发挥教师的主导作用和学生的主体作用,取得了良好的教学效果。 关键词:结构分析;有限元法;课程建设 中图分类号:G6423文献标志码:A文章编号: 10052909(2015)02005304 一、加强结构分析能力的培养是课程建设的初衷 在土木、水利等本科工程专业的教学过程中,通过前期基础课程和专业基础课程的学习,学生初步具备了对计算工作量不大的简单结构进行结构分析的能

力。如通过结构力学课程经典理论的学习,学生可以对静定平面杆系结构进行分析,也可用力法或位移法等方法分析未知量较少的超静定平面杆系结构,计算其内力和位移。通过弹性力学基本理论的学习,学生可求出几何形状规则(如矩形或圆形)、边界条件简单(如四边固支或四边铰支)的结构在单一荷载(如均布荷载)作用下的内力解析值。 随着各行各业现代化建设的深入开展和城镇化建设的加速推进,房地产和土木工程建筑行业已成为国家的重要支柱产业,与之相伴的是大跨度结构、高层高耸结构等各种复杂结构和巨型结构的出现。这些结构中,有些是形状、边界、荷载等较复杂的连续体板壳结构或实体结构,有些虽是杆系结构,但却是空间杆系结构或计算工作量庞大的平面杆系结构,还有些是杆系结构与连续体结构的组合体。无论对以上哪种结构进行分析,都必须利用数值分析法才能进行,学生既有知识已明显不足。 在一般本科院校开设的结构力学课程体系中,通常都要介绍适合数值分析的矩阵位移法。但有的仅讲述了矩阵位移法基本原理而未涉及程序使用,有的虽然让学生使用了部分程序,却较少或几乎不涉及对空间杆系结构的分析。实际工程中较为复杂的连续体结

相关文档
最新文档