小生境遗传算法综述

小生境遗传算法综述
小生境遗传算法综述

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

遗传算法的c语言程序

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

基本遗传算法的C源程序。doc【精品毕业设计】(完整版)

/********************************************************** ********/ /* 基于基本遗传算法的函数最优化SGA.C */ /* A Function Optimizer using Simple Genetic Algorithm */ /* developed from the Pascal SGA code presented by David E.Goldberg */ //********************************************************** ********/ #include #include #include #include "graph.c" /* 全局变量*/ struct individual /* 个体*/ { unsigned *chrom; /* 染色体*/ double fitness; /* 个体适应度*/ double varible; /* 个体对应的变量值*/ int xsite; /* 交叉位置*/ int parent[2]; /* 父个体*/ int *utility; /* 特定数据指针变量*/ };

struct bestever /* 最佳个体*/ { unsigned *chrom; /* 最佳个体染色体*/ double fitness; /* 最佳个体适应度*/ double varible; /* 最佳个体对应的变量值*/ int generation; /* 最佳个体生成代*/ }; struct individual *oldpop; /* 当前代种群*/ struct individual *newpop; /* 新一代种群*/ struct bestever bestfit; /* 最佳个体*/ double sumfitness; /* 种群中个体适应度累计*/ double max; /* 种群中个体最大适应度*/ double avg; /* 种群中个体平均适应度*/ double min; /* 种群中个体最小适应度*/ float pcross; /* 交叉概率*/ float pmutation; /* 变异概率*/ int popsize; /* 种群大小*/ int lchrom; /* 染色体长度*/ int chromsize; /* 存储一染色体所需字节数*/ int gen; /* 当前世代数*/ int maxgen; /* 最大世代数*/ int run; /* 当前运行次数*/

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

遗传算法综述

3D S可以方便灵活地实现对动画帧中的节点、平面、边界、颜色和轨迹的控制,同时对于物体变形测试,轴心点设置以及段信息的获取和设置也能方便准确地进行。而keyscri p t语言的优点体现在于其精确的数值计算,它可以对大量的复杂无序的动作进行随机计算,节省了制作时间。利用keyscri p t编辑器还能方便地进行语法检查并能直接执行无语法错误的keyscri p t程序。3 内存管理方式 3D S使用了独特的Pharlap的虚拟内存管理技术(VMM 386),该技术使3D—Studi o能使用比物理内存RAM更大的空间。这种内存管理方式与W indow2 s T M的内存管理方式不同,因此一般不在W indow s T M中使用3D S,若要在W indow s T M中使用,则必须在W in2 dow s T M的system1in i中的[386Enh]段加入device= Pharlap1386,使W indow s T M可以使用Pharlap的内存管理方式。这种内存管理方式也有一些不足,如内存一旦被3D S使用将不被释放。 4 硬件环境 使用3D—Studi o410的最低配制要求是386(带协处理器)的主机,至少8兆的内存,20兆以上的硬盘空间,DO S313以上的操作系统。由于3D S中的许多图形渲染时都必须使用256色,且观看3D S自带的一些图片也必须在256色的模式下进行,所以需要SV GA或TV GA的显示器。输入系统除了键盘外还必须配有鼠标,也可选配数字化仪。由于3D S在进行图形渲染需要大容量的内存,同时还需要CPU进行大量的浮点运算,因此当CPU为Pen tium T M、内存为16兆以上,并使用高性能的显示卡时,3D S的动画制作功能才能得到完美体现。由于ln tel公司生产的CPU兼容的Cyrix、AM D等公司生产的CPU浮点运算能力较差,因此CPU首选还是ln tel公司的产品。外设还可选配数字化仪等设备,对于需要直接输出到磁带上,并使用电视进行播发的动画,则可选用专业用户级以上的逐帧录向设备。 总之,3D S是一个庞大的图形工作平台,学会使用它的各种命令,发挥软件的强大功能绘制出优秀的动画和图象,还需要有很多技巧。随着人们对3D S认识加深,以它为平台开发的动画产品必将更加丰富多彩。 参考文献 1 [美]S1D1E lli o t,P1L1M iller,G1G1Pyro s著1黄心渊等译《3D—Studi o技术精粹》1北京:清华大学出版社。 19951 2 黄心渊 左正兴编著1《3D—Studi o(310—410)技术与应用》1北京:清华大学出版社,19961 收稿日期:1996年11月18日 遗传算法综述 艾丽蓉 何华灿 (西北工业大学计算机系 西安710072) 摘 要 本文从计算智能与进化计算谈起,论述了遗传算法产生的思想及背景,遗传算法的应用与研究现状,以及遗传算法研究的基本内容与问题,最后对GA与传统搜索算法做一比较,并概述了GA在并行处理应用中的潜在优势。 关键词 计算智能 进化计算 遗传算法(GA) 0 序言 长久以来,人们一谈到人工智能就马上想到逻辑、规则、推理,而一谈到计算就联想到矩阵运算、解微分方程,似乎智能和计算是两股道上跑的车。人工智能在走过几十年的曲折道路之后,人们经过认真反思,不断探索新的研究途径,于是一个新的研究方向——计算智能应运而生。 研究思维模拟主要的道路有四条:基于心理学的符号处理方法,基于社会学层次型的智能体方法,基于生物进化的进化计算与自适应方法,以及基于生理学的人工神经网络方法。目前聚集在计算智能大旗下的主要是后两个学派的学者(加上从事模糊计算和混沌计算等方面的学者)。实际上,只要在计算机上,模拟人类思想,不管用什么方法,其本质的基础还是二进制数字计算,在当前符号处理主宰人工智能的情况下,更应强调遗传算法等以数字计算为基础的方法对推动人工智能发展有着特殊的作用。 计算技术的飞速发展使大规模的现实模拟成为可能,而针对社会和生物现象的模拟,对人类认识自身及其环境具有重大意义,进化是其中最为诱人的领域之一。人的智能是从哪里来的?归根结底是从生物进化中得来的,反映在遗传基因中,脑的结构变化也是通过基

遗传算法Matlab程序

% f(x)=11*sin(6x)+7*cos(5x),0<=x<=2*pi; %%初始化参数 L=16;%编码为16位二进制数 N=32;%初始种群规模 M=48;%M个中间体,运用算子选择出M/2对母体,进行交叉;对M个中间体进行变异 T=100;%进化代数 Pc=0.8;%交叉概率 Pm=0.03;%%变异概率 %%将十进制编码成16位的二进制,再将16位的二进制转成格雷码 for i=1:1:N x1(1,i)= rand()*2*pi; x2(1,i)= uint16(x1(1,i)/(2*pi)*65535); grayCode(i,:)=num2gray(x2(1,i),L); end %% 开始遗传算子操作 for t=1:1:T y1=11*sin(6*x1)+7*cos(5*x1); for i=1:1:M/2 [a,b]=min(y1);%找到y1中的最小值a,及其对应的编号b grayCodeNew(i,:)=grayCode(b,:);%将找到的最小数放到grayCodeNew中grayCodeNew(i+M/2,:)=grayCode(b,:);%与上面相同就可以有M/2对格雷码可以作为母体y1(1,b)=inf;%用来排除已找到的最小值 end for i=1:1:M/2 p=unidrnd(L);%生成一个大于零小于L的数,用于下面进行交叉的位置if rand()

遗传算法综述

遗传算法综述 太原理工大学刘晶学号:s2******* 摘要:遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获得和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优的方案。遗传算法作为一种实用、高效、鲁棒性强的优化技术,有着广泛的应用前景。 关键词:遗传算法数学模型优点流程 一,概述。遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。美国Michigan 大学的Holland 教授及其学生受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适应于复杂系统优化的自适应概率优化技术———遗传算法。 二,基本遗传算法的数学模型。基本遗传算法可表示为:SGA=(C,E,P0,M,Φ,Γ,Ψ,T)式中,C为个体的编码方法;E 为个体适应度评价函数;P0 为初始种群;M为种群大小;Φ为选择算子;Γ为交叉算子;Ψ为变异算子;T为遗传运算终止条件。 三,遗传算法的优点。 3.1 对可行解的广泛性表示。遗传算法的处理对象不是参数本身,而是针对那些通过参数集进行编码得到的基因个体。次编码操作

使得遗传算法可以直接对结构对象进行操作。 (1)通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化。 (2)通过对集合的操作,遗传算法可实现对规则集合和知识库的精炼而达到高质量的机器学习目的。 (3)通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树。 (4)通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造的顺序控制系统。 3.2 群体搜索特性。许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点,相反,遗传算法采用的是同时处理群体中多个个体的方法。 3.3 不需要辅助信息。遗传算法仅用适应度函数的数值来评估基因个体,并在此基础上进行遗传操作。更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且某定义域可以任意设定。对适应度函数的唯一要求是,编码必须与可行解空间对应,不能有死码。由于限制条件的缩小,使得遗传算法的应用范围大大扩展。 3.4 内在启发式随机搜索特性。遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。概率仅仅是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动的。虽然看起来它是一种盲目搜索方法,实际上它有明确的搜索方向,具有内

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

遗传算法程序示例

遗传算法程序示例 %% I. 清空环境变量 %optimtool solver 中选择GA %添加gaot工具箱 clear all clc %% II. 绘制函数曲线 x = 0:0.01:9; y = x + 10*sin(5*x)+7*cos(4*x); figure plot(x, y) xlabel('自变量') ylabel('因变量') title('y = x + 10*sin(5*x) + 7*cos(4*x)') grid %% III. 初始化种群 initPop = initializega(50,[0 9],'fitness'); %种群大小;变量变化范围;适应度函数的名称 %看一下initpop 第二列代表适应度函数值 %% IV. 遗传算法优化 [x endPop bpop trace] = ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,... 'normGeomSelect',0.08,'arithXover',2,'nonUnifMutation',[2 25 3]); %变量范围上下界;适应度函数;适应度函数的参数;初始种群;精度和显示方式;终止函数的名称; %终止函数的参数;选择函数的名称;选择函数的参数;交叉函数的名称;交叉函数的参数;变异函数的 %名称;变异函数的参数 % X 最优个体endpop 优化终止的最优种群bpop 最优种群的进化轨迹trace 进化迭代过程中 %最优的适应度函数值和适应度函数值矩阵 %% V. 输出最优解并绘制最优点 x hold on plot (endPop(:,1),endPop(:,2),'ro')

遗传算法综述

遗传算法综述 遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。 在阅读了一些相关资料后,我整理出这篇综述,将通过五个部分来介绍遗传算法以及其在计算机科学领域的相关应用、 一、起源和发展分支 尝试性地将生物进化过程在计算机中模拟并用于优化问题求解开始于20世纪50年代末,其目的是将生物进化的思想引入许多工程问题中而成为一种优化工具,这些开拓性的研究工作形成了遗传算法的雏形。但当时的研究进展缓慢,收效甚微。原因是由于缺少一种通用的编码方式,人们只有通过变异才能改变基因结构,而无法使用交叉,因而增加了迭代次数。同时算法本身需要较大的计算量,当时的计算机速度便无法满足要求,因而限制了这一仿生过程技术的迅速发展。20世纪60年代中期,Holland在Fraser和Bremermann等人研究成果的基础上提出了位串编码技术,这种编码技术同时适用于变异操作和交叉操作。 遗传算法的真正产生源于20世纪60年代末到70年代初,美国Michigan大学的Holland教授在设计人工适应系统中开创性地使用了一种基于自然演化原理的搜索机制,并于1975年出版了著名的专著“Adaptation in Natural and Artificial Systems”,这些有关遗传算法的基础理论为遗传算法的发展和完善奠定了的基础。同时,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,设计了遗传算法执行策略和性能评价指标,他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指

遗传算法概述

第1期作者简介:李红梅(1978-),女,湖南湘潭人,硕士,广东白云学院讲师,研究方向为演化计算。 1遗传算法的发展史 遗传算法(Genetic Algorithms )研究的历史比较短,20世纪 60年代末期到70年代初期,主要由美国家Michigan 大学的John Holland 与其同事、学生们研究形成了一个较完整的理论 和方法,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。我国对于GA 的研究起步较晚,不过从20世纪90年代以来一直处于不断上升中。 2遗传算法的基本思想 遗传算法是从代表问题可能潜在解集的一个种群(popu- lation )开始的,而一个种群则由经过基因(gene )编码(coding ) 的一定数目的个体(individual )组成。每个个体实际上是染色体(chromosome )带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现是某种基因组合,它决定了个体的形状的外部表现。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation )演化产生出越来越好的近似解。在每一代中,根据问题域中个体的适应度(fitness )、大小挑选(selection )个体,借助于自然遗传学的遗传算子(genetic operators )进行组合交叉(crossover )和变异(mutation ),产生出代 表新的解集的种群。这个过程将导致后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding ),可以作为问题近似最优解。 3遗传算法的一般流程 (1)随机产生一定数目的初始种群,每个个体表示为染色 体的基因编码; (2)计算每个个体的适应度,并判断是否符合优化准则。若符合,输出最佳个体及其代表的最优解并结束计算,否则转向第3步; (3)依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体可能被淘汰; (4)执行交叉和变异操作,生成新的个体;(5)得到新一代的种群,返回到第2步。 4遗传算法的特点 传统的优化方法主要有三种:枚举法、启发式算法和搜索 算法: (1)枚举法 可行解集合内的所有可行解,以求出精确最 优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。此外,当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前先进计算机工具上无法求解。 (2)启发式算法 寻求一种能产生可行解的启发式规则, 以找到一个最优解或近似最优解。该方法的求解效率比较高,但对每一个需求解的问题必须找出其特有的启发式规则。这个启发式规则一般无通用性,不适合于其它问题。 (3)搜索算法 寻求一种搜索算法,该算法在可行解集合 的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但若适当地利用一些启发知识,就可在近似解的质量和效率上达到一种较好的平衡。 遗传算法不同于传统的搜索和优化方法。主要区别在于: ①遗传算法直接处理问题参数的适当编码而不是处理参数集 本身。②遗传算法按并行方式搜索一个种群数目的点,而不是 遗传算法概述 李红梅 (广东白云学院计算机系,广东广州510450) 摘要:遗传算法是一种全局优化的随机搜索算法。它是解决复杂优化问题的有力工具。在工程设计、演化硬件电路 设计以及人工智能等方面应用前景广阔。系统地介绍了遗传算法的发展史、基本思想、特点、主要应用领域等相关方 面。 关键词:遗传算法;搜索;进化;最优解;种群中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2009)01-0067-02 第8卷第1期2009年1月 Vol.8No.1Jan.2009 软件导刊 Software Guide

遗传算法概述

第一章 遗传算法概述 2.1 遗传算法的原理 遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种概率搜索算法。遗传算法是通过模拟生物在自然界中的进化过程而形成的一种优化算法。它的基本过程是:先随机生成规模为m 的初始群体,对连续优化问题即为n R 中的m 个点},,,{,},,,,{21112111m n m m m n x x x x x x x x ==的集合, },,,{21k sn k s k s x x x 称为个体或者染色体,通过对该群体使用遗传操作(包括选择、 交叉、变异遗传算子),得到m 个新的个体,这称作是群体的一代进化,相当于通常优化算法的一次迭代。不断重复这一过程,可看作是群体的逐代演化,直到得到满足给出条件的问题解。 可以看出,遗传算法的关键是进化过程中使用的遗传操作即选择、交叉和变异等算子,这些算子决定了下一代个体的具体位置。 选择策略对算法性能的影响有举足轻重的作用。常用的是轮盘选择和精英选择。 a. 轮盘选择(roulette wheel selection ) 选择的基本依据是个体的适应值,对于最小化问题,个体适应值取为)()(x f K x f -=',其中K 为一足够大的正数。定义第i 个体的选择概率为 ∑=''=n i i i i x f x f p 1)() ( (3) 其意义是个体适应值在群体总适应值中所占的比例。生成一个[0,1]内的随机数r ,若i i p p p r p p p +++≤<+++- 21110,假设00=p ,则选择个体i 。 b. 精英选择(elitist selection ) 当下一代群体的最佳个体适应值小于当前群体最佳个体的适应值,则将当前群体最佳个体或者适应值大于下一代最佳个体适应值的多个个体直接复制到下一代,随机替代或替代最差的下一代群体中的相应数量的个体。 交叉与变异算子的选取与编码方式有关,最初Holland[5] 提出的遗传算法是采用二进制编码来表现个体,后来发现对连续优化问题采用浮点编码可以达到更好的效果,因此越来越多地使用浮点编码,下述的交叉、变异算子针对浮点编码。

一个简单实用的遗传算法c程序完整版

一个简单实用的遗传算 法c程序 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一个简单实用的遗传算法c程序(转载) 2009-07-28 23:09:03 阅读418 评论0 字号:大中小 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从,目录 coe/evol中的文件中获得。要求输入的文件应该命名为‘’;系统产生的输出文件为‘’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include <> #include <> #include <> /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

最优控制-遗传算法综述

最优控制论文 遗传算法的发展 摘要 最优控制是现代控制理论的核心,它研究的主要问题是:在满足一定约束条件下,寻求最优控制策略,使得性能指标取极大值或极小值。解决最优控制问题

的主要方法有古典变分法、极大值原理和动态规划。 最优控制理论已被应用于综合和设计最速控制系统、最省燃料控制系统、最 小能耗控制系统、线性调节器等。目前研究最优控制理论最活跃的领域有神经网 络优化、模拟退火算法、趋化性算法、遗传算法、鲁棒控制、预测控制、混沌优化 控制以及稳态递阶控制等。 作为一种比较新的一种新的优化算法—遗传算法(Genetic Algorithm, 简称G A ) 正在迅速发展。 遗传算法是一种基于生物自然选择与遗传机理的随机搜索与优化方法。近年来,由于遗传算法求解复杂优化问题的巨大潜力及其在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注。本文介绍了遗传算法的研究现状,描述了它的主要特点和基本原理,概述了它的理论、技术和应用领域,讨论了混合遗传算法和并行遗传算法,指出了遗传算法的研究方向,并对遗传算法的性能作了分析。

目录 1 前言 (1) 2 遗传算法基本理论..................................................... 1... 2.1 遗传算法的基本步骤.................................................. 1.. 2.2 遗传算法的现状..................................................... 2... 2.3 遗传算法的应用..................................................... 3... 2.3.1 函数优化 ..................................................... 3... 2.3.2 组合优化 ..................................................... 4... 2.3.3 生产调度问题 ................................................. 4... 2.3.4 自动控制 ..................................................... 4... 2.3.5 机器人学 ..................................................... 4... 2.3.6 图像处理 ..................................................... 4... 2.3.7 人工生命 ..................................................... 5... 2.3.8 遗传编程 ..................................................... 5... 2.3.9 机器学习 ..................................................... 5... 2.3.10 数据挖掘.................................................... 5... 3 遗传算法的研究方向................................................... 5... 参考文献............................................................ 7...

相关文档
最新文档