四点共圆模型

四点共圆模型
四点共圆模型

共圆模型

模型1 共端点,等线段模型

如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆.

如图②,若OA =OB =OC ,则A 、B 、C 三点在以O 为圆心,OA 为半径的圆上.

如图③,常见结论有:∠ACB =12∠AOB ,∠BAC =1

2

∠BOC

模型分析

∵OA =OB =OC .

∴A 、B 、C 三点到点O 的距离相等.

∴A 、B 、C 三点在以O 为圆心,OA 为半径的圆上.

∵∠ACB 是?AB 的圆周角,∠AOB 是?AB 的圆心角,

∴∠ACB =1

2

∠AOB .

同理可证∠BAC =1

2

∠BOC .

(1)若有共端点的三条线段,可考虑构造辅助圆.

(2)构造辅助圆是方便利用圆的性质快速解决角度问题. 模型实例

如图,△ABC 和△ACD 都是等腰三角形,AB =AC ,AC =AD ,连接BD .

求证:∠1+∠2=90°.

证明

证法一:如图①,

图①

O A

C B

图②

B

O

C A

图③

O

A

B

C 2

1B

C

D

A

图①

2

1C

D

A

B

图②

12

B

A

C

E

D

∵AB =AC =AD . ∴B 、C 、D 在以A 为圆心,AB 为半径的⊙A 上. ∴∠ABC =∠2. 在△BAC 中,∵∠BAC +∠ABC +∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°. 证法二:如图②,

∵AB =AC =AD .∴∠BAC =2∠1.∵AB =AC , ∴B 、C 、D 在以A 为圆心,AB 为半径的⊙O 上. 延长BA 与圆A 相交于E ,连接CE .

∴∠E =∠1.(同弧所对的圆周角相等.) ∵AE =AC ,∴∠E =∠ACE .

∵BE 为⊙A 的直径,∴∠BCE =90°. ∴∠2+∠ACE =90°.∴∠1+∠2=90°. 小猿热搜

1.如图,△ABC 为等腰三角形,AB =AC ,在△ABC 的外侧作直线AP ,点B 与点 D 关于AP 轴对称,连接BD 、CD ,CD 与AP 交于点E .求证:∠1=∠2.

证明

∵A 、D 关于AP 轴对称,∴AP 是BD 的垂直平分线. ∴AD =AB ,ED =EB .又∵AB =AC .

∴C 、B 、D 在以A 为圆心,AB 为半径的圆上.

∵ED =EB ,∴∠EDB =∠EBD . ∴∠2=2∠EDB .又∵∠1=2∠CDB . ∴∠1=∠2.

2.己知四边形ABCD ,AB ∥CD ,且AB =AC =AD =a ,BC =b ,且2a >b ,求BD 的长.

解答

以A 为圆心,以a 为半径作圆,延长BA 交⊙A 于E 点,连接ED . ∵AB ∥CD ,∴∠CAB =∠DCA ,∠DAE =∠CDA . ∵AC =AD , ∴∠DCA =∠CDA . ∴∠DAE =∠CAB .在△CAB 和△DAE 中. AD AC DAE CAB AE AB =??

∠=∠??=?

∴△CAB ≌△DAE . ∴ED =BC =b ∵BE 是直径,∴∠EDB =90°. 在Rt △EDB 中,ED =b ,BE =2a ,

1

2

P

B

A

C

E D

A D

21

P

E C

B

A C

B

D

B

C

E

D

A

∴BD 22BE ED -()

2

22a b -224a b -

模型2 直角三角形共斜边模型

模型分析

如图①、②,Rt △ABC 和Rt △ABD 共斜边,取AB 中点O ,根据直角三角形斜边中线等于斜边一半,可得:OC =OD =OA =OB ,

∴A 、B 、C 、D 四点共圆.

(1)共斜边的两个直角三角形,同侧或异侧,都会得到四点共圆;

(2)四点共圆后可以根据圆周角定理得到角度相等,完成角度等量关系的转化,是证明角度相等重要的途径之一. 模型实例

例1 如图,AD 、BE 、CF 为△ABC 的三条高,H 为垂线,问: (1)图中有多少组四点共圆? (2)求证:∠ADF =∠ADE .

解答

(1)6组

①C、D、H、E四点共圆,圆心在CH的中点处;

②D、B、F、H四点共圆,圆心在BH的中点处;

③A、E、H、F四点共圆,圆心在AH的中点处;

④C、B、F、E四点共圆,圆心在BC的中点处;

⑤B、A、E、D四点共圆,圆心在AB的中点处;

⑥C、D、F、A四点共圆,圆心在AC的中点处.

(2)如图,由B、D、H、F四点共圆,得∠ADF=∠1.

同理:由A、B、D、E四点共圆,得∠ADE=∠1.

∴∠ADF=∠ADE.

例2如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F,求证:FE=DE.

解答

如图,连接DB、DF.

∵四边形ABCD是正方形,且BF是∠CBA的外角平分线,

∴∠CBF=45°,∠DBC=45°,

∴∠DBF=90°.

又∵∠DEF=90°,

∴D、E、B、F四点共圆.

∴∠DFE=∠DBE=45°(同弧所对的圆周角相等).

∴△DEF是等腰直角三角形.

∴FE=DE.

1.如图,锐角△ABC 中,BC.CE 是高线,DG ⊥CE 于G ,EF ⊥BD 于F ,求证:FG BC P

证明:由于Rt △BCE 与Rt △BCD 共斜边BC , ∴B 、C 、D 、E 四点共圆. ∴∠DBC=∠DEG ,

同理,Rt ∠EDF 与Rt △DGE 共斜边DE , ∴D 、E 、F 、G 四点共圆. 于是∠DEG=∠DFG , 因此,∠DBC=∠DFG 于是FG ∥BC

2. 如图, BE.CF 为△ABC 的高,且交于点H,连接AH 并延长交于BC 于点D,求证:AD ⊥BC.

F

G

E

D

B

H

E

F

A

B

C

3.如图,等边△PQR内接于正方形ABCD,其中点P,Q,R分别在边AD,AB,DC上,M是QR的中点.求证:不论等边△PQR怎样运动,点M为不动点.

B

R P

Q A

4.如图,已知△ABC中,AH是高,AT是角平分线,且TD⊥AB,TE⊥AC.求证:∠AHD=∠AHE.

证明:(1)∵∠ADT=∠AHT=∠AET=90°,∴D,E,H在以AT为直径的圆上,

∴∠AHD=∠ATD,∠AHE=∠ATE,

又∵AT是角平分线,TD⊥AB,TE⊥AC,

∴∠ATD=∠ATE,

∴∠AHD=∠AHE.

补充:

A

E

H

D

T

B C

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型:阿氏圆最值模型 名师点睛 拨开云雾 开门见山 在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. A B P O 【模型建立】 如图 1 所示,⊙O 的半径为R ,点 A 、B 都在⊙O 外 ,P 为⊙O 上一动点,已知R=2 5 OB , 连接 PA 、PB ,则当“PA+ 2 5 PB ”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段 OB 上截取OC 使 OC=25R ,则可说明△BPO 与△PCO 相似,则有2 5 PB=PC 。故本题求“PA+ 2 5 PB ”的最小值可以转化为“PA+PC ”的最小值,其中与A 与C 为定点,P 为动点,故当 A 、P 、C 三点共线时,“PA+PC ”值最小。

【技巧总结】 计算PA k PB +g 的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P 使得PA k PB +g 的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB 2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值

“中考数学专题复习 圆来如此简单”经典几何模型之隐圆专题(含答案)

经典几何模型之隐圆”“圆来如此简单” 一.名称由来 在中考数学中,有一类高频率考题,几乎每年各地都会出现,明明图形中没有出现“圆”,但是解题中必须用到“圆”的知识点,像这样的题我们称之为“隐圆模型”。 正所谓:有“圆”千里来相会,无“圆”对面不相逢。“隐圆模型”的题的关键突破口就在于能否看出这个“隐藏的圆”。一旦“圆”形毕露,则答案手到擒来! 二.模型建立 【模型一:定弦定角】 【模型二:动点到定点定长(通俗讲究是一个动的点到一个固定的点的距离不变)】 【模型三:直角所对的是直径】 【模型四:四点共圆】 ` 三.模型基本类型图形解读 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 四.“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。 直角必有外接圆,对角互补也共圆。五.“隐圆”题型知识储备

3 六.“隐圆”典型例题 【模型一:定弦定角】 1.(2017 威海)如图 1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足 ∠PAB=∠ACP,则线段P B 长度的最小值为_ 。 简答:因为∠PAB=∠PCA,∠PAB+∠PAC=60°,所以∠PAC+∠PCA=60°,即∠APC=120°。因为A C定长、∠APC=120°定角,故满足“定弦定角模型”,P在圆上,圆周角∠APC=120°,通过简单推导可知圆心角∠AOC=60°,故以AC 为边向下作等边△AOC,以O 为圆心,OA 为半径作⊙O,P在⊙O 上。当B、P、O三点共线时,BP最短(知识储备一:点圆距离), 此时B P=2 -2 2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。

四点共圆

四点共圆(圆内接四边形)的性质: 1.圆幂定理; 2.图Ⅰ:相交弦定理。如图,AB、CD为圆O的两条任意弦。相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理 ∠A=∠C,所以所以有:即: 图Ⅱ:割线定理。如图,连接AD、BC。可知∠B=∠D,又因为∠P为公共角,所以

,线段PT所在的直线切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、 ∠PCB都为弦切角。弦切角的度数等于它所夹的弧的圆心角度数的一半。等于它所夹的弧的 圆周角度数。 三角形角平分线定理:三角形中角的平分线将对边所分成的两部分和两邻边成比例(反之也成立)。三角形的外角平分线也有类似性质。设AD、AE 是∠A 及外角的平分线,则有AB/AC=BD/DC=BE/EC。弦切角定理:弦切角等于它所夹弧所对的圆周角;反之也成立(可用于证明切线)。 斯特沃特定理(Stewart): 海伦公式。 梅涅劳斯定理 塞瓦定理 托勒密定理(Ptolemy) 西姆松定理(Simson) 欧拉定理 ( Euler ) 费马点(Fermat ) 三角形重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2 : 1 。 2、重心和三角形 3 个顶点组成的 3 个三角形面积相等。 3、重心到三角形 3 个顶点距离的平方和最小。 6 三角形垂心的性质:设△ ABC 的三条高为 AD 、 BE 、 CF , D 、 E 、 F 为垂足,垂心为 H; 1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三

角形外。2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心。 3、垂心 H 关于三边的对称点,均在△ ABC 的外接圆上。 4、三角形的三个顶点、三个垂足、垂心这 7 个点可以得到 6 组四点共圆,有三组 ( 每组四个 ) 相似的直角三角形,且 AH · HD=BH · HE=CH · HF。 5、 H、 A、 B 、 C 四点中任一点是其余三点为顶点的三角形的垂心 ( 并称这样的四点为一个垂心组 ) 。 6、△ ABC ,△ ABH ,△ BCH ,△ ACH 的外接圆是等圆。 7、在非直角三角形中,过 H 的直线交 AB、 AC 所在直线分别于 P 、 Q,则AB/AP · tanB+ AC/AQ · tanC=tanA+tanB+tanC 。 8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2 倍。9、设O ,H 分别为△ABC 的外心和垂心,则∠BAO=∠HAC ,∠ ABH= ∠ OBC ,∠ BCO= ∠ HCA 。 10 、锐角△的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2 倍。11 、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形 ( 顶点在原三角形的边上 ) 中,以垂足三角形的周长最短。 12 、西姆松定理(Simson 西姆松线):从一点向三角形的三边所引垂线的三垂足共线的充要条件是该点落在三角形的外接圆上。 13、设锐角△ABC 内有一点 P,那么 P 是垂心的充分必要条件是:PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。 三角形内心的性质:设 I 为△ ABC 的内心,连 AI 交△ ABC 外接圆于点 K,则 1 ①∠BIC=90°+2∠A;S=pr,abcr=p· AI· BI· CI 8 ②三角形一内角平分线与其外接圆的交点到三角形另两顶点的距离与其到内心的距离相等(即K 是△ BIC 的外心)。反之,I 在 AK 上且 KI=KB,则 I 为△ ABC 的内心。 1 ③P 为△ ABC 的内切圆与边 AB 的切点,则 AP=p-a=2(b+c-a)。 三角形外心的性质: abc ①设 O 为△ ABC 的外心,则∠BOC=2∠A 或 360° -2∠A; R=4S 。△②锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和。③设H 为△ABC 的垂心,则 OH ? OA ? OB ? OC 。 面积方法所谓面积方法,就是在处理一些数学问题时,以面积的有关知识为论证或计算的手段,通过适当的变换,从而导得所考虑的量与量之间的关系,最后得到结论。由于平面上的

初中数学阿氏圆最值模型归纳

几何模型:阿氏圆最值模型 【模型来源】 “阿氏圆"又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件得所有得点P得轨迹构成得图形为圆。这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆"。 A B P O 【模型建立】 如图1 所示,⊙O 得半径为R,点A、B 都在⊙O外,P为⊙O上一动点,已知R=OB, 连接PA、PB,则当“PA+PB”得值最小时,P 点得位置如何确定? 解决办法:如图2,在线段 OB 上截取OC使OC=R,则可说明△BPO与△PCO相似,则有PB=PC。故本题求“PA+PB”得最小值可以转化为“PA+PC”得最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算得最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得得值最小,解决步骤具体如下: 1.如图,将系数不为1得线段两端点与圆心相连即OP,OB 2.计算出这两条线段得长度比 3.在OB上取一点C,使得,即构造△POM∽△BOP,则, 4.则,当A、P、C三点共线时可得最小值

典题探究 启迪思维探究重点 例题1、如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P就是圆C上一个动点,则得最小值为__________。 E A B C D P M P D C B A 【分析】这个问题最大得难点在于转化,此处P点轨迹就是圆,注意到圆C半径为2,CA=4, 连接CP,构造包含线段AP得△CPA,在CA边上取点M使得CM=2, 连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=. 问题转化为PM+PB≥BM最小值,故当B,P,M三点共线时得最小值,直接连BM即可得. 变式练习〉>> 1.如图1,在RT△ABC中,∠ACB=90°,CB=4,CA=6,圆C得半径为2,点P为圆上一动点,连接AP,BP, 求①,②,③,④得最小值。 [答案]:①=,②=2,③=,④=.

2018中考冲刺专题—隐形圆模型基本类型图形解读与应用

2018年中考冲刺—隐形圆模型基本类型图形解读与应用 一、隐形圆的四大模型 【模型一:定弦定角的“前世今生”】 【模型二:动点到定点定长】

【模型三:直角所对的是直径】 【模型四:四点共圆】 二、“隐圆”破解策略 牢记口诀:定点定长走圆周,定线定角跑双弧。直角必有外接圆,对角互补也共圆。 破解策略:对于一个动点和一个定点之间的最值问题,若动点所在的角为直角,则其运动轨通常为圆。而连接动点所在的圆的圆心与定点之间的距离加上或减去半径,就可以求出线段的最值。因此在这类题型中,最常做的是辅助圆,找出这个圆所在的圆心,连接圆心与定点之间的连线,再求出圆心与定点之间的距离,减去或加上半径即可求出最值. “隐圆”问题的两个依据: ①圆上各点到定点(圆心O)的距离相等,都等于定长(半径R); ②到定点的距离等于定长的点都在同一个圆上. 常考题型与解题方法: 1. 利用隐圆求几何最值; 2. 利用隐圆求变量的取值范围,实际上可以转化为求最值,即求出变量的最大值与最小值,再

进一步确定变量的取值范围; 3. 利用隐圆求弧长,角度等,针对有些平面几何问题,用常规方法求解难度极大,但若能够针对题目的本质特征,恰当地画出隐藏的圆,巧妙运用圆的有关知识找到解题捷径,往往可以化难为易,化繁为简. 三、“隐圆”题型知识储备 四、链接中考—经典例题 【模型一:定弦定角】 1.(2017 威海)如图1,△ABC 为等边三角形,AB=2,若P 为△ABC 内一动点,且满足∠P AB=∠ACP,则线段P B 长度的最小值为________.

2.如图1所示,边长为2的等边△ABC 的原点A在x轴的正半轴上移动,∠BOD=30°,顶点A 在射线O D 上移动,则顶点C到原点O的最大距离为。 【思考:若∠BOD=45°呢?(提示:需要构造倍角模型)】 3.如图1,点A是直线y=-x上的一个动点,点B是x轴上的动点,若A B=2,则△AOB面 积最大值为_________. 4. 如图1,AC为边长为形ABCD的对角线,∠ABC=60°,点M、N分别从点B、C同时出发,以相同速度沿BC、CA向终点C和A运动,连接AM和BN,求△APB周长的最大值___.

林初中2017届中考数学压轴题专项汇编:专题20简单的四点共圆(附答案)

专题20 简单的四点共圆 破解策略 如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有: 1.若四个点到一个定点的距离相等,则这四个点共圆. 如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的 圆上. D 【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2. 【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值. (2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°. 2.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.

D 【答案】(1)略;(2)AD ;(3)AD=DE·tanα. 【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE. (2)同(1),可得A,D,B,E四点共圆,∠AED=∠ABD=30°,所以AD DE =tan30°, 即AD= 3 DE. 3.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆. 如图,在四边形ABCD中,∠CDE为外角,若∠B=∠CDE,则A,B,C,D四点在同一个圆上. 【答案】略 4.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆. 如图,点A,D在线段BC的同侧,若∠A=∠D,则A,B,C,D四点在同一个圆上.

四点共圆的判定和性质

四点共圆的判定和性质 四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”. 证明四点共圆有下述一些基本方法: 方法1:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2:把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆. 方法3:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点. 方法4:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法5:把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆. 方法6:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这六种基本方法中选择一种证法,给予证明. 判定与性质: 圆内接四边形的对角和为180度,并且任何一个外角都等于它的内对角。 如四边形ABCD内接于圆O,延长AB至E,AC、BD交于P,则A+C=180度,B+D=180° ∠ABC=∠ADC(同弧所对的圆周角相等) ∠CBE=∠D(外角等于内对角) △ABP∽△DCP(三个内角对应相等) AP×CP=BP×DP(相交弦定理) AB×CD+AD×CB=AC×BD(托勒密定理) 托勒密定理及证明: 如图,四边形ABCD内接于圆O,那么AB*CD+AD*BC=AC*BD 证明:作∠BAE=∠CAD,交BD于点E ∵∠ABE=∠ACD,∠BAE=∠CAD ∴△ABE∽△ACD ∴AB:AC=BE:CD ∴AB×CD=AC×BE ∵∠BAC=∠EAD,∠ACB=∠ADE ∴△ABC∽△AED ∴BC:DE=AC:AD ∴BC×AD=AC×DE ∴AB×CD+BC×AD=AC×BE+AC×DE=AC(BE+DE)=AC×BD

圆中有关最值问题一.doc

圆中有关最值问题(1)教学设计 一、设计思路: 圆中有关最值问题是中考数学中的重要内容,是综合性较强的问题,它贯穿初中数学的 始终,是中考的热点问题。其运用性质有:圆中直径是最长的弦、垂线段最短、三边关系定 理、对称法等。本节课以例题入手来研究圆中的有关最值问题。 二、学情分析 学生知识技能基础:学生在前面几节课已经认识了圆,学习了圆的有关知识,以及数学 的基本结论:圆中直径是最长的弦、垂线段最短、三角形三边关系等基本知识,这些为本节 课的学习奠定了良好的知识技能基础。 学生活动经验基础:通过以往的数学学习,学生已经具有了一些数学活动经验的基础; 另一方面,在以往的数学活动中,学生已经经历了很多合作交流的学习过程,具有了一定的 合作学习的经验,具备了一定的合作交流的能力。 三、教学目标 知识与技能: 1、会利用直径是圆中最长的弦这一基本结论解决有关最值问题; 2、会利用圆外一点与圆上各点的连线中最短与最近距离这一基本事实,解决圆中有关最值问题。 方法与途径: 通过观察、操作、想象、推理、交流等活动,发展空间观念,培养学生动手动脑、发现 问题及解决问题的能力,以及推理能力和有条理的表达能力。 情感与评价: 通过实际操作、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思 维变得更加灵活。 现代教学手段: 多媒体和几何画板的合理应用,增加了课时内容,激发了学生学习的积极性,突破了教 学重点、难点的同时,更重要的是使复杂问题更加简单化,通过清楚的动画演示,使学生进 一步感受何时取得最大值问题。 四、教学重点与难点 教学重点:将试题转化为最值中的有关模型 教学难点:将试题转化为最值中的有关模型的方法

第11讲阿氏圆最值模型(解析版)

中考数学几何模型11:阿氏圆最值模型 名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题. 【模型来源】 “阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”. B P O

【模型建立】 如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=2 5 OB, 连接PA、PB,则当“PA+2 5 PB”的值最小时,P 点的位置如何确定? 解决办法:如图2,在线段OB 上截取OC使OC=2 5 R,则可说明△BPO与△PCO相似,则有 2 5 PB=PC。 故本题求“PA+2 5 PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、 P、C 三点共线时,“PA+PC”值最小。 【技巧总结】 计算PA k PB +g的最小值时,利用两边成比例且夹角相等构造母子型相似三角形 问题:在圆上找一点P使得PA k PB +g的值最小,解决步骤具体如下: 1.如图,将系数不为1的线段两端点与圆心相连即OP,OB

2. 计算出这两条线段的长度比 OP k OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB =,PC k PB =g 4. 则=PA k PB PA PC AC ++≥g ,当A 、P 、C 三点共线时可得最小值 典题探究 启迪思维 探究重点 例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则1 2 PA PB +的最小值为__________. E A B C D P 【分析】这个问题最大的难点在于转化1 2 PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,

四点共圆模型

共圆模型 模型1 共端点,等线段模型 如图①,出现“共端点,等线段”时,可利用圆定义构造辅助圆. 如图②,若OA =OB =OC ,则A 、B 、C 三点在以O 为圆心,OA 为半径的圆上. 如图③,常见结论有:∠ACB =12∠AOB ,∠BAC =1 2 ∠BOC 模型分析 ∵OA =OB =OC . ∴A 、B 、C 三点到点O 的距离相等. ∴A 、B 、C 三点在以O 为圆心,OA 为半径的圆上. ∵∠ACB 是?AB 的圆周角,∠AOB 是?AB 的圆心角, ∴∠ACB =1 2 ∠AOB . 同理可证∠BAC =1 2 ∠BOC . (1)若有共端点的三条线段,可考虑构造辅助圆. (2)构造辅助圆是方便利用圆的性质快速解决角度问题. 模型实例 如图,△ABC 和△ACD 都是等腰三角形,AB =AC ,AC =AD ,连接BD . 求证:∠1+∠2=90°. 证明 证法一:如图①, 图① O A C B 图② B O C A 图③ O A B C 2 1B C D A 图① 2 1C D A B 图② 12 B A C E D

∵AB =AC =AD . ∴B 、C 、D 在以A 为圆心,AB 为半径的⊙A 上. ∴∠ABC =∠2. 在△BAC 中,∵∠BAC +∠ABC +∠2=180°,∴2∠1+2∠2=180°.∴∠1+∠2=90°. 证法二:如图②, ∵AB =AC =AD .∴∠BAC =2∠1.∵AB =AC , ∴B 、C 、D 在以A 为圆心,AB 为半径的⊙O 上. 延长BA 与圆A 相交于E ,连接CE . ∴∠E =∠1.(同弧所对的圆周角相等.) ∵AE =AC ,∴∠E =∠ACE . ∵BE 为⊙A 的直径,∴∠BCE =90°. ∴∠2+∠ACE =90°.∴∠1+∠2=90°. 小猿热搜 1.如图,△ABC 为等腰三角形,AB =AC ,在△ABC 的外侧作直线AP ,点B 与点 D 关于AP 轴对称,连接BD 、CD ,CD 与AP 交于点E .求证:∠1=∠2. 证明 ∵A 、D 关于AP 轴对称,∴AP 是BD 的垂直平分线. ∴AD =AB ,ED =EB .又∵AB =AC . ∴C 、B 、D 在以A 为圆心,AB 为半径的圆上. ∵ED =EB ,∴∠EDB =∠EBD . ∴∠2=2∠EDB .又∵∠1=2∠CDB . ∴∠1=∠2. 2.己知四边形ABCD ,AB ∥CD ,且AB =AC =AD =a ,BC =b ,且2a >b ,求BD 的长. 解答 以A 为圆心,以a 为半径作圆,延长BA 交⊙A 于E 点,连接ED . ∵AB ∥CD ,∴∠CAB =∠DCA ,∠DAE =∠CDA . ∵AC =AD , ∴∠DCA =∠CDA . ∴∠DAE =∠CAB .在△CAB 和△DAE 中. AD AC DAE CAB AE AB =?? ∠=∠??=? ∴△CAB ≌△DAE . ∴ED =BC =b ∵BE 是直径,∴∠EDB =90°. 在Rt △EDB 中,ED =b ,BE =2a , 1 2 P B A C E D A D 21 P E C B A C B D B C E D A

九年级数学四点共圆例题讲解

九年级数学四点共圆例题讲解 知识点、重点、难点 四点共圆就是圆得基本内容,它广泛应用于解与圆有关得问题.与圆有关得问题变化多,解法灵活,综合性强,题型广泛,因而历来就是数学竞赛得热点内容。 在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆得有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。因此,掌握四点共圆得方法很重要。 判定四点共圆最基本得方法就是圆得定义:如果A、B、C、D四个点到定点O得距离相等,即OA=OB=OC =OD,那么A、B、C、D四点共圆. 由此,我们立即可以得出 1、如果两个直角三角形具有公共斜边,那么这两个直角三角形得四个顶点共圆。 将上述判定推广到一般情况,得: 2、如果四边形得对角互补,那么这个四边形得四个顶点共圆。 3、如果四边形得外角等于它得内对角,那么这个四边形得四个顶点共圆。 4、如果两个三角形有公共底边,且在公共底边同侧又有相等得顶角,那么这两个三角形得四个顶点共圆。 运用这些判定四点共圆得方法,立即可以推出: 正方形、矩形、等腰梯形得四个顶点共圆。 其实,在与圆有关得定理中,一些定理得逆定理也就是成立得,它们为我们提供了另一些证明四点共圆得方法.这就就是: 1、相交弦定理得逆定理:若两线段AB与CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。 2.割线定理得逆定理:若相交于点P得两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、 C、D四点共圆。 3、托勒密定理得逆定理:若四边形ABCD中,AB·CD+BC·DA= AC·BD,则ABCD就是圆内接四边形。 另外,证多点共圆往往就是以四点共圆为基础实现得一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际就是同一个圆。 例题精讲 例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。已知P、D、C、E四点共圆,P、E、A、F 四点共圆,求证:B、D、P、F四点共圆。 证明连PD、PE、PF.由于P、D、C、F四点共圆,所以∠BDP = ∠PEC.又由于A、E、P、F四点共圆,所以∠PEC =∠AFP.于就是∠BDP= ∠AFP,故B、D、P、F四点共圆。 例2:设凸四边形ABCD得对角线AC、BD互相垂直,垂足为E,证明:点E关于AB、BC、CD、DA得对称点共圆。 为1 2 ,此变换把E关于AB、BC、 证明以E为相似中心作相似变换,相似比 CD、DA得对称点变为E在AB、BC、CD、DA上得射影P、Q、R、S(如图)、只需证明PQRS就是圆内接四边形。 由于四边形ESAP、EPBQ、EQCR及ERDS都就是圆内接四边形(每个四边形都有一组对角为直角),由E、P、B、Q共圆有∠EPQ = ∠EBQ、由E、Q、C、R共圆有∠ERQ=∠ECQ,于就是∠EPQ+∠ERQ = ∠EBQ+∠ECQ=90°、同理可得∠EPS +∠ERS =90°、从而有∠SPQ+∠QRS =180°,故PQRS就是圆内接四边形。 例3:梯形ABCD得两条对角线相交于点K,分别以梯形得两腰为直径各作一圆,点K位于这两个圆之外,证明:由点K向这两个圆所作得切线长度相等。 证明如图,设梯形ABCD得两腰为AB与CD,并设AC、BD与相应二圆得第二个交点分别为M、N、由于∠AMB、∠CND就是半圆上得圆周角,所以∠AM B=∠CND = 90°.从而∠BMC =∠BNC=90°,故B、M、N、C四点共圆,因此∠MNK=∠ACB.又∠ACB =∠KAD,所以∠MNK =∠KAD、于就是M、N、D、A四点共圆,因此KM·KA = KN·KD、由切割线定理得K向两已知圆所引得切线相等。 例4:如图,A、B为半圆O上得任意两点,AC、BD垂直于直径EF,BH⊥OA,求证:DH=AC、证法一在BD上取一点A',使A'D = AC,则ACDA'就是矩形。连结A'H、AB、OB、由于BD⊥EF、BH⊥OA,所以∠BDO =∠B HO=90°、于就是D、B, H、O四点共圆,所以∠HOB =∠HDB、由于∠AHB =∠AA'B = 90°,所以A、H、A'、B四点共圆。故∠DA'H=∠OAB,因此∠DHA'=∠OBA、而OA = OB,所以∠OBA=∠OAB,于就是∠DHA'=∠D A'H、所以DH=DA',故DH =

利用阿氏圆求几何最值应用举例一

阿氏圆及其应用举例(1) 一、什么是阿氏圆? 已知平面上两点A 、B ,则所有符合 =k (k >0且k ≠1)的点P 会组成一个圆.这个结论最先由 古希腊数学家阿波罗尼斯发现,称阿氏圆. 二、阿氏圆基本解法:构造三角形相似. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、 BC 于D 、E 两点,点P 是圆C 上一个动点,则1 2 PA PB 的最小值为__________. E A B C D P M P D C B A 分析:在CA 边上取点M 使得CM=2,连接PM 、PC ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=1 2PA .问 题转化为PM+PB 最小值,连BM 即可. 三、阿氏圆应用举例 例1、如图,在Rt △ABC 中,∠ACB =90°,CB =7,AC =9,以C 为圆心、3为半径作⊙C ,P 为⊙C 上一动点,连接AP 、BP ,则AP +BP 的最小值为( ) A .7 B .5 C . D . B P O

解:如图,在CA上截取CM,使得CM=1,连接PM,PC,BM. ∵PC=3,CM=1,CA=9,∴PC2=CM?CA,∴=, ∵∠PCM=∠ACP,∴△PCM∽△ACP,∴==,∴PM=PA, ∴AP+BP=PM+PB,∵PM+PB≥BM,在Rt△BCM中,∵∠BCM=90°,CM=1,BC=7,∴BM==5,∴AP+BP≥5,∴AP+BP的最小值为5.故选:B. 例2、如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP,BP,则AP+BP的最小值为() A.B.6C.2 D.4 解:如图1,连接CP,在CB上取点D,使CD=1,则有==, 又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD. 要使AP+BP最小,只要AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小, 即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP 的最小值为,故选:A. 例3、如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是. 解:∵2AD+3BD= 2 3 3 AD BD ?? + ? ?? ,∵求 2 3 AD BD +最小值即可, 在CA上截取CM,使得CM=4,连接DM,BM.

四点共圆(习题)

圆内接四边形与四点共圆 思路一:用圆的定义:到某定点的距离相等的所有点共圆。→若连在四边形的三边的中垂线相交于一点,那么这个四边形的四个顶点共圆。(这三边的中垂线的交点就是圆心)。 产生原因:圆的定义:圆可以看作是到定点的距离等于定长的点的集合。 基本模型: AO=BO=CO=DO ? A、B、C、D四点共圆(O为圆心) 思路二:从被证共圆的四点中选出三点作一个圆,然后证另一个点也在这个圆上,即可证明这四点共圆。→要证多点共圆,一般也可以根据题目条件先证四点共圆,再证其他点也在这个圆上。 思路三:运用有关性质和定理: ①对角互补,四点共圆:对角互补的四边形的四个顶点共圆。 产生原因:圆内接四边形的对角互补。 基本模型: ∠ + = 180 B)? A、B、C、D四点共圆 ∠D 180 = ∠ + ∠D A(或0 ②张角相等,四点共圆:线段同侧两点与这条线段两个端点连线的夹角相等,则这两个点和线段的两个端点共四个点共圆。 产生原因:在同圆或等圆中,同弧所对的圆周角相等。 方法指导:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角(即:张角)相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。

∠? A、B、C、D四点共圆 = CAB∠ CDB ③同斜边的两个直角三角形的四个顶点共圆,其斜边为圆的直径。 产生原因:直径所对的圆周角是直角。 ∠D = C? A、B、C、D四点共圆 = ∠ 90 ④外角等于内对角,四点共圆:有一个外角等于其内对角的四边形的四个顶点共圆。产生原因:圆内接四边形的外角等于内对角。 基本模型: ∠? A、B、C、D四点共圆 = ECD∠ B

圆中的最值问题

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,+的最大值.(有修改) 求a b 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________. 题4 (2013年武汉五模)在△ABC中,120 A BC=.若△ABC的内切圆半径为r,则r的最大值为 ∠=?,6 _________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________. 题1图题2 图题3 图

题4图题5图 【典题讲练】 类型1(相关题:题5) 1.1 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 1.2在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 1.3 如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y 轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

中考数学几何模型9:隐圆模型

中考数学几何模型9:隐圆模型 名师点睛拨 开云雾开门见山 【点睛1】触发隐圆模型的类型 (1)动点定长模型 若P为动点,但AB=AC=AP 原理:圆A中,AB=AC=AP 则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长 (2)直角圆周角模型 固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对 弦是直径 则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角(3)定弦定角模型 固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等 则点P运动轨迹为过A、B、C三点的圆备注:点P在优弧、劣弧上运动皆可

(4)四点共圆模型① 若动角∠A+动角∠C=180° 原理:圆内接四边形对角互补 则A 、B 、C 、D 四点共圆 备注:点A 与点C 在线段AB 异侧 (5)四点共圆模型② 固定线段AB 所对同侧动角∠P=∠C 原理:弦AB 所对同侧圆周角恒相等 则A 、B 、C 、P 四点共圆 备注:点P 与点C 需在线段AB 同侧 【点睛2】圆中旋转最值问题 条件:线段AB 绕点O 旋转一周,点M 是线段AB 上的一动点,点C 是定点 (1)求CM 最小值与最大值 (2)求线段AB 扫过的面积 (3)求ABC S △最大值与最小值 作法:如图建立三个同心圆,作OM ⊥AB ,B 、A 、M 运动路径分别为大圆、中圆、小圆 结论:①CM 1最小,CM 3最大

②线段AB 扫过面积为大圆与小圆组成的圆环面积 ③ABC S △最小值以AB 为底,CM 1为高;最大值以AB 为底,CM 2为高 典题探究 启 迪思维 探究重点 例题1. 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A `MN ,连接A `C ,则A `C 长度的最小值是__________. A' N M A B C D 变式练习>>> 1.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是__________.

四点共圆例题及答案

证明四点共圆的基本方法 证明四点共圆有下述一些基本方法: 方法1 从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆. 方法2 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。) 方法3 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. 方法4 把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理) 方法5 证被证共圆的点到某一定点的距离都相等,从而确定它们共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H 四点共圆. 证明菱形ABCD的对角线AC和 BD相交于点O,连接OE、OF、OG、OH. ∵AC和BD 互相垂直, ∴在Rt△AOB、Rt△BOC、Rt△COD、 Rt△DOA中,E、F、G、H,分别是AB、 BC、CD、DA的中点,

即E、F、G、H四点共圆. (2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆. 例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC. 求证:B、E、F、C四点共圆. 证明∵DE⊥AB,DF⊥AC, ∴∠AED+∠AFD=180°, 即A、E、D、F四点共圆, ∠AEF=∠ADF. 又∵AD⊥BC,∠ADF+∠CDF=90°, ∠CDF+∠FCD=90°, ∠ADF=∠FCD. ∴∠AEF=∠FCD, ∠BEF+∠FCB=180°, 即B、E、F、C四点共圆. (3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆. 【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数. 解∵四边形ABCD内接于圆,

隐圆模型(解析版)

隐圆模型 【点睛1】触发隐圆模型的类型 (1)动点定长模型 若P为动点,但AB=AC=AP 原理:圆A中,AB=AC=AP 则B、C、P三点共圆,A圆心,AB半径备注:常转全等或相似证明出定长 (2)直角圆周角模型 固定线段AB所对动角∠C恒为90°原理:圆O中,圆周角为90°所对弦是直径则A、B、C三点共圆,AB为直径备注:常通过互余转换等证明出动角恒为直角 (3)定弦定角模型 固定线段AB所对动角∠P为定值原理:弦AB所对同侧圆周角恒相等 则点P运动轨迹为过A、B、C三点的圆备注:点P在优弧、劣弧上运动皆可

(4)四点共圆模型① 若动角∠A+动角∠C=180° 原理:圆内接四边形对角互补 则A 、B 、C 、D 四点共圆 备注:点A 与点C 在线段AB 异侧 (5)四点共圆模型② 固定线段AB 所对同侧动角∠P=∠C 原理:弦AB 所对同侧圆周角恒相等 则A 、B 、C 、P 四点共圆 备注:点P 与点C 需在线段AB 同侧 【点睛2】圆中旋转最值问题 条件:线段AB 绕点O 旋转一周,点M 是线段AB 上的一动点,点C 是定点 (1)求CM 最小值与最大值 (2)求线段AB 扫过的面积 (3)求ABC S △最大值与最小值 作法:如图建立三个同心圆,作OM ⊥AB ,B 、A 、M 运动路径分别为大圆、中圆、小圆 结论:①CM 1最小,CM 3最大 ②线段AB 扫过面积为大圆与小圆组成的圆环面积 ③ABC S △最小值以AB 为底,CM 1为高;最大值以AB 为底,CM 2为高

典题探究 启迪思维 探究重点 例题1. 如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A `MN ,连接A `C ,则A `C 长度的最小值是__________. A' N M A B C D 【分析】考虑△AMN 沿MN 所在直线翻折得到△A ’MN ,可得MA ’=MA =1,所以A ’轨迹是以M 点为圆心,MA 为半径的圆弧.连接CM ,与圆的交点即为所求的A ’,此时A ’C 的值最小.构造直角△MHC ,勾股定理求CM ,再减去A ’M . A' N M A B C D D C B A M N A' H A' N M A B C D 变式练习>>> 1.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是__________. A B C E F P 【分析】考虑到将△FCE 沿EF 翻折得到△FPE ,可得P 点轨迹是以F 点为圆心,FC 为半径的圆弧.过F 点作FH ⊥AB ,与圆的交点即为所求P 点,此时点P 到AB 的距离最小.由相似先求FH ,再减去FP ,即可得到PH .答案为1.2. A B C E F P B

圆中最值问题的求解方法

圆中最值问题的求解方法 有关圆的最值问题,往往知识面广、综合性大、应用性强,而且情境新颖,能很好地考查学生的创新能力和潜在的数学素质,本文按知识点分类,以近几年中考题为例,归纳总结此类试题的解题方法. 一、直线外一点到直线上各点的连线中,垂线段最短 例1 (2012宁波)如图1,△ABC中,∠BAC=60°,∠ABC=45°,AB= D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于点E,F,连结EF,则线段EF长度的最小值为_______. 分析由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短. 解如图2,连结OE,OF,过O点作OH⊥EF,垂足为H. ∵在Rt△ADB中, ∠ABC=45°,AB= ∴AD=BD=2,即此时圆的直径为2. 由圆周角定理,可知 ∠EOH=1 2 ∠EOF=∠BAC=60°, ∴在Rt△EOH中, EH=OE·sin∠EOH =1. 由垂径定理,可知EF=2EH 点评本题是一道融垂径定理、圆周角定理、解直角三角形于一体的综合应用题.关键是根据运动变化,找出满足条件的最小圆. 二、两点之间线段最短 例2 (2014三明)如图3,在Rt△ABC中,∠ACB=90°, AC=BC=2,以BC为直径的半圆交AB于点D,P是CD CD 上的一个动点,连结AP,则AP的最小值是_______.

分析如图4,取BC的中点E,连结AE,交半圆于点P2,在半圆上取点P1,连结AP1,EP1,可得,AP1+EP1>AE,即AP2是AP的最小值.再根据勾股定理求出AE的长,然后减掉半径即可. 解如图4,取BC的中点E,连结AE,交半圆于点P2,在半圆上取点P1,连结AP1, EP1,可得,AP1+EP1>AE, ∵AE P2E=1. ∴AP21. 即AP2是AP的最小值. 点评本题考查了勾股定理、最短路径问题,利用两点之间线段最短是解题的关键. 三、利用轴对称,求直线上一点到直线同侧两点的线段之和最短 例3 (2014张家界)如图5,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_______. 分析A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值. 解如图6,连接OA,OB,OC,作CH垂直于AB于点H. 根据垂径定理,得到 在Rt△BCH中,根据勾股定理得到 BC=, 则PA+PC的最小值为 点评正确理解BC的长是PA+PC的最小值,是解决本题的关键. ==,例4(2014东营)如图7,在⊙O中,AB是⊙O的直径,AB=8cm,AC CD BD

相关文档
最新文档