波束赋性

波束赋性
波束赋性

LTE 系统中双层波束赋形技术性能分析

何桂龙

北京邮电大学信息与通信工程学院,北京(100876)

E-mail:hgleagle@https://www.360docs.net/doc/211435160.html,

摘 要:本文给出了单用户双层波束赋形(BF )技术带来的性能增益,提出了两种不同的双层波束赋形实现方案,并且分析比较了不同信道质量指示(CQI )反馈周期下两者之间的性能差异,理想情况下基于TxD 的机制性能要好,但在考虑基站端测量误差模型及用户端单天线传输时,TxD 方式有20%的性能损失,同时我们发现TxD 方式对信道质量反馈周期比较敏感,随周期增加性能下降明显。

关键词:波束赋形;预编码;信道质量指示

1 引言

长期演进(LTE )系统是UMTS 的演进方向,由于物理层采用了多入多出天线(MIMO )和正交频分复用(OFDM )等革命性的技术,链路层采用频域调度(FDPS ),混合自动重送请求(HARQ )等链路自适应技术,频谱效率得到了极大提高。波束赋形作为一种下行传输模式,在消除小区间干扰并提高小区边缘用户性能方面发挥巨大的作用。LTE R9中的单用户双层波束赋形技术是R8中单层波束赋形直接演进技术[1],能够进一步增大系统吞吐量。本文首先介绍了双层波束赋形传输的系统模型,接着提出了两种实现双层波束赋形的方案,最后通过系统仿真验证分析比较了不同方案的优劣。

2 系统模型

LTE Release 9引入双层波束赋形时的天线推荐配置是8x2,为了减少天线阵列所占空间,通常采用交叉极化的放置方式。每4根天线一组对应一个极化方向,组内天线间距λ/2,利用强相关性形成一个波束,两组之间由于极化方向不同,相关性弱,因此能够形成两个子信道同时进行传输[2]。

图1 基站端天线配置 用户(UE )端接收到的信号是

0000??=+=+????12W Y H C S N HWC S N W (1)

其中1W 和2W 分别是每个共极化天线组的DoA 加权赋形向量[3],

()()()1212,,,T or M W ωβωβωβ=????L

,(1)sin()j m m πβω??=,M 是天线阵列个数,β是用户到达角(DoA ),预编码矩阵0C 的一个选择准则是arg max{()}H H trace =0C

C C H HC ,即0C 可通过特征分解矩阵H H H

得到两个最大特征值

所对应的特征向量,或从固定码本中选出满足上式的矩阵。 []12T

s s =S 是双流BF 传输的符号向量,N 是均值为零,方差为N0的独立同分布复高斯噪声向量。

TDD 系统中双流波束赋形通常有两种反馈方式,我们分别称为基于TxD 的方式以及基于PMI 的方式,下面简单介绍这两种方案。

基于TxD 的CQI 反馈机制中,由于时分双工(TDD )的互异性,基站测量上行导频信号得到信道状态信息,再通过SVD 分解取得预编码矩阵进行下行传输,但由于UE 无法知道基站(eNodeB )端传输使用的加权矢量,也就不能准确地测出实际数据传输所经历的干扰情况,这时在TxD 下采取这样的方式,UE 只报告单层传输时的0CQI 值,在eNodeB 端通过补偿增益得出双层传输的11CQI 和12CQI 值,然后利用补偿后的CQI 进行链路自适应,表示为:1101CQI CQI λ=+,1202CQI CQI λ=+。其中1λ、2λ是信道协方差矩阵H H H 对应的两个最大特征值。此方案假设基站端完全了解信道信息,再经过特征值分解来正交化两个子信道,这样保证用户没有流间干扰。

基于PMI 的闭环反馈机制中,基站发送固定的增益补偿值给用户,这样UE 就能够进行比较正确的秩选择,同时根据最大增益准则从R8 2x2预编码码本选出预编码矩阵,这时UE 计算的CQI 就能够较好的反映流间干扰,基站根据情况决定是否采用用户推荐的秩。此方案要反馈CQI/PMI/RI ,会增加开销。 3 系统级仿真

为了比较两种方案的优劣,我们进行了详细的系统仿真来评估性能。我们使用3GPP 宏小区case#1仿真场景,具体参数及仿真假设可见表1。仿真时只在中心小区进行均匀撒点,所有用户使用相同的传输机制,假设干扰小区基站进行单层传输来计算其对中心小区用户的干扰。用户端基于最小均方误差(MMSE )接收机模型的输出显式计算出信干噪比(SINR )和CQI 中的流间干扰。 表1 系统仿真参数

参数

假设 场景

3GPP Macro Cell case#1 小区分布

Hexagonal grid, 19 cell sites, 3 sectors per site 载波频率

2.0GHz 传输带宽

10MHz 系统负载

每扇区10个UE 用户速度 3km/h

信道模型 8x2双极化SCM, 0.5*lamda 间距

控制与信令开销 PDCCH 3个控制符号

CRS: antenna port 0 and 1 enabled

DRS: 12 RE per PRB for dual layer

信道估计

Ideal CQI/PMI 反馈 BestM, 3 PRB 频率粒度(subband)

Sounding 配置

宽带探测,5ms 周期,估计误差(正态统计分布,相位误差0.2pi 标准方差) 秩自适应

动态 外环链路自适应(OLLA)

Enabled, 20% BLER target

调度算法时频比例公平

HARQ 6 process, Chase combining, max 4 trans

接收机类型MRC/MMSE

链路级与系统级接口EESM

业务模型Full buffer

基站端采用各种无线资源管理(RRM)算法来跟踪信道变化[4],如图2所示,时频调度器是整个框架的控制中心。由于用户反馈的CQI存在测量,量化及处理时延等方面的误差,基站端使用了外环链路自适应(OLLA)算法,它能够起到稳定第一次传输目标误块率(BLER)的作用。OLLA首先根据接收到的Ack/Nack决定给每个用户的传输是否成功,并基于这个输入提供一个补偿参数给外环链路自适应(ILLA)。ILLA在做链路自适应判决前根据补偿值调整接收到的CQI值,然后估计出所能支持的数据速率和调制编码方式(MCS)。小区内每个UE有一个OLLA算法,所以ILLA使用的不同补偿值决定于UE。时域调度(TDPS)首先决定每个子帧能够复用的最大用户数,频域调度(FDPS)再按某种算法分配资源块(RB)给这些用户。调度器会最先满足等待重传用户的需求,保证这些用户分到的资源与第一次传输相同。这里我们假设每个传输时间间隔(TTI)都使用标准的时频正比公平调度算法来分配物理资源块(PRB)到不同的用户,所有资源块以相同的功率传输,被调度到用户的MCS每个TTI更新一次,并且在这个用户分配到的PRB上使用相同MCS。

图2 无线资源管理框架

4 结果分析

图3 双层波束赋形与单层波束赋形CDF曲线比较

表2 波束赋形具体频谱效率值

平均频谱效率(bps/Hz/Cell) 小区边缘频谱效率(bps/Hz/Cell) 2x2,单流闭环MIMO 1.276 0.49 2x2,双流闭环MIMO,秩自适应 1.375 0.488 8x2,单层波束赋形 1.88 1.024 8x2,双层波束赋形,秩自适应 2.224 1.042

从图中可看出波束赋形的两条CDF曲线在频谱效率低时相重合,随着频谱效率增大两

条曲线的间距逐渐扩大,说明秩适应能够正确的选择层数,小区边缘用户SINR低,偏向于

选择单层传输,而小区中心用户的SINR高,选择双层传输的概率大。相对于单层波束赋形,

双层波束赋形大概有18%的平均频谱效率提升,而且小区边缘频谱效率并没有损失。作为

比较,闭环2x2 MIMO从单流到双流只有7.8%的平均性能增益。

图4 PMI与TxD平均频谱效率比较

从图中看出不加误差模型的情况下,TxD机制的平均小区吞吐量有8.9%的增益,但小区边缘用户吞吐量有 6.2%的损失。实际系统由于射频单元的影响,上行测量的信道状态信息不能直接应用到下行传输,TxD机制不能直接利用TDD的互易性,需要进行较准,同时还要考虑上行信道估计误差,在基站端加了较准误差和测量误差模型后,TxD机制性能损失明显,达到6.3%。如果再考虑UE端收发功率放大器的限制,基站端只能从UE单根天线发射的Sounding参考信号得到部分信道状态信息,可以看到性能下降明显,平均吞吐量有

20.3%的损失,小区边缘有28.5%的损失。

图5 不同反馈周期下PMI与TxD的性能

上图给出了PMI机制在不同的CQI/PMI反馈周期以及TxD机制下不同CQI/SRS周期的性能比较,可以看出在TxD机制下周期从5ms增加到40ms时用户平均吞吐量有8.7%的损失,小区边缘吞吐量有5.4%的下降,而PMI机制在用户平均吞吐量方面几乎没有损失,对应的小区边缘吞吐量只有3.2%的损失。这是由于TxD机制需要不断更新短期的信道状态信息来获得预编码矩阵,随着周期的增加,得到的信道状态信息越不准确,系统性能下降就越明显。而PMI机制使用的预编码矩阵本身就是从有限的码本中选择的,其所选矩阵偏离正确值的概率变小,性能损失也就减少了,所以它对周期的敏感度低于TxD。

5 结论

这篇文章我们分析了两种不同的双层波束赋形策略,相对于单层波束赋形,双层波束赋形大概有18%的平均频谱效率提升,而且小区边缘频谱效率并没有损失。基于TxD的机制相对PMI机制有8.9%的增益,但在考虑基站端较准和测量误差模型以及UE端单天线发送参考信号的情况下,TxD方式却有20%的性能损失,同时我们发现PMI方式对信道质量反馈周期更健壮,而TxD方式则比较敏感,随周期增加性能下降明显。

参考文献

[1]Work Item Description for "Enhanced DL transmission for LTE [R].RP-090359:CMCC, March. 2009.

[2]LTE DL Beamforming Performance and Evolution to Dual Stream [R].R1-091753:Nokia, Nokia Siemens

Networks, May. 2009.

[3]L.Godara.Application of antenna arrays to mobile communications. ii. beam-forming and direction-of-arrival

considerations [A].Proceedings of the IEEE, vol. 85, no. 8, pp. 1195-1245, Aug 1997.

[4]Pokhariyal, K.I.Pedersen, G.Monghal, et al.HARQ Aware Frequency Domain Packet Scheduler with

Different Degrees of Fairness for the UTRAN Long Term Evolution [A].IEEE Proc. Veh. Technol. Conf., May. 2007.

Performance Analysis of Dual Layer Beamforming in LTE

System

He Guilong

School of Information and Communication Engineering, Beijing University of Posts and

Telecommunications, Beijing (100876)

Abstract

In this paper we evaluate the performance of single and dual layer beamforming. Two different dual layer beamforming schemes are proposed. We analyze the performance gain with different channel quality indicator feedback period. We show that TxD based scheme improves in ideal situation, but it suffers a gap of 20% with theconsideration of measurement error model in base station and single antenna sounding in UE. Furthermore, it is shown that TxD based method is more sensitive to channel quality indicator feedback period and performance decreases with increased period.

Keywords: Beamforming;Precoding; Channel Quality Indicator

波束成形

第四章智能天线自适应波束成形算法简介 4.1 引言 智能天线技术作为一种新的空间资源利用技术,自20世纪90年代初由一些学者提出后,近年来在无线通信领域受到了人们的广泛关注。它是在微波技术、自动控制理论、数字信号处理(DSP)技术和软件无线电技术等多学科基础上综合发展而成的一门新技术。智能天线技术从实质上讲是利用不同信号在空间上的差异,对信号进行空间上的处理。与FDMA,TDMA及CDMA相对应,智能天线技术可以认为是一种空分多址SDMA技术,它使通信资源不再局限于时域、频域和码域,而是拓展到了空间域。它能够在相同时隙、相同频率和相同地址码情况下,根据用户信号在空域上的差异来区分不同的用户。智能天线技术与其它通信技术有机相结合,可以增加移动通信系统的容量,改善系统的通信质量,增大系统的覆盖范围以及提供高数据率传输服务等。 4.2 智能天线技术及其优点 智能天线,即具有一定程度智能性的自适应天线阵,自适应天线阵能够在干扰方向未知的情况下,自动调节阵列中各个阵元的信号加权值的大小,使阵列天线方向图的零点对准干扰方向而抑制干扰,增强系统有用信号的检测能力,优化天线方向图,并能有效地跟踪有用信号,抑制和消除干扰及噪声,即使在干扰和信号同频率的情况下,也能成功地抑制干扰。如果天线的阵元数增加,还可以增加零点数来同时抑制不同方向上的几个干扰源。实际干扰抑制的效果,一般可达25--30dB以上。智能天线以多个高增益的动态窄波束分别跟踪多个移动用户,同时抑制来自窄波束以外的干扰信号和噪声,使系统处于最佳的工作状态。 智能天线利用空域自适应滤波原理,依靠阵列信号处理和数字波束形成技术发展起来,它主要包括两个重要组成部分,一是对来自移动台发射的多径电波方向进行到达角(DOA)估计,并进行空间滤波,抑制其它移动台的干扰;二是对基站发送信号进行数字波束形成,使基站发送信号能够沿着移动电波的到达方向发送回移动台,从而降低发射功率,减少对其它移动台的干扰。在普遍采用扩频技术的CDMA系统中,采用智能天线的优势主要体现在以下几个方面: 1) 提高了基站接收机的灵敏度 基站接收到的信号,是来自各天线单元和收信机接收到的信号之和,如果采

自适应波束成形算法LMS、RLS、VSSLMS

传统的通信系统中,基站天线通常是全向天线,此时,基站在向某一个用户发射或接收信号时,不仅会造成发射功率的浪费,还会对处于其他方位的用户产生干扰。 然而,虽然阵列天线的方向图是全向的,但是通过一定技术对阵列的输出进行适当的加权后,可以使阵列天线对特定的一个或多个空间目标产生方向性波束,即“波束成形”,且波束的方向性可控。波束成形技术可以使发射和接收信号的波束指向所需要用户,提高频谱利用率,降低干扰。 传统的波束成形算法通常是根据用户信号波达方向(DOA)的估计值构造阵列天线的加权向量,且用户信号DOA在一定时间内不发生改变。然而,在移动通信系统中,用户的空间位置是时变的,此时,波束成形权向量需要根据用户当前位置进行实时更新。自适应波束成形算法可以满足上述要求。 本毕业设计将对阵列信号处理中的波束成形技术进行研究,重点研究自适应波束成形技术。要求理解掌握波束成形的基本原理,掌握几种典型的自适应波束成形算法,熟练使用MATLAB仿真软件,并使用MA TLAB仿真软件对所研究的算法进行仿真和分析,评估算法性能。 (一)波束成形: 波束成形,源于自适应天线的一个概念。接收端的信号处理,可以通过对多天线阵元接收到的各路信号进行加权合成,形成所需的理想信号。从天线方向图(pattern)视角来看,这样做相当于形成了规定指向上的波束。例如,将原来全方位的接收方向图转换成了有零点、有最大指向的波瓣方向图。同样原理也适用用于发射端。对天线阵元馈电进行幅度和相位调整,可形成所需形状的方向图。 波束成形技术属于阵列信号处理的主要问题:使阵列方向图的主瓣指向所需的方向。 在阵列信号处理的范畴内,波束形成就是从传感器阵列重构源信号。虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,却可以被调整到阵列接收的方向增益聚集在一个方向上,相当于形成了一个“波束”。 波束形成技术的基本思想是:通过将各阵元输出进行加权求和,在一时间内将天线阵列波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。 “导向”作用是通过调整加权系数完成的。对于不同的权向量,上式对来自不同方向的电波便有不同的响应,从而形成不同方向的空间波束。

数字波束形成

摘要 随着高速、超高速信号采集、传输及处理技术的发展,数字阵列雷达已成为当代雷达技术发展的一个重要趋势。数字波束形成(DBF)技术采用先进的数字信号处理技术对阵列天线接收到的信号进行处理,能够极大地提高雷达系统的抗干扰能力,是新一代军用雷达提高目标检测性能的关键技术之一。并且是无线通信智能天线中的核心技术。 本文介绍了数字波束形成技术的原理,对波束形成的信号模型进行了详细的推导,并且用matlab仿真了三种计算准则下的数字波束形成算法,理论分析和仿真结果表明以上三种算法都可以实现波束形成,并对三种算法进行了比较。同时研究了窄带信号的自适应波束形成的经典算法。研究并仿真了基于最小均方误差准则的LMS算法、RLS算法和MVDR自适应算法,并且做了一些比较。 关键词:数字波束形成、自适应波束形成、智能天线、最小均方误差、最大信噪比、最小方差

ABSTRACT With the development of high-speed, ultra high-speed signal acquisition, transmission and processing technology, digital array radar has became an important trend in the development of modern radar technology. Digital beamforming (DBF) technology uses advanced digital signal processing technology to process the signal received by antenna array. It can improve the anti-jamming ability of radar system greatly and it is one of the key technology。It is the core of the smart antenna technology in wireless communication too。 This paper introduces the principle of digital beam forming technology, the signal model of beam forming was presented, And the digital beam forming algorithm under the three calculation criterion was simulated by MATLAB, theoretical analysis and simulation results show that the three algorithms can achieve beamforming, and made some comparison between the three algorithms. At the same time, made some study about the adaptive narrow-band signal beam forming algorithm. Learned and Simulateded the LMS algorithm base on minimum mean square error criterion and RLS algorithm and MVDR algorithm, and do some comparison Key Words:DBF, ADBF, Smart antenna, The minimum mean square error, The maximum signal to noise ratio

均匀间距线列阵波束形成器

实验3 均匀间距线列阵波束形成器 姓名:逯仁杰 班级:20120001(12级赓1班) 学号:2012011112

1.实验目的 通过本实验的学习,加深对《声纳技术》中波束形成和方位估计的概念理解,理解声纳信号处理的基本过程,为今后声纳信号处理的工作和学习建立概念、奠定坚实的基础。 2.实验原理 波束形成器的本质是一个空间滤波器。当对基阵各基元接收信号作补偿处理,使得各基元对某个特定方向上的信号能够同相相加,获得一个最大的响应输出(幅度相加);相应的各基元对其它方向的信号非同相相加,产生一定的相消效果的响应输出(对于各基元噪声相互独立的情况时功率相加)。这就是波束形成的工作原理。 常用的波束形成方法主要有时延波束形成法和频域波束形成法。在此基础上针对不同的阵形、设计要求以及背景噪声特性下还发展了许多波束形成算法。针对不同的阵形时的波束形成方法是指依赖于阵形的特殊性(如直线阵、圆阵、体积阵等)而得到的波束形成算法:如直线阵波束形成法、圆阵波束形成法,体积阵波束形成法等。 针对不同的设计要求也衍生出多种新型的波束形成算法。当对不同的频率响应要求相同的波束宽度时有恒定束宽波束形成法,当对波束的旁瓣级有要求时可采用切比雪夫加权波束形成法。当要求对阵列误差具有宽容性响应时失配条件下的波束形成器[6,362-382]。 如果利用噪声干扰的统计特性有高分辨最小方差无畸变响应(MVDR)波束形成法,线性约束最小方差(LCMV)波束形成法,线性约束最小功率(LCMP)波束形成法,自适应波束形成法等。 但不管是何种波束形成方法,其目的均是在干扰背景下获取某个方向的信号或估计信号的方位。下面仅给出时延波束形成和相移波束形成的基本原理。 时延波束形成法(时域)

大规模MIMO阵列波束形成

龙源期刊网 https://www.360docs.net/doc/211435160.html, 大规模MIMO阵列波束形成 作者:阮西玥杨鑫贾曼华 来源:《科技视界》2019年第15期 【摘要】毫米波通信凭借通信容量大、传输质量高等优点被5G系统采用,并且其中的大规模天线阵列和波束形成技术已经成为5G系统中的关键组成部分。本文主要研究了毫米波通信系统中的波束形成技术。首先研究IEEE 802.15.3c标准规定的3c码本和N相位码本。并针对基于以上两种码本产生的波束旁瓣电平过高的问题,本文提出将均匀窗、二项式窗、汉明窗和高斯窗等6种常见的窗函数应用在码本矩阵中的方法,由此获得更优的波束性能。除此之外,还深入研究了3c码本和圆阵码本两种码本的训练机制。 【关键词】毫米波通信;大规模天线阵列;波束形成 中图分类号: U216.6 文献标识码: A 文章编号: 2095-2457(2019)15-0004-002 DOI:10.19694/https://www.360docs.net/doc/211435160.html,ki.issn2095-2457.2019.15.002 Large-Scale MIMO Array Beamforming RUAN Xi-yue YANG Xin JIA Man-hua (Nanjing university of aeronautics and astronautics, Nanjing Jiangsu 210000, China) 【Abstract】Millimeter wave communication is adopted by 5G systems due to its large communication capacity and high transmission quality, and its large-scale antenna array and beamforming technology have become a key component in 5G systems. This paper mainly studies the beamforming technology in millimeter wave communication systems. First, study the 3c codebook and N-phase codebook specified in the IEEE 802.15.3c standard. For the problem that the beam sidelobe level generated by the above two codebooks is too high, this paper proposes to apply six common window functions such as uniform window, binomial window, Hamming window and Gaussian window to the codebook matrix. The method in which the better beam performance is obtained. In addition, the training mechanism of the 3c codebook and the circular matrix codebook is studied in depth. 【Key words】Millimeter-wave communications;Large-scale antenna arrays;Beamforming 1 波束基本概念

雷达天线控制系统的设计.doc

雷达天线控制系统设计 摘要 本课题研究的雷达天线控制系统要求具有定位和等速跟踪功能,定位控制要求精度高、响应快,等速跟踪控制要求转速平稳。早期的雷达天控系统大多采用模拟电路实现,如需调整控制参数时,就要更换控制器中一些元件,同时受环境温度、外界干扰及元件老化等因素的影响,调节器参数都会发生变化,从而影响控制性能。 一般的雷达天线的性能主要取决于其伺服系统的设计水平。伺服系统的设计包括结构设计和控制设计两部分,这两部分是相互影响紧密耦合的。一般所采用的设计方法是对结构系统和控制系统先分别设计,然后再根据要求进行调校,这往往会导致产品研制的周期长、成本高、性能差、结构笨重,不能保证伺服系统总体的综合性能最优。针对雷达天线伺服系统设计中存在的结构设计与控制设计相分离的问题,提出一种结构与控制集成优化设计的模型,即采用手轮控制和电路自动化控制相结合的方式完成。 本文以雷达天线控制系统的研制为背景,设计了系统总体方案。雷达为机动型远程警戒雷达,天线在圆周360°方位中进行运转工作,在伺服系统中对天线的控制实现远程遥控和人工控制。工作中为了有效的消除云雨气象杂波的干扰,利用空间电磁场和目标的特性,在伺服系统中对云雨气象杂波的干扰实现线极化和原极化的转换控制。对于天线360°圆周运转状态,需要通过处理变换并把360°圆周运转的模拟方位信号转换为数字方位信号,同时为雷达各个分系统提供出方位数据;通过方位处理可实现雷达寻北,对方位数据进行自动教北。天线在架设时应进行升降俯仰控制,通过控制可安全操作升降俯仰。 关键词:雷达,天线,控制,精度,伺服

Radar antenna control system design Summary Research of radar antenna control system requires a positioning and velocity tracking, positioning control requires high precision and fast response, speed speed tracking control requirements, such as stable. Most of the early days of radar controlled systems used analog circuits, need to adjust control parameters, it is necessary to replace the controller components in and influenced by environmental factors such as temperature, outside interference and component aging effects, changes regulator parameters, thus affecting performance. General performance of radar antenna mainly depends on the level of its servo system design. Design of servo system design including design and control of two parts, interaction between these two parts are tightly coupled. General system design method is used to structure and control system design, respectively, and then adjusted according to the requirements, which often leads to long product development cycles, high cost, poor performance, structure of heavy, cannot ensure the overall performance of optimal servo system. For the radar antenna servo system design of structure and control design of phase separation problem, proposed a model of integrated optimization design of structure and control, using hand wheel completed the combination of control and automatic control circuit. With development of the radar antenna control system in the background of this article, designing the general scheme of the system. Radar-Mobile early warning radar, antennas work running in a circle of 360 ° azimuth, remote control for antenna servo system of control and manual control. In order to be effective in eliminating Cloud and rain weather clutter interference using spatial characteristics of electro-magnetic fields and the target, Cloud and rain in a servo system of weather clutter jamming transition control for linear polarization and the polarization. Aerial 360 °circle running condition, use the transform and simulation of running in a circle of 360 °azimuth direction of signal into a digital signal, while for the radar system with location data through North azimuth radar homing, on North azimuth data

波束形成

3.5 两种特殊的波束形成技术 3.5.1协方差矩阵对角加载波束形成技术 常规波束形成算法中,在计算自适应权值时用XX R ∧ 代替其中的X X R 。由于采样快拍数是有限的,则通过估计过程得到的协方差矩阵会产生一定误差,这样会引起特征值扩散。从特征值分解方向来看,自适应波束畸变的原因是协方差矩阵的噪声特征值扩散。自适应波束可以认为是从静态波束图中减去特征向量对应的 特征波束图,即:m in 1 ()()( )()(()())N i V V iv iv V i i G Q E E Q λλθθθθθλ* =-=-∑,其中()V G θ是 是自适应波束图,()V Q θ是静态波束图,即没有来波干扰信号而只有内部白噪声时的波束状态。i λ是矩阵X X R 的特征值。()iv E θ是对应i λ的特征波束图。 由于X X R 是 Hermite 矩阵,则所有的特征值均为实数,并且其特征向量正交,特征向量对应的特征波束正交。而最优权值的求解表达其中的X X R 是通过采样数据估计得到的,当采样快拍数很少时,对协方差矩阵的估计存在误差,小特征值及对应的特征向量扰动都参与了自适应权值的计算,结果导致自适应波束整体性能的下降。鉴于项目中的阵列形式,相对的阵元数较少,采样数据比较少,很容易在估计协方差矩阵的时候产生大的扰动,导致波束的性能下降,所以采用对角加载技术来保持波束性能的稳定及降低波束的旁瓣有比较好的效果。 (1)对角加载常数λ 当采样数据很少时,自适应波束副瓣很高,SINR 性能降低。对因采样快拍数较少引起自相关矩阵估计误差而导致的波束方向图畸变,可以采用对角加载技术对采样协方差矩阵进行修正。修正后的协方差矩阵为:XX XX R R I λ∧ =+ 。 自适应旁瓣抬高的主要原因是对阵列天线噪声估计不足,造成协方差矩阵特征值分散。通过对角加载,选择合适对角加载λ ,则对于强干扰的大特征值不会受到很大影响,而与噪声相对应的小特征值加大并压缩在λ附近,于是可以得到很好的旁瓣抑制效果。对于以上介绍的通过 LCMV 准则求得的权值o p t w 经过对角加载后的最优权值为:111()(())H opt XX XX w R I A A R I A f λλ---=++ (2)广义线性组合加载技术 对角加载常数λ 来修正采样协方差矩阵,能够有效实现波束旁瓣降低的同时提高波束的稳健性。但是对加载值λ 的确定有一定难度,目前还是使用经验值较多。于是,来考虑另外一种能够有效实现协方差矩阵的修正,而且组合参数

麦克风波束成形的基本原理

启拓专业手拉手会议,矩阵切换厂商-全球抗干扰专家 麦克风波束成形的基本原理 麦克风波束成形是一个丰富而复杂的课题。所有MEMS麦克风都具有全向拾音响应,也就是能够均等地响应来自四面八方的声音。多个麦克风可以配置成阵列,形成定向响应或波束场型。经过设计,波束成形麦克风阵列可以对来自一个或多个特定方向的声音更敏感。本应用笔记仅讨论基本概念和阵列配置,包括宽边求和阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 空气中声波的频率与波长的关系 方向性和极坐标图 方向性描述麦克风或阵列的输出电平随消声空间中声源位置的改变而变化的模式。ADI 公司的所有MEMS麦克风都是全向麦克风,即它们对来自所有方向的声音都同样敏感,与麦克风所处的方位无关。图2所示为全向麦克风响应的2轴极坐标图。无论麦克风的收音孔位于

x-y平面、x-z平面还是y-z平面,此图看起来都相同。 全向麦克风响应图 本应用笔记中,阵列的“前方”称为轴上方向,指拾取目标音频的方向,在极坐标图上标为0°;“后方”为180°方向;“侧边”指前后方之间的空间,中心方向分别位于90°和270°。本应用笔记中的所有极坐标图均归一化到0°响应水平。 涉及声音频率和波长的所有公式都使用以下关系式:c = f ×λ,其中c为343 m/s,即声音在20℃的空气中的传播速度。图1显示了这些条件下声波的频率与波长的关系。本应用笔记末尾的“设计参数计算公式”列出了本文所用阵列设计参数的计算公式。 宽边阵列 宽边麦克风阵列是指一系列麦克风的排列方向与要拾取的声波方向垂直(见图3)。图中,d是阵列中两个麦克风元件的间距。来自阵列宽边的声音通常就是要拾取的声音。

CAPON波束形成_Matlab程序

CAPON 波束形成器仿真 1.实验原理 波束形成就是从传感器阵列重构源信号。(1)、通过增加期望信源的贡献来实现;(2)、通过抑制掉干扰源来实现。经典的波束形成需要观测方向(期望信源的方向)的知识。盲波束形成试图在没有期望信源方向信息的情况下进行信源的恢复。 波束形成技术的基本思想是:通过将各阵元输出进行加权求和,在一时间内将天线阵列波束“导向”到一个方向上,对期望信号得到最大输出功率的导向位置即给出DOA 估计。 虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,却可以被调整到阵列接收的方向增益聚集在一个方向上,相当于形成了一个”波束”。这就是波束形成的物理意义所在。 在智能天线中,波束形成是关键技术之一,是提高信噪比、增加用户容量的保证,能够成倍地提高通信系统的容量,有效地抑制各种干扰,并改善通信质量。 波束形成器的最佳权向量w 取决于阵列方向向量)(a k θ ,而在移动通信里用户的方向向量一般未知,需要估计(称之为DOA 估计)。因此,在计算波束形成的最佳权向量之前,必须在已知阵列几何结构的前提下先估计期望信号的波达方向。 Capon 波束形成器求解的优化问题可表述为 w arg min P(w)θ= 其约束条件为 1)(a w H =θ Capon 波束形成器在使噪声和干扰所贡献的功率为最小的同时,保持了期 望信号的功率不变。因此,它可以看作是一个尖锐的空间带通滤波器。最优加 权向量w 可以利用Lagrange 乘子法求解,其结果为 )(a R ?)(a )(a R ?w 1H 1CAP θθθ--=

当μ不取常数,而取作 )(a R ?)(a 11H θθμ-=时,最佳权向量就转变成Capon 波束形成器的权向量。空间谱为 )(a R ?)(a 1)(P 1-H CAP θθθ= 2.变量定义 M :均匀线阵列数目 P :信号源个数 nn :快拍数 angle1、angle2、angle3:信号来波角度 u :复高斯噪声 Ps :信号能量 refp :信噪比(实值) X :接收信号 Rxx :接收信号的相关矩阵 doa :波达方向估计 3.仿真结果 采用上述算法进行仿真,结果如图所示。 在本仿真程序中,我们采用16个均匀线阵列,3个信号源,来波角度分别为5?、45?、20-?,信噪比均为10dB ,噪声为复高斯白噪声,快拍数1000。 由仿真结果看出,capon 波束形成器较好的给出了信号的doa 估计,但是在仿真的过程中,我们发现,capon 算法具有很大的局限性,其对扰和噪声是比较敏感的。 4.程序 clear all i=sqrt(-1); j=i; M=16; %均匀线阵列数目 P=3; %信号源数目 f0=10;f1=50;f2=100;%信号频率 nn=1000; %快拍数

(完整版)雷达组成及原理.doc

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授

一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段 雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二.雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。 2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高 频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测 判决之前完成( MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式) 才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)

雷达车距报警系统

雷达车距报警系统(RPW, Radar proximity warning system) 随着电子技术的进步,全新的雷达车距控制系统使得驾驶者的使用经验进入全新的时代,不同于以往的车距控制完全依赖于驾驶员的呆板控制,全新的雷达车距控制系统利用雷达技术与控制技术的进步让车距控制更为人性化。它安装了一具测距雷达,在系统启动时,不断发射雷达波,以即使检测与前方车辆的距离。可别将雷达车距控制系统与停车雷达混为一谈,两者虽然拥有相同的运作原理,但是使用的技术却有极大地差异。一般常见的停车雷达雷达,其所用的是超声波,是利用空气介质传递的雷达波,其侦测的距离极短,仅能作为低速行驶,停车,车身周围障碍物侦测之用。 所谓雷达车距控制系统指的是通过雷达持续高频地发射与接收信号,控制单元对雷达侦测信号及其它附加输入信号进行处理,通过这些信号可以在雷达侦测范围内众多物体中找出作为进行相关调控参照物的车辆,并通过自动控制执行器的相关动作来控制油门或制动,使得车辆保持相互间的安全距离,大幅度地减少驾驶员的操作动作,以保证更安全行车的一种装置。 雷达车距控制系统通过控制燃油供给与制动系统来控制车速的改变,以实现更为安全德尔行车距离。它与普通车控制系统有一定的区别。 一般以为,汽车上采用雷达控制车距的系统可以按传递信号的波形分为超声波型与雷达波型两种类型。 一.结构组成 雷达车距控制系统一般由车距调控系统感应器和车距调节控制系统控单元两大部分所组成。 感应器和控制单元安装在同一壳罩内,若感应器控制单元任一发生故障,则必须调换整个单元元件。 车距调控系统感应器发射模数化频率信号并接收反射信号。控制单元对雷达探测信号及其它附加信号进行处理,通过这些信号可以在雷达探测范围内众多物体中找出作为进行相关调控参考物的车辆。 二.工作原理 1.车距测量系统中视觉观测与雷达技术相比较 2.雷达车距控制系统的车距控制原理 3.测量系统原理。发射信号到接收部分反射信号所用的时间取决于目标间的距离。例如距离扩大到两倍时,发射信号到接收反射信号所用的时间也延长到两倍。

阵列天线波束赋形技术研究与应用

阵列天线波束赋形技术研究与应用 ⑧ 论文作者签名: 指导教师签名:皇直江本 论文评阅人1: 评阅人2: 评阅人3: 评阅人4: 评阅人5: 答辩委员会主席: 委员l: 委员2: 委员3: 委员4: 委员5: 答辩日期:2014年3月9日 浙江大学研究生学位论文独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的

同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。学位敝作者签名:惕扶%签字日期:沙、f年_;月∽学位论文版权使用授权书 本学位论文作者完全了解浙江大学有权保留并向国家有关部门或机构送交本论文的复印件和磁盘,允许论文被查阅和借阅。本人授权浙江大学可以将学位论文的全部或部分内容编入有关数据库进行检索和传播,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:伤双巧}导师签名:重甫姐;寿 签字日期:签字日期:训lf年弓月I3日)移f今年弓月l驴日 致谢 时光飞逝,又到了毕业季。在浙江大学本科四年以及研究生两年半的求学生涯中,我不仅学到了专业知识,还领悟到了很多做人的道理。浙大“求是,创新”的校训一直陪伴我的成长,在我毕业之后,“求是,创新”也将一直作为我为人处事的准则。两年半的硕士研究生生活即将结束,回首过往,自己在学习、生活上都得到了很大的提升,这离不开来自家人、老师、同学及朋友的帮助。在此,衷心感谢那些帮助过我的人。 首先感谢我的导师皇甫江涛老师和冉立新老师对我学业上的帮助,感谢他们为我指点未来的科研之路,帮助我选择毕业之后出国深

麦克风波束成形的基本原理

麦克风波束成形的基本原理 2012/04/06 简介 所有MEMS麦克风都具有全向拾音响应,也就是能够均等地响应来自四面八方的声音。多个麦克风可以配置成阵列,形成定向响应或波束场型。经过设计,波束成形麦克风阵列可以对来自一个或多个特定方向的声音更敏感。 麦克风波束成形是一个丰富而复杂的课题。本应用笔记仅讨论基本概念和阵列配置,包括宽边求和阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 图1:空气中声波的频率与波长的关系 方向性和极坐标图 方向性描述麦克风或阵列的输出电平随消声空间中声源位置的改变而变化的模式。ADI公司的所有MEMS麦克风都是全向麦克风,即它们对来自所有方向的声音都同样敏感,与麦克风所处的方位无关。图2所示为全向麦克风响应的2轴极坐标图。无论麦克风的收音孔位于x-y平面、x-z平面还是y-z平面,此图看起来都相同。 图2:全向麦克风响应图本应用笔记中,阵列的"前方"称为轴上方向,指拾取目标音频的方向,在极坐标图上标为0°;"后方"为180°方向;"侧边"指前后方之间的空间,中心方向分别位于90°和270°。本应用笔记中的所有极坐标图均归一化到0°响应水平。 涉及声音频率和波长的所有公式都使用以下关系式:c = f × λ,其中c为343 m/s,即声音在20℃的空气中的传播速度。图1显示了这些条件下声波的频率与波长的关系。本应用笔记末尾的"设计参数计算公式"列出了本文所用阵列设计参数的计算公式。 宽边阵列 宽边麦克风阵列是指一系列麦克风的排列方向与要拾取的声波方向垂直(见图3)。图中,d是阵列中两个麦克风元件的间距。来自阵列宽边的声音通常就是要拾取的声音。

MVDR自适应波束形成算法研究要点

MVDR自适应波束形成算法研究 摘要 波束形成技术和信号空间波数谱估计是自由空间信号阵列处理的两个主要研究方面。MVDR是一种基于最大信干噪比(SINR)准则的自适应波束形成算法。MVDR算法可以自适应的使阵列输出在期望方向上功率最小同时信干噪比最大。将其应用于空间波数谱估计上可以在很大程度上提高分辨率和噪声抑制性能。本文将在深入分析MVDR算法原理的基础上,通过计算机仿真和海上试验数据处理的结果,分析了MVDR算法在高分辨率空间波数谱估计应用中的性能。同时通过比较对角加载前后的数据处理结果,分析对角加载对MVDR的改进效果。 关键词:波束形成;空间波数谱估计;MVDR;对角加载

Study of MVDR Self-adapting Beam-forming Algorism Abstract Beamforming technology and signal special beam-number spectral estimation are the two major researching emphasis in array signal processing. MVDR is a self-adapting algorism based on the maximal SINR principle. It can self-adaptingly make the array output reach maximum on the expected direction with the lowest SINR. Applying this algorism to special beam-number spectral estimation can to great extent increase the resolution and the inhibition capability. This paper makes a further analysis of MVDR algorism with the result of computer emulation and the processing of experimental data. Furthermore, this paper also shows the improvement of diagonal-loading technology to MVER algorism. Keywords: Beam-forming ;Spatial Wave-number spectral estimation;MVDR;Diagonal loading

雷达的工作原理及相控阵雷达

问:有源相阵控雷达和无源相阵控雷达的区别是什么? h t p:/b s.t i e x u e.n e t/] [ 转自铁 血社区 答:区别就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元! 机载雷达经历了从机械扫描形式到相控阵电子扫描,再到最新的保形"智能蒙皮"天线的发展过程,电子扫描雷达在作战使用中的优势在哪里?未来的综合式射频(RF)传感器系统的总体特点和关键技术是哪些?您将从本文中得到启发 近50多年来,机载雷达不断采用新的技术成果,性能不断提高,其中重要的有全向多脉冲射频(MPRF)模式和高分辨率多普勒波束锐化(DBS)技术在雷达中的实际应用。目前,由于在信号处理和砷化镓微波集成电路领域技术的进步,雷达作为战术飞机主传感器的地位仍然会继续保持下去。 电子扫描技术的发展 雷达波束天线电子扫描应用的第一步是无源电子扫描阵列(ESA),其主要优点是实现了波束的无惯性扫描,在作战中有助于对辐射能量的控制。现役的此种类型的雷达有美国空军的B1-B和俄罗斯的米格-31装备的雷达,在研的有法国装备其"阵风"战斗机的RBE-2雷达。 有源ESA的出现是技术上的又一进步。它的每一个阵元中都有一个RF发射机和灵敏的RF接收机,在各个发射/接收(T/R)模块内都有一个功率放大器、一个低噪声放大器和用砷化镓技术制造的相位振幅控制装置。有源ESA雷达技术放弃了传统的中心式高功率发射机,除了具有无源相控阵雷达的优点外,还提高了能量的使用效率并具有自适应波束控制、强抗干扰能力和高可靠性等优点。 h t p:/b s.t i e x u e.n e t/] 血社区 [ 转自铁 西方国家第一代有源相控阵雷达系统接近定型的有美国装备F-22和日本装备 FS-X的雷达。英、法和德国共同研制的AMSAR项目也确定使用先进的有源相控阵雷达技术,为其后续的欧洲战斗机雷达的升级改装做准备。从今天的角度来看,雷达技术未来的下一个发展方向是保形"智能蒙皮"阵列,它把有源ESA技术和多功能共用RF孔径结合了起来,在天线阵元的安排上,与飞机机身的结构巧妙地配合,实现宽波段和多功能。保形天线阵列有高性能的处理器并使用空-时自适应处理技术有效地抑制了外部的噪声、干扰和杂波并能以最优化的方式来探测所感兴趣的目标。虽然有许多相关的技术问题需要解决,但保形"智能蒙皮"技术并非是个不切实际的解决方案,预计在20~25年的时间内就可以达到实用阶段。 在10~15年内,对战术飞机射频传感器(包括雷达)未来所执行的任务来说,最迫切的需要是增加功能、提高性能,并且还要注重经济性和可维护性。美国的"宝石路"计划已经证明,航空电子系统通过采用通用模块、资源共享和传感器的空间重构(重构的设备包括雷达、电子战及通信-导航-识别等射频传感器)可以做到系统的造价和重量减小一半,而可靠性提高三倍。它所确立的综合模块化航空电子的设计原则已用于JSF战斗机的综合传感器系统(ISS)和多重综合式射频传感器工程的设计中,欧洲类似的用于未来战术飞机的综

详解毫米波的波束合成

详解毫米波的波束合成 之前,我们分享了毫米波通信部署情形和传播注意事项,今天,我们来看一下各种波束合成方法:模拟、数字和混合,如图1所示。相信大家都很熟悉模拟波束合成的概念啦~

图1. 各种波束合成方法 在这里,我们有数据转换器,将数字信号与宽带基带或IF信号相互转换,连接执行上变频和下变频处理的无线电收发器。在射频(例如,28 GHz)中,我们将单个射频路径分成多条路径,通过控制每个路径的相位来执行波束合成,从而在远场朝目标用户的方向形成波束。这使得每条数据路径都能引导单个波束,因此理论上来说,我们可以使用该架构一次为一个用户服务。 数字波束成型就是字面意思。相移完全在数字电路中实现,然后通过收发器阵列馈送到天线阵列。简单地说,每个无线电收发器都连接到一个天线元件,但实际上每个无线电都可以有多个天线元件,具体取决于所需扇区的形状。该数字方法可实现最大容量和灵活性,并支持毫米波频率的多用户MIMO发展规划,类似于中频系统。这非常复杂,考虑到目前可用的技术,无论是在射频还是数字电路中,都将消耗过多的直流电。然而,随着未来技术的发展,毫米波无线电将出现数字波束合成。 近期最实用、最有效的波束合成方法是混合数模波束成型,它实质上是将数字预编码和模拟波束合成结合起来,在一个空间(空间复用)中同时产生多个波束。通过将功率引导至具有窄波束的目标用户,基站可

以重用相同的频谱,同时在给定的时隙中为多个用户服务。虽然文献中报道的混合波束成型有几种不同的方法,但这里显示的子阵方法是最实际的实现方法,本质上是模拟波束成型的步骤和重复。目前,报告的系统实际上支持2到8个数字流,可以用于同时支持单个用户,或者向较少数量的用户提供2层或更多层的MIMO。 让我们更深入地探讨模拟波束成型的技术选择,即构建混合波束成型的构建模块,如图2所示。在这里,我们将模拟波束合成系统分为三个模块进行处理:数字、位到毫米波和波束成型。这并非实际系统的划分方式,因为人们会把所有毫米波组件放在邻近位置以减少损耗,但是这种划分的原因很快就会变得很明显。 图2. 模拟波束合成系统方框图 波束成型功能受到许多因素的推动,包括分段形状和距离、功率电平、路径损耗、热限制等,是毫米波系统的区段,随着行业的学习和成熟,需要一定的灵活性。即便如此,仍将继续需要各种传输功率电平,以解决从小型蜂窝到宏的不同部署情形。另一方面,用于基站的位到毫米波无线电需要的灵活性则要小得多,并且在很大程度上可以从当前Release 15规格中派生出来。换言之,设计人员可以结合多个波束成型配置重用相同的无线电。这与当前的蜂窝无线电系统没有什么不同,在这些系统中,小信号段跨平台很常见,而且每个用例的前端更多都是定制的。 当我们从数字转向天线时,就已经为信号链绘制了潜在技术的进展图。当然,数字信号和混合信号都是在细线体CMOS工艺中产生的。根据基站的要求,整个信号链可以用CMOS开发,或者更有可能的是,采用多种技术的混合开发,为信号链提供最佳性能。例如,一种常见的配置是使用具有高性能SiGe BiCMOS IF 到毫米波转换的CMOS数据转换器。如图所示,波束成型可采用多种技术实现,具体取决于系统需求,我们将在下面讨论。根据所选的天线尺寸和发射功率要求,可以实现高度集成的硅方法,也可以是硅波束成型与离散PA和LNA的组合。

相关文档
最新文档