对汽车控制系统建模与仿真

对汽车控制系统建模与仿真
对汽车控制系统建模与仿真

对汽车控制系统建模与仿真

摘要:PID 控制是生产过程中广泛使用的一种最基本的控制方法,本文分别采用用简单的比例控制法和用PID控制来控制车速,并用MATLAB对系统进行了动态仿真,具有一定的通用性和实用性。

关键词:MATLAB 仿真;比例控制;PID 控制

1 MATLAB和PID概述

MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

2车辆行驶过程车速的数学模型

对行驶在斜坡上的汽车的车速进行动态研究,可以分析车辆的性能,指导车辆的设计。MATLAB软件下的SIMULILNK模块是功能强大的系统建模和动态仿真的软件,为车辆行驶过程车速控制分析提供了一种有效的手段。

汽车行驶如图7.4.1所示的斜坡上,通过受力分析可知在平行于斜面的方向上有三个力作用于汽车上:发动机的力、空气阻力和重力沿斜面的分量下滑力。

图1

由牛顿第二定律,汽车在斜坡上行驶的运动方程为:

Fh Fw Fe x M --=。。

其中M 代表汽车的质量,x 为汽车的位移。

在实际系统中总会有上界和下界,上届为发动机的最大推力,下界为刹车时

最大制动力。空气阻力可以近似为:2))011.0sin(20(001.0t x Fw +=。

汽车下滑力为:

)0001.0sin(30x Fh =。由比例法来控制车速时有:)

。。

。x x Ke Fe desired -=( 其中,e F 为驱动力,desired x 为期望速度值,设为80, 为反馈增益。50Ke =。仿真时间为1000s.

采用PID 控制来控制车速。其中:

3 仿真分析与计算

仿真模型的建立

在MATLAB 的SIMULINK 环境下,以图1为研究对象,建立斜坡行驶汽车的车速控制仿真模型如下图2、图3所示

Kg F e 1000,10002000汽车的质量为假设-<

,75.0,50===d i p K K K

图2 比例控制法的仿真模型结构图

图3 PID控制法的仿真模型结构图

3.2仿真计算的结果和曲线

利用仿真模型进行计算分析,计算得到该汽车在某斜坡路面上的车速随时间t的变化规律如图4所示:

a) 比例控制法的汽车速度曲线

b) PID控制法的汽车速度曲线

图4 仿真计算结果图

从以上的模拟曲线结果分析可知,汽车在斜坡路面行驶,采用比例控制法控制的汽车车速的变化过程中,在t100

0≤

≤t s,汽车基本上以恒定加速度做加速运动,t=100s时,车速值为76.94;在s

≤,汽车加速度逐渐减少到

t200

100≤

2

m,t=200s时,车速值为79.27,且车速基本上达到稳定;在t=1000s时,0s

/

其速度值为79.31。采用PID控制法,在s

≤,汽车基本上以恒定加速度

0≤

t120

加速行驶,t=120s时,汽车车速值为111.7;在s

≤,汽车做减速度逐

120≤

t350

渐减少的减速运动,t=350s时,车速值为80.2,车速基本上达到平稳;t=1000s 时,速度值为79.91。通过MATLAB软件的SIMULINK模块对汽车在斜坡上行驶车速建模仿真,我们可以知道在任何时刻汽车的车速的大小。

4 结论

本文根据汽车在斜坡路面上行驶的特点,通过力学分析,建立相关的数学模型,采用MATLAB/SIMULINK仿真方法,分析了普通汽车在斜坡上行驶过程中车速随时间的变化规律。比例控制法和PID控制法能对行驶在斜坡上的汽车车速进行有效的控制。

参考文献:

[1]舒进.四轮撞向车辆运动仿真[J].汽车科技。2002(06)

[2]舒进、陈思忠.四轮转向车辆运动分析[J].湖北汽车工业学院学报.2002(03)

[3]徐展。PID控制器性能评价[D].华北电力大学(北京)2010

[4]喻凡、林逸.汽车系统动力学[M].机械工业出版社,2005

基于MATLAB的汽车运动控制系统设计仿真

课程设计 题目汽车运动控制系统仿真设计学院计算机科学与信息工程学院班级2010级自动化班 姜木北:2010133*** 小组成员 指导教师吴

2013 年12 月13 日 汽车运动控制系统仿真设计 10级自动化2班姜鹏 2010133234 目录 摘要 (3) 一、课设目的 (4) 二、控制对象分析 (4) 2.1、控制设计对象结构示意图 (4) 2.2、机构特征 (4) 三、课设设计要求 (4) 四、控制器设计过程和控制方案 (5) 4.1、系统建模 (5) 4.2、系统的开环阶跃响应 (5) 4.3、PID控制器的设计 (6) 4.3.1比例(P)控制器的设计 (7) 4.3.2比例积分(PI)控制器设计 (9) 4.3.3比例积分微分(PID)控制器设计 (10) 五、Simulink控制系统仿真设计及其PID参数整定 (11) 5.1利用Simulink对于传递函数的系统仿真 (11) 5.1.1 输入为600N时,KP=600、KI=100、KD=100 (12) 5.1.2输入为600N时,KP=700、KI=100、KD=100 (12) 5.2 PID参数整定的设计过程 (13) 5.2.1未加校正装置的系统阶跃响应: (13) 5.2.2 PID校正装置设计 (14) 六、收获和体会 (14) 参考文献 (15)

摘要 本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统 PID仿真稳态误差最大超调量

基于simulink的车辆行驶控制系统建模与仿真

基于simulink的车辆行驶控制系统建 模与仿真

基于Simulink的车辆行驶控制系统建模与仿真汽车行驶控制系统是应用非常广泛的控制系统之一,其主要的目的是对汽车的速度进行合理的控制。系统的工作原理如下:经过速度操纵机构的位置发生改变以设置汽车的速度,再测量汽车当前的速度,并求取它与指定速度的差值,最后由速度差值信号驱动汽车产生相应的牵引力,并由此牵引力改变汽车的速度直到其速度稳定在指定的速度为止。本文采用Simulink建模,对行驶控制系统进行仿真,并采用Simulink自带的signal constraint模块对PID参数进行优化,仿真结果表明,该系统能在短时间内平稳的达到指定的速度,提高了汽车的操纵性。 1.汽车行驶控制系统的物理模型与数学描述 1)速度操纵机构的位置变换器 位置变换器是汽车行驶控制系统的输入部分,其目的是将速度操纵机构的位置转换为相应的速度,二者之间的数学关系如下所示: 其中x速度操纵机构的位置,v为与之相应的速度。 2)离散行驶控制器 行驶控制器是整个汽车行驶控制系统的核心部分。简单来说,其功能是根据汽车当前的速度与指定速度的差值,产生相应的牵引力。行驶控制器为一典型的PID控制器,其数学描述为:积分环节:

微分环节: 系统输出: 其中u(n)为系统的输入,相当于汽车当前速度与指定速度的差值。y(n)为系统输出,相当于汽车牵引力,x(n)为系统的状态。Kp,Ki,Kd为PID控制器的比例、积分与微分控制参数。 3)汽车动力机构 汽车动力机构是行驶控制系统的执行机构。其功能是在牵引力的作用下改变汽车的速度,使其达到指定的速度。牵引力与速度之间的关系为: 其中v为汽车的速度,F为汽车的牵引力,m=1000kg为汽车的质量,b=20为阻力因子。 2.系统Simulink模型与参数设置 行驶控制系统仿真模型如图1所示: 图1 行驶控制系统仿真模型 Set speed子系统模型如图2所示:

气动张力控制系统的建模与仿真

气动张力控制系统的建模与仿真 摘要:本文简单介绍了张力控制的相关知识及气动张力控制系统的组成及工作原理,并对张力控制系统的收卷控制部分进行了数学建模与仿真。建立了比例压力阀控缸开环系统的简化模型,采用PID控制方法,在Matlab仿真平台进行系统模型仿真,得到了系统仿真曲线。 关键词:张力控制气动比例控制系统建模与仿真 近年来,气动技术以其自身独特的传动方式和优点,如清洁、结构简单、气体来源充足和成本相对较低,已在工业自动化领域广泛应用。将气动技术应用于恒张力控制系统已成为一个重要研究领域,PID控制,现代控制理论,智能控制等都被应用到气动系统的控制中。但是气动控制系统,由于气体的可压缩性,阀口非线性及气缸摩擦力等因素的影响,导致了气动伺服系统的强非线性、固有频率低、刚度小、阻尼小等特点,要得到满意的控制伺服系统比较困难。要对气动伺服控制系统进行分析和研究,一般需要首先建立该控制系统的数学模型。 本文通过介绍张力控制的相关知识及气动比例控制系统原理与组成,针对张力控制系统的收卷控制部分建立简单的比例压力阀控缸开环控制系统的数学模型,并在Matlab环境下进行了仿真。 一、张力控制的基础知识 张力控制,简单地说就是要控制物体在设备上输送时物体上相互拉长或绷紧的力。张力控制系统往往是张力传感器和张力控制器的一种系统集成,是一种实现恒张力或者锥度张力控制的自动控制系统,主要应用于造纸、纺织、薄膜、电线等轻工业中,其作用主要是实现辊间的同步,收卷和放卷的均匀控制。在带材或线材的收卷和放卷过程中,为保证生生产的质量和效率,保持恒定张力是很重要的。 这种控制对机器的任何运行速度都必须保持有效,包括机器的加速、减速和匀速。即使在紧急停车情况下,也应有能力保证被分切物不破损。张力控制的稳定与否直接关系到分切产品的质量。若张力不足,原料在运行中产生漂移,会出现分切复卷后成品纸起皱现象;若张力过大,原料又易被拉断,使分切复卷后成品纸断头增多。 一套典型的张力控制系统主要由张力控制器,张力读出器,张力检测器,制动器和离合器构成。根据环路可分为开环,闭环或自由环张力控制系统;根据对不同卷材的监测方式又可分为超声波式,浮辊式,跟踪臂式等。 1.典型收卷张力控制示意图

实验七-对汽车控制系统的设计与仿真

实验七 对汽车控制系统的设计与仿真 一、实验目的: 通过实验对一个汽车运动控制系统进行实际设计与仿真,掌握控制系统性能的分析和仿真处理过程,熟悉用Matlab 和Simulink 进行系统仿真的基本方法。 二、实验学时:4 个人计算机,Matlab 软件。 三、实验原理: 本实验是对一个汽车运动控制系统进行实际设计与仿真,其方法是先对汽车运动控制系统进行建摸,然后对其进行PID 控制器的设计,建立了汽车运动控制系统的模型后,可采用Matlab 和Simulink 对控制系统进行仿真设计。 注意:设计系统的控制器之前要观察该系统的开环阶跃响应,采用阶跃响应函数step( )来实现,如果系统不能满足所要求达到的设计性能指标,需要加上合适的控制器。然后再按照仿真结果进行PID 控制器参数的调整,使控制器能够满足系统设计所要求达到的性能指标。 1. 问题的描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ? ??==+v y u bv v m & 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2、系统的模型表示

对汽车控制系统建模与仿真

对汽车控制系统建模与仿真 摘要:PID 控制是生产过程中广泛使用的一种最基本的控制方法,本文分别采用用简单的比例控制法和用PID控制来控制车速,并用MATLAB对系统进行了动态仿真,具有一定的通用性和实用性。 关键词:MATLAB 仿真;比例控制;PID 控制 1 MATLAB和PID概述 MATLAB是matrix和laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。 在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 2车辆行驶过程车速的数学模型 对行驶在斜坡上的汽车的车速进行动态研究,可以分析车辆的性能,指导车辆的设计。MATLAB软件下的SIMULILNK模块是功能强大的系统建模和动态仿真的软件,为车辆行驶过程车速控制分析提供了一种有效的手段。 汽车行驶如图7.4.1所示的斜坡上,通过受力分析可知在平行于斜面的方向上有三个力作用于汽车上:发动机的力、空气阻力和重力沿斜面的分量下滑力。

运动控制系统双闭环直流调速系统仿真

运动控制系统双闭环直流调速系统仿真 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

本科生课程论文课程名称运动控制系统 学院机自学院 专业电气工程及其自动化学号 1212XXXX 学生姓名翟自协 指导教师杨影 分数

题目: 双闭环直流调速系统仿真 对例题设计的双闭环系统进行设计和仿真分析,仿真时间10s 。具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为: P P =60kW , P P =220V , P P =308 A , P P =1000 r/min , 电动势系数 P P = V ·min/r ,主回路总电阻 R =Ω,变换器的放大倍数 P P =35。电磁时间常数 P P =,机电时间常数 P P =,电流反馈滤波时间常数 P PP =,转速反馈滤波时间常数 P PP =。额定转速时的给定电压(P P ?)P =10V ,调节器ASR ,ACR 饱和输出电压P PP ?= 8V , P PP =。 系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量 ≤5% ,空载起动到额定转速时的转速超调量 ≤10%。试求: (1)确定电流反馈系数β(假设起动电流限制在 以内)和转速反馈系数α。 (2)试设计电流调节器ACR.和转速调节器ASR 。 (3)在matlab/simulink 仿真平台下搭建系统仿真模型。给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。 (4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。并与仿真结果进行对比分析。

控制系统设计与仿真实验报告

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 控制系统设计与仿真上机实验报告 学院:自动化学院 班级:自动化 姓名: 学号: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 一、第一次上机任务 1、熟悉matlab软件的运行环境,包括命令窗体,workspace等,熟悉绘图命令。 2、采用四阶龙格库塔法求如下二阶系统的在幅值为1脉宽为1刺激

下响应的数值解。 2?,??n10?0.5,??(s)G n22?????2ss nn3、采用四阶龙格库塔法求高阶系统阶单位跃响应曲线的数值解。 2?,,??5T?n100.5,???Gs)( n22???1)?s(?2s)(Ts?nn4、自学OED45指令用法,并求解题2中二阶系统的单位阶跃响应。 程序代码如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根

;曲线如下: 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。.阅读使人充实,会谈使人敏捷,写作使人精确。——培根

法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 二、第二次上机任务 试用simulink方法解微分方程,并封装模块,输出为。得到各、1x i 状态变量的时间序列,以及相平面上的吸引子。 ?x?x??xx?3121? ??xx?x???322 ??xx?xx??x??32321参数入口为的值以及的初值。(其中,以及??????x28?10,?8/,,3,?i1模块输入是输出量的微分。)初值分别为提示:0.001xxx?0,?0,?312s:Simulink

汽车半悬挂系统建模与分析(现代控制理论大作业)

XX大学 现代控制理论 ——汽车半主动悬架系统的建模与分析 姓名:XXX 学号:XXXX 专业:XXXX

一. 课题背景 汽车的振动控制是汽车设计的一个重要研究内容,涉及到汽车的平顺性和操纵稳定性。悬架系统是汽车振动系统的一个重要子系统,其振动传递特性对汽车性能有很大影响。因此设计性能良好的悬架系统以减少路面激励的振动传递,从而提高汽车的平顺性和操纵稳定性是汽车振动控制研究的重要课题。 悬架系统是汽车车身与轮胎间的弹簧和避震器组成整个支撑系统,用于支撑车身,改善乘坐舒适度。而半主动悬架是悬架弹性元件的刚度和减振器的阻尼系数之一可以根据需要进行调节控制的悬架。 目前,半主动悬架研究主要集中在调节减振器的阻尼系数方面,即将阻尼可调减振器作为执行机构,通过传感器检测到汽车行驶状况和道路条件的变化以及车身的加速度,由ECU 根据控制策略发出脉冲控制信号实现对减振器阻尼系数的有级可调和无级可调。 二. 系统建模与分析 1.1 半主动悬架系统的力学模型 以二自由度 1/4半主动悬架模型为例,并对系统作如下假设: (1) 悬挂质量与非悬挂质量均为刚体; (2) 悬架系统具有线性刚度和阻尼; (3) 悬架在工作过程中不与缓冲块碰撞; (4) 轮胎具有线性刚度,且在汽车行驶过程中始终与地面接触。 综上,我们将该系统等效为两个质量块M ,m ;两个弹簧系统Ks ,Kt ;一个可调阻尼器(包含一个常规 阻尼器Cs 和一个变化阻尼力F ),如图1所示。 图1 系统力学模型 1.2 半主动悬架系统的数学模型 由减振器的简化模型得:N S =-+F C V F 对m 进行分析:()211201122()t s s d z dz dz m K z z K z z C F dt dt dt ?? =------ ??? 即:()()1011212()t s s mz K z z K z z C z z F =------ 对M 进行分析:2212122 ()s s d z dz dz M K z z C F dt dt dt ?? =-+-+ ??? 即:()()21212s s Mz K z z C z z F =-+-+

汽车电子控制系统软件建模分析与研究

汽车电子控制系统软件建模分析与研究 发表时间:2018-06-05T15:02:44.920Z 来源:《防护工程》2018年第3期作者:黄华 [导读] 近年来,随着人工智能概念的提出,各行各业都开始进行智能化转变的尝试,在汽车领域中,汽车控制系统的智能化正是其中代表之一。 广州广电计量检测股份有限公司广东省广州市 510656 摘要:近年来,随着我国经济水平的不断提升,人们收入水平大幅度上涨,越来越多的人选择使用汽车作为代步工具。在信息技术不断推陈出新的今天,汽车控制正逐步转变为电子软件控制的方式,降低汽车控制难度,实现功能的多样化,以便于汽车产品竞争力的提升。本文通过对不同的软件建模方式进行分析比较,提出相应的使用条件和不足之处,为日后的汽车控制系统软件的开发提供一定的参考借鉴。 关键词:汽车;电子控制系统;软件建模;分析研究 近年来,随着人工智能概念的提出,各行各业都开始进行智能化转变的尝试,在汽车领域中,汽车控制系统的智能化正是其中代表之一。建模作为软件系统开展研究的重要方法,经过半个多世纪的不断发展,在各个领域应用需求的作用和学科技术的不断更新下,形成了具备完整体系的专业技术体系,成为了具备战略性意义和通用性意义的重要技术类型。在汽车智能控制领域中,软件建模具有着十分重要的意义,通过建模技术,能够实现汽车电子产品开发周期的缩短,降低科研成本,为汽车产业发展提供坚实的技术支持。 一、软件建模的概念和作用 应用计算机语言,将已经构建出来的系统数字模型转变为图形模型或者其他类型的,便于用户进行操作的模型的方式就是软件建模。通常情况下,在汽车电子控制中,软件模型主要应用范围可以分为三个,即对实际系统进行分析设计、对实际系统中某些状态的发展状况进行预测预报,以及实现系统可视化、图形化转变,达成控制的最优化[1]。 建模作为对系统本质进行捕捉的过程,能够将问题从问题域放置到解决域,实现对问题的有效解决。通过软件建模,能够实现复杂问题的有效分层,通过宏观整体的角度对问题进行把握,从而实现对问题的最优化解决,作为优秀软件开发过程中不可替代的重要核心环节,软件建模的目的是将系统行为和设计结构进行有效联系,实现对系统体系结构的可视化控制。 二、汽车电子控制系统 (一)汽车软件控制系统的组成 在当前的汽车产品中,其控制系统根据系统组成,可以分为四个部分,即发动机动力集中传动控制系统、底盘综合控制与安全系统、车身智能系统和通讯信息娱乐系统。其中发动机动力集中传动控制系统包括发动机的集中控制系统、制动防抱死系统、自动化变速控制和牵引力控制系统等,而底盘综合控制和安全系统包括车辆的稳定控制系统、车身姿态控制和巡航控制系统、防撞预警系统等,车身智能系统包括座椅自动调节系统、汽车夜视系统和智能前灯系统等,至于通讯娱乐系统则包括汽车智能导航系统、语音识别系统等[2]。 (二)汽车控制系统的特征 汽车智能控制系统通常具有四个特征,分别是目的性特征,相关性特征、层次性特征和随机性特征。目的性特征指的是系统具备对和汽车功能要求相关的问题进行解决的特征。通常情况下,现代汽车很大一部分功能是无法通过机械系统来进行解决的,例如在光滑路面上进行行驶时,汽车为了保证安全,仅凭机械系统是无法实现汽车平滑制动的效果,需要通过ABS系统,才能实现易滑路面附着力的提升,实现车辆制动稳定,增强其可操纵性。而相关性指的是汽车搭载的各项系统往往是互相关联的,如果没有对关联性进行考虑,单一控制系统都无法形成预期效果。层次性指的是在当前汽车的控制系统中,整体结构可以分为三个层次,从上到下依次为车辆的综合控制系统、各项子系统(转向控制系统、制动控制系统等)以及具体部位的控制系统(如悬架装置控制系统、车轮制动控制系统等)。此外汽车在行驶过程中往往处于不同的环境中,行驶情况又往往是动态变化的,因此汽车控制系统必须能够对外界随机变化进行适应,才能更好地对汽车进行控制。 三、软件建模方式的比较与分析 (一)功能分解法 在功能分解法中,总体内容可以分解为功能、子功能和功能接口,通过功能分解法对汽车控制系统进行模型建立时,首先应当对各项大的功能进行定义,例如发动机与动力传动集控系统、车身智能系统、底盘综合控制与安全系统等。在进行大方向功能确定后,进行子功能的分解,例如在发动机与动力传动集控系统中,可以将其分解为发动机集控系统、自动变速控制系统和制动防抱死系统等同时通过对功能间接口进行定义,根据功能需求对数据结构进行设计。功能分解法的优势在于能够与模块化编程进行结合,实现效率的提升,便于进行工作开展,由于其功能稳定的特点,适用于应用领域,但不能对问题域进行直接映射,无法深入地对问题域进行理解。 (二)结构分析法 结构分析法又名数据流法,在这种方法中主要的工作内容包括数据流整合、数据加工存储和端点处理及处理说明与数据字典。通过结构分析法,能够在汽车控制系统建模时进行数据流跟踪,即对问题域中数据的流动情况及各环节处理情况进行研究,构建加工成数据流,再将汽车控制系统问题域进行映射,转化为由数据流、文件及加工等构成的数据流图,并通过数据字典和处理说明进行数据流加工进行说明,对汽车进行有效控制。这种方式能够大幅度降低错误疏漏的发生,但由于其自身将系统模型的行为与结构隐藏在程序结构中,无法将事物特性行为进行清晰表现,数据结构复杂,模型难以进行理解[3]。 (三)信息建模法 在信息建模法中,大致的工作原理为对事物实体进行属性和关系的描述,进行进一步分类并和其他对象进行关联。通过这种方法,在进行汽车控制系统建模是,单一模块实体对应问题域中的单一具体事物,包含着对事物属性信息进行描述的数据,例如发动机参数就是有发动机模块进行描述。通过模块间关系,对问题域各个事物在数据之间的联系进行描述,但其对象仅有属性,没有操作,无法实现良好的实体通信。 (四)面向对象建模法 面向对象建模对应于面向对象模型分析,其结构为类对象、主题、结构、属性和服务这五个层面构成,通过这种方式进行汽车控制模型建立,能够做到和现实客观事物相贴合,通过问题域来直接认识问题,并根据不同模块之间的特征,使其抽象为系统对象,进行有效控

MATLAB控制系统与仿真设计

MATLAB控制系统与仿真 课 程 设 计 报 告 院(系):电气与控制工程学院 专业班级:测控技术与仪器1301班 姓名:吴凯 学号:1306070127

指导教师:杨洁昝宏洋 基于MATLAB的PID恒温控制器 本论文以温度控制系统为研究对象设计一个PID控制器。PID控制是迄今为止最通用的控制方法,大多数反馈回路用该方法或其较小的变形来控制。PID控制器(亦称调节器)及其改进型因此成为工业过程控制中最常见的控制器(至今在全世界过程控制中用的84%仍是纯PID调节器,若改进型包含在内则超过90%)。在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,例如目前得到广泛应用的MATLAB仿真系统。本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形。 关键词:PID参数整定;PID控制器;MATLAB仿真。 Design of PID Controller based on MATLAB Abstract This paper regards temperature control system as the research object to design a pid controller. Pid control is the most common control method up until now; the great majority feedback loop is controlled by this method or its small deformation. Pid controller (claim regulator also) and its second generation so become the most common controllers in the industry process control (so far, about 84% of the controller being used is the pure pid controller, it’ll exceed 90% if the second generation included). Pid parameter setting is most important in pid controller designing, and with the rapid development of the computer technology, it mostly recurs to some advanced software, for example, mat lab simulation software widely used now. this design is to apply that soft mainly use Relay feedback law and synthetic method on the line to study pid

汽车运动控制系统仿真设计

一、摘要 2 二、课程设计任务 3 1.问题描述 3 2.设计要求 3 三、课程设计容 4 1、系统的模型表示 4 2、利用Matlab进行仿真设计 4 3、利用Simulink进行仿真设计 9 总结与体会 10 参考文献 10

本课题以汽车运动控制系统的设计为应用背景,利用MATLAB语言对其进行设计与仿真.首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标稳态误差和动态指标搬调量和上升时间,最终应用MATLAB环境下的.m 文件来实现汽车运动控制系统的设计。其中.m文件用step函数语句来绘制阶跃响应曲线,根据曲线中指标的变化进行P、PI、PID校正;同时对其控制系统建立Simulink进行仿真且进行PID参数整定。仿真结果表明,参数PID控制能使系统达到满意的控制效果,对进一步应用研究具有参考价值,是汽车运动控制系统设计的优秀手段之一。 关键词:运动控制系统PID仿真稳态误差最大超调量

一、课程设计任务 1. 问题描述 如下图所示的汽车运动控制系统,设该系统中汽车车轮的转动惯量可以忽略不计,并且假定汽车受到的摩擦阻力大小与汽车的运动速度成正比,摩擦阻力的方向与汽车运动的方向相反,这样,该汽车运动控制系统可简化为一个简单的质量阻尼系统。 根据牛顿运动定律,质量阻尼系统的动态数学模型可表示为: ???==+v y u bv v m 系统的参数设定为:汽车质量m =1000kg , 比例系数b =50 N ·s/m , 汽车的驱动力u =500 N 。 根据控制系统的设计要求,当汽车的驱动力为500N 时,汽车将在5秒达到10m/s 的最大速度。由于该系统为简单的运动控制系统,因此将系统设计成10%的最大超调量和2%的稳态误差。这样,该汽车运动控制系统的性能指标可以设定为: 上升时间:t r <5s ; 最大超调量:σ%<10%; 稳态误差:e ssp <2%。 2.设计要求 1.写出控制系统的数学模型。 2.求系统的开环阶跃响应。 3.PID 控制器的设计 (1)比例(P )控制器的设计 (2)比例积分(PI )控制器的设计 (3)比例积分微分(PID )控制器的设计 利用Simulink 进行仿真设计。 二、课程设计容 1.系统的模型表示

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

汽车ABS系统的建模与仿真

基于Matlab/Simulink的汽车建模与仿真 摘要 本文所研究的是基于Matlab/Simulink的汽车防抱死刹车系统(ABS)的仿真方法,本方法是利用了Simulink所提供的模块建立了整车的动力学模型,轮胎模型,制动系统的模型和滑移率的计算模型,采用的控制方法是PID控制器,对建立的ABS的数学模型进行了仿真研究,得到了仿真的曲线,将仿真曲线与与没有安装ABS系统的制动效果进行对比。根据建立的数学模型分析,得到ABS系统可靠,能达到预期的效果。 关键词 ABS 仿真建模防抱死系统PID

Modeling and Simulation of ABS System of Automobiles Based on Matlab/Simulink Abstract A method for building a Simulator of ABS base on Matlab/Simulink is presented in this paper.The single wheel vehicle model was adopted as a research object in the paper. Mathematical models for an entire car, a bilinear tire model, a hydraulic brake model and a slip ratio calculation model were established in the Matlab/Simulink environment. The PID controller was designed. The established ABS mathematical model was simulated and researched and the simulation curves were obtained. The simulation results were compared with the results without ABS. The results show that established models were reliable and could achieve desirable brake control effects. Key words ABS; control; modeling; simulation;Anti-lock Braking System; PID

运动控制系统仿真---实验讲义

《运动控制系统仿真》实验讲义 谢仕宏 xiesh@https://www.360docs.net/doc/2114530018.html, 实验一、闭环控制系统及直流双闭环调速系统仿真 一、实验学时:6学时 二、实验内容: 1.已知控制系统框图如图所示:

图1-1单闭环系统框图 图中,被控对象G(S) 10e-150s,GC(S)为PID控制器,试整定PID控制器 300s + 1 参数,并建立控制系统Simulink仿真模型。再对PID控制子系统进行封装,要求可通过封装后子系统的参数设置页面对KP、Ti、Td进行设置。 2.已知直流电机双闭环调速系统框图如图1-2所示。试设计电流调节器ACR和转速调 节器ASR并进行SimUIink建模仿真。 图1-2直流双闭环调速系统框图 三、实验过程: 1、建模过程如下: (1)PID控制器参数整顿 根据PID参数的工程整定方法(Z-N法),如下表所示,KP= 伯=0.24,Ti= 2 =300, Kτ Td= 0. 5 =75。 表1-1 Z-N法整定PID参数

PI 0.9T -K T3τ无0.4K c0.8TC无 PID 1.2T K I 2τ0?5τ0.6K C 0.5TC0.12TC (2) Simulink仿真模型建立 建立SimUIink仿真模型如下图1-3所示,并进行参数设置: 图1-3中,SteP模块"阶跃时间”改为 O, Transport Delay模块的"时间延迟”设置为 150,仿真时间改为1000s,如下图1-4所示: 图1-3 PID控制参数设置 运行仿真,得如下结果:

IP 回 Gaml Integrator du'dl S S □ VieW Simulation FOrmat ToOlS C? I ∣-CaΛtel 5 0.5 O 500 IPlD ≠ I ≡ ?希刊 3片令Uy 卜I IlOOo J?orΛal 三爭 E Φ I- F 過应? 图1-7 PID 子系统 Tim& offset. 0 (3) PID 子系统的创建 首先将参数 Gain 、Gain1、Gain 三个模块的参数进行设置,如下图所示: 再对PID 子系统进行圭寸装,选中"SUbSyStem ”后,单击鼠标右键,选择" MaSk SUbSyStem ”,弹 图1-5 PID 控制运行结果 Garn WO O ≡ a [^: P 刃盹逼圖0 ■垢 G I airl2 Deirivativ? W FUnCtlOn BlaCk PararrleterS- Gain 图1-6 PID 参数设置 然后建立PID 控制器子系统,如下图 1-7所示: TranSier FCn Transport Delay SietLal AttrLbU EiElIerrt-UriSe g ,aiιι (y =, Je-IaIi 吕 FUnCtiOn BIoCk Paranneters≡ Gain2 Signal Att ribut SaJliJJIe tine (-1 for i≡< P a,E ≥τ∣e i t 6r AttElbules Hlenent 5?jιple txι≡c (-1 fur Ieih Knlt ipLicat iαι∏LS EleMrtt -vise (K. *u) Sanple tune Ii-I for inketLtθd) i Elenent-Wije g 自丄n (y = .)LAU) _OE j??tn? ??LΠ Jy ± K ÷ α Or u^K}a V? FUnCtiOn Block Parameters : GainI K?LΓi (T) IlU I ltiPIICatiOn5 EIenI l eT SUbSyStem 10 300s+1

温度控制系统的设计与仿真..

远程与继续教育学院 本科毕业论文(设计) 题目:温控系统的设计及仿真(MATLAB) 学习中心: 学号: 姓名: 专业:机械设计制造及自动化 指导教师: 2013 年 2 月 28 日

摘要 温度是工业对象中一个主要的被控参数,它是一种常见的过程变量,因为它直接影响燃烧、化学反应、发酵、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。温度控制不好就可能引起生产安全,产品质量和产量等一系列问题。温度控制是许多设备的重要的构成部分,它的功能是将温度控制在所需要的温度范围内,以利于进行工件的加工与处理。 一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。如今,随着以微机为核心的温度控制技术不断发展,用微机取代常规控制已成必然,因为它确保了生产过程的正常进行,提高了产品的数量与质量,减轻了工人的劳动强度以及节约了能源,并且能够使加热对象的温度按照某种指定规律变化。 实践证明,用于工业生产中的炉温控制的微机控制系统具有高精度、功能强、经济性好的特点,无论在提高产品质量还是产品数量,节约能源,还是改善劳动条件等方面都显示出无比的优越性。 本设计以89C51单片机为核心控制器件,以ADC0809作为A/D转换器件,采用闭环直接数字控制算法,通过控制可控硅来控制热电阻,进而控制电炉温度,最终设计了一个满足要求的电阻炉微型计算机温度控制系统。 关键词:1、单片机;2、PLC;3、MATLAB

目录 1单片机在炉温控制系统中的运用 (3) 1、1系统的基本工作原理 (3) 2温控系统控制算法设计 (3) 2.1温度控制算法的比较 (3) 2.2数字PID算法 (6) 3 结论................................................ 错误!未定义书签。致谢 (17) 参考文献 (18)

控制系统建模、分析、设计和仿真

北京理工大学珠海学院 《计算机仿真》课程设计说明书题目: 控制系统建模、分析、设计和仿真 学院:信息学院 专业班级:自动化四班 学号: 学生姓名: 指导教师: 2012年 6 月 9 日

北京理工大学珠海学院 课程设计任务书 2011 ~2012 学年第2学期 学生姓名:专业班级: 指导教师:范杰工作部门:信息学院 一、课程设计题目 《控制系统建模、分析、设计和仿真》 本课程设计共列出10个同等难度的设计题目,编号为:[0号题]、[1号题]、[2号题]、[3号题]、[4号题]、[5号题]、[6号题]、[7号题]、[8号题]、[9号题]。 学生必须选择与学号尾数相同的题目完成课程设计。例如,学号为09xxxxxxxx2的学生必须选做[2号题]。 二、课程设计内容 (一)《控制系统建模、分析、设计和仿真》课题设计内容 最少拍有波纹控制系统

[8号题] 控制系统建模、分析、设计和仿真 设连续被控对象的实测传递函数为: 用零阶保持器离散化,采样周期取0.02秒,分别设计一单位加速度信号输入时的最少拍有波纹 控制器Dy(z)和一单位速度信号输入时的最少拍无波纹控制器Dw(z)。具体要求见(二)。 (二)《控制系统建模、分析、设计和仿真》课题设计要求及评分标准【共100分】 1、求被控对象传递函数G(s)的MATLAB 描述。(2分) 2、求被控对象脉冲传递函数G(z)。(4分) 3、转换G(z)为零极点增益模型并按z-1形式排列。(2分) 4、确定误差脉冲传递函数Ge(z)形式,满足单位加速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 5、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dy(z)可实现、最少拍和实际闭环系统稳定的要求。 (8分) 6、根据4、5、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 7、求针对单位加速度信号输入的最少拍有波纹控制器Dy(z)并说明Dy(z)的可实现性。(3分) 8、用程序仿真方法分析加速度信号输入时闭环系统动态性能和稳态性能。(7分) 9、用图形仿真方法(Simulink)分析单位加速度信号输入时闭环系统动态性能和稳态性能。(8分) 10、确定误差脉冲传递函数Ge(z)形式,满足单位速度信号输入时闭环稳态误差为零和实际闭环系统稳 定的要求。(6分) 11、确定闭环脉冲传递函数Gc(z)形式,满足控制器Dw(z)可实现、无波纹、最少拍和实际闭环系统稳 定的要求。(8分) 12、根据10、11、列写方程组,求解Gc(z)和Ge(z)中的待定系数并最终求解Gc(z)和Ge(z) 。(12分) 13、求针对单位速度信号输入的最少拍无波纹控制器Dw(z)并说明Dw(z)的可实现性。(3分) 14、用程序仿真方法分析单位速度信号输入时闭环系统动态性能和稳态性能。(7分) 15、用图形仿真方法(Simulink)分析单位速度信号输入时闭环系统动态性能和稳态性能。(8分) 16、根据8、9、14、15、的分析,说明有波纹和无波纹的差别和物理意义。(4分) ) 7)(5)(2()6)(1(879)(2+++++= s s s s s s s G

基于MATLAB的汽车减震系统仿真建模

问题描述及空间状态表达式的建立 1.1问题描述 汽车减震系统主要用来解决路面不平而给车身带来的冲击,加速车架与车身振动的衰减,以改善汽车的行驶平稳性。如果把发动机比喻为汽车的“心脏”,变速器为汽车的“中枢神经”,那么底盘及悬挂减震系统就是汽车的“骨骼骨架”。减震系统不仅决定了一辆汽车的舒适性与操控性同时对车辆的安全性起到很大的决定作用,随着人们对舒适度要求的不断提高,减震系统的性能已经成为衡量汽车质量及档次的重要指标之一。 图1.悬架减震系统模型 汽车减震系统的目的是为了减小路面的颠簸,为人提供平稳、舒适的感觉。图2,是一个简单的减震装置的原理图。它由一个弹簧和一个减震器组成。 从减震的角度看,可将公路路面看作是两部分叠加的结果:一部分是路面的不平行度,在汽车的行驶过程中,它在高度上有一些快速的小幅度变化,相当于高频分量;另一部分是整个地形的坡度,在汽车的行驶过程中,地形的坡度有一个缓慢的高度变化,相当于低频分量。减震系统的作用就是要在汽车的行驶过程中减小路面不平所引起的波动。因此,可以将减震系统看成是一个低通滤波器。 图2.减震系统原理图

1.2空间状态表达式的建立 对该系统进行受力分析得出制约底盘运动的微分方程(数学模型)是: 22()()()()()d y t dy t dx t M b ky t kx t b dt dt dt ++=+ 其中,M 为汽车底盘的承重质量,k 为弹簧的弹性系数,b 为阻尼器的阻尼系数。将其转化为系统传递函数: 22 2()()()2()n n n n s H s s s ωεωεωω+=++ 其中,n ω为无阻尼固有频率,ε为阻尼系数。并且, n ω= 2n b M ξω= 通过查阅相关资料,我们知道,汽车减震系统阻尼系数ε=0.2~0.4,而我们希望n ω越大越好。在下面的计算中,我们规定n ω=6,ε=0.2。所以,系统传递函数,可以转化为: 2() 2.436() 2.436 Y s s U s s s +=++ 根据现代控制理论知识,结合MATLAB 工具,将传递函数转化为状态空间矩阵和输出矩阵表示。 在MATLAB 中输入, [][][]()A,B,C,D tf2ss 2.4 36,1 2.4 36= 能够得到: 2.4361 0A --??= ??? 10B ??= ??? []2.436C = [0]D =。 进而,通过现代控制理论,可以将系统状态变量图绘制出来。

相关文档
最新文档