数学史与数学教育(HPM)的一个案例———刘徽的“割圆术”与微

数学史与数学教育(HPM)的一个案例———刘徽的“割圆术”与微

数学史与数学教育( HPM) 的一个案例———刘徽的“割圆术”与微

[摘要]刘徽的“割圆术”是中国数学史上的重要成就之一,其中包含着中国数学家对无限问题的独特认识和致用的处理方式.很多高等数学教科书在讲述极限概念时大都提及,但所述,并未体现刘徽本意.刘徽的“割圆术”是为证明圆面积公式而设计出来的一种方法,其融合了庄、墨两家理解和处理无限问题的方法,并且使用了数列极限的“夹逼准则”和不可分量可积的预设.通过这些相关知识的历史考察,试图以HPM的方法来辅助解决极限概念教学的难题. [关键词]刘徽;割圆术;无限;可积《高等数学》[1]在讲授数列极限概念之前,介绍了我国古代数学家刘徽的割圆术中极限思想,进而引入数列极限的描述定义.实际上,刘徽借“割圆术”方法,凭借其高超的对无限问题的理解和致用的处理方式,以“不可分量可积”前提、“夹逼准则”等知识证明了圆的面积公式,运算中包含着微积分的思想.另外要指出的是,他利用证明圆面积公式所设计出的机械性的算法程序,求得的圆周率的近似值———徽率(157÷50).郭书春先生认为,刘徽在世界上最先把无穷小分割和极限思想用于数学证明.[2] 1刘徽的“割圆术” 我国古代数学经典《九章算术》第一章“方田”中有我们现在所熟悉圆面积公式“半周半径相乘得积步”.魏晋时期数学家刘徽为证明这个公式,于公元263年撰写《九章算术注》,在这一公式后面写了一篇长约1800余字的注记———“割圆术”. “

浅谈数学史与初中数学教学的结合

浅谈数学史与初中数学课堂教学的结合 万州桥亭中学秦毅 内容摘要: 为了适应现代教育的需要,在现今的教育与教学过程中穿插一些数学史的有关轶闻趣事,能够激发学生对相关内容产生好奇心,活跃课堂气氛,调动学生学习数学的积极性。学习数学史,不仅是广大学生学好数学的有力帮助,而且是也是我们中学数学教师提高自身素养、更好的搞好教学工作所必需的。我们广大教师不仅要明白数学史的重要性,最根本的是要研究如何将数学史融合到教学当中,努力探索出一条新型的教学模式,以提高学生的数学能力和综合素质。 关键词: 数学数学史 一、引言 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学史是研究数学科学发生发展及其规律的学科,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 数学史研究已具有很长的历史,如何在数学教育中运用数学史的知识,充分发挥数学史的作用和价值则是当前数学教育改革面临的一个重要课题。1998年4月20日至26日,由国际数学教育委员会(ICMI)发起,在法国马赛附近的Luminy镇举行了题为“数学史在数学教育中的作用”国际研讨会。张奠宙

教授在《重视“科学史”在科学教育中的应用》一文中指出:在数学教育中,特别是中小学的数学教学过程中,运用数学史知识是进行素质教育的重要方面。目前数学史在数学教育中的应用已经进入系统的研究阶段,并在一些国家和地区进行实践性的操作。我国的数学史研究,乃至科学史研究,已经拥有相当规模的队伍。但是,我们的研究似乎还没有注意到如何运用于教学过程,发挥它的应有效益。 现阶段,在一定程度上,我国中小学数学教育在世界上也算是一流的,也正因为如此,我国的数学才会取得举世瞩目的成就,涌现了一大批优秀的数学家。在中学数学教学中,使学生深刻理解数学基础知识、牢固掌握数学基本技能、提高学生运算能力、思维能力和空间想象能力等方面,我们都有非常成功的经验,也取得了相当多的成绩。近年来,我国数学教育界在提高学生运用数学知识分析问题和解决问题的能力方面也极其重视,并且以探索出了许多成功经验。我国学生在国际数学奥林匹克竞赛中连年取得佳绩、在国际水平测试中名列前茅,这些都是我国数学教育水平高的有力证据,我国数学教育水平高的另一个证据是,在第三次国际数学和科学研究的测试中,深受中国传统文化影响的亚洲参加国的测试成绩遥遥领先于其他国家。因此,中国中小学数学教育的高水平成绩绝不是偶然的,是有厚重的历史积淀的,是几代、十几代数学教育工作者辛勤劳动、共同的结晶,是应该充分肯定的。但是对于现行教育体制中存在的问题,我们也是应该予以正视的。就在我们的教育界为上述的成就感到欢欣鼓舞时,社会上也存在着另外一种不同的声音“现行中小学数学课程处于一种十分尴尬的局面。一方面,我们现行的中小学数学内容一些学生学不好,学不了,成为数学学习上的失败者;另一方面,很多有价值的内容我们的学生没有机会接触,特别表现在数学思考方法、 2

割圆术——刘徽《九章算术注》

割圆术——刘徽《九章算术注》 割圆术(cyclotomic method) 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即圆周周长与直径的比率为三比一)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证,从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.14和 3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的

初中数学教学中融入数学史的意义与建议

初中数学教学中融入数学史的意义与建议 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初中数学教学中融入数学史的意义与建议 郑小瑞 摘要:数学史是研究数学的发生、发展过程及其规律的一门学科,它研究的主要对象是历史上的数学成果和影响数学发展的各种因素,探索前人的数学思想,借以指导数学的进展,并预见数学的未来。我国数学家吴文俊说过: “数学教育和数学史是分不开的。”学习一些数学知识,可以使同学们了解数学的发展轨迹,更好地体会数学概念所反映的思想方法,感受数学家们刻苦钻研和勇于开拓的精神,这对开阔视野,启发思维以及学习和掌握数学知识都大有益处。 关键词:数学史数学教学 一、引言 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学史是研究数学科学发生发展及其规律的学科,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 数学史研究已具有很长的历史,如何在数学教育中运用数学史的知识,充分发挥数学史的作用和价值则是当前数学教育改革面临的一个重要课题。1998年4月20日至26日,由国际数学教育委员会(ICMI)发起,在法国马赛附近的Luminy镇举行了题为“数学史在数学教育中的作用”国际研讨会。张奠宙教授在《重视“科学史”在科学教育中的应用》一文中指出:在数学教育中,特别是中小学的数学教学过程中,运用数学史知识是进行素质教育的重要方面。目前数学史在数学教育中的应用已经进入系统的研究阶段,并在一些国家和地区进行实践性的操作。我国的数学史研究,乃至科学史研究,已经拥有相当规模的队伍。但是,我们的研究似乎还没有注意到如何运用于教学过程,发挥它的应有效益。 现阶段,在一定程度上,我国中小学数学教育在世界上也算是一流的,也正

刘徽和割圆术

刘徽和割圆术 中国向来以文明古国自称,谈到中国古代文明,我们一定会说起以“经世致用”为信条,以筹算为主的中国古代数学史。在这段曲折发展的历史中,我们的古代数学跟其他古文明一样,在一定程度上获得了发展,特别是在算法的深度和广度上有着卓越的发展。但我们不得不提及,在中国古代长达2000多年的封建制度统治下,数学研究一直停留在计算层面,理论的严谨和系统却不尽如人意,这同时也导致了一些错误的结果的出现。在这样的数学背景下,刘徽可谓是中国数学史上的一朵奇葩,他有着“为数学而数学”的价值观,曾令中国古代数学的严谨与系统达到前所未有的高度。下面我将主要介绍刘徽及其最耐人寻味的一段成就——割圆术。 刘徽,生于公元250年左右,是魏晋时人。他的一生为数学刻苦探求,虽然地位低下,但人格高尚。他所撰的《九章算术注》是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观,是中国最早明确主张用逻辑推理的方式来论证数学命题的人。他不是沽名钓誉的庸人,而是学而不厌的伟人。由于篇幅有限,对刘徽卓越的成就不能一一介绍,只能介绍其最耐人寻味的割圆术。割圆术可谓是中国古代数学的奇迹,在后面与阿基米德求圆面积方法的比较中,您将发现割圆术的精妙与美丽。 在《九章算术》中曾提到“圆田术”---半周半径相乘得积步。这就是著名的圆面积公式: (1) 其中S 表示圆面积,C 表示周长,R 表示半径。我们今天可以得出这个公式是正 12S CR

确的,但在《九章算术》中只是提到了这一结论,却未给出严谨的证明。在刘徽之前人们以圆内接正六边形的周长代替圆周长C ,以圆内接正十二边形的面积代替圆面积S ,用出入相补原理将正十二边形拼补成一个以正六边形的周长的一半作为长,以圆半径作为宽的长方形来推证上述公式。在今天,我们可以看出用圆内接正六边形和圆内接正十二边形来近似代替圆是相当粗糙的,但在当时很少有人能指出这一算法的不严谨性,而刘徽却说此方法“合径率一而外周率三也”,一针见血的指出了这一方法的不严格性。为了给出这一公式的严格证明方法,刘徽发明了割圆术。所谓割圆术其实就是现代微积分中的极限的思想,即用圆内接正多边形的面积来逼近圆的面积。正如他在《九章算术注》中所说“割之弥细,所失弥少。割之又割以至于不可割则与圆合体而无所失矣”。在利用这一方法证明这一公式的过程中,刘徽还计算出了当时最精确的圆周率近似值---徽率( ), 这一结果要早西方很多年。同时,我们了解割圆术后会发现利用这种方法我们可 以将圆周率计算到任意精确程度,但当时计算能力有限,只能依靠手工验算,所 以刘徽能算到 ,已是很了不起了。 下面我们看一下刘徽割圆术的具体做法。 首先,刘徽从圆内接正六边形出发,开始割圆。利用迭代的计算方法依次得到圆内接正62?,262?,……边形。我们记圆内接正62n ?边形的面积为n S ,0,1,2,3,...n =,记圆的面积为S ,则有 n S S < 而随着分割次数的增多,n S S -越来越小,到不可再割时,n S 与S 重合,也就有了 l i m n n S S →∞ = 然后,圆内接正62n ?边形的每边和圆周之间有一段距离n r ,如下图CD ,称 15750

《数学史》朱家生版+课后题目参考答案+第五章

1.导致欧洲中世纪黑暗时期出现的主要原因是什么? 因为中世纪时期是欧洲最为混乱的时期,也是其经济、政治、文化、军事等全面停滞发展的时期,当时的欧洲居民生活在水深火热之中,所以被称为黑暗时期. 1、政治的黑暗、政权的分散:自罗马帝国衰亡后,中欧、西欧被来自东欧的日耳曼民族统治,日耳曼民族又有很多种族,因此相互征伐不断,如法兰克帝国、神圣罗马帝国、英格兰王国、教皇国等等,这些国家相互征伐、动乱不已,而且中世纪时期虽然是欧洲的封建时期,但却不集权、不统一,类似分封制的封建制度导致封建国家缺乏强有力的基础,例如神圣罗马帝国、皇帝仅仅是一个称号而已.而封建地主又对百姓盘剥,加之战乱不断、瘟疫横行,民不聊生. 2、宗教的干涉:这一时期的基督教对各国的干扰极强,甚至对政权的建立、稳定都十分重要.宗教严格的控制文化教育、人们的生活:一方面他们严格要求中下层教士及普通百姓,另一方面,上层教士又和封建势力相勾结,腐败没落,压榨百姓和人民,中世纪的宗教裁判所又有极大的权力,可以处死他们所认为的异端分子,由于思想、科学被严格控制,这一时期的欧洲思想、文化、科学鲜有成就. 3、经济的没落,由于盘剥严重、科技落后,这一时期的经济几乎没有发展,没有进步就代表了落后; 4、瘟疫盛行:宗教的干涉,科技的落后,医学的不发达,导致瘟疫的盛行,540年~590年查士丁尼瘟疫导致东地中海约2500万人死亡;1346

年到1350的鼠疫导致欧洲约2500万人死亡,灾难极大地打击的了欧洲的经济、政治甚至人口的发展. 简而言之,这一时期的欧洲百姓生活在一种暗无天日,毫无希望的生活里,所以被称为黑暗时期. 2、在欧洲中世纪黑暗时期曾经出现过那些知名的数学家,他们在当时那样的背景下各自做了哪些数学工作? 答:罗马人博伊西斯(罗马贵族),曾不顾禁令用拉丁文从古希腊著作的片段中编译了一些算术、几何、音乐、天文的初级读物,他把这些内容称为“四大科”,其中的数学著作还被教会学校作为标准课本使用了近千年之久,但博伊西斯本人还是遭受政治迫害被捕入狱并死在狱中。 7世纪,在英格兰的北部出现了一位博学多才的神学家,这就是被称为“英格兰文化之父”的比德。在数学方面,比德曾写过一些算术著作,研究过历法及指头计算方法。当时,对耶稣复活期的推算是教会讨论最热烈的课题之一,据说,这位比德大师就是最先求得复活节的人。 培根是英格兰人(贵族),曾在牛津大学和巴黎大学任教,会多种语言,对当时几乎所有的知识感兴趣,号称“万能博士”。他提倡科学,重视现实,反抗权威(应为不惧权威)。他认为,数学的思想方法是与生俱来的,并且是与自然规律相一致的。在他看来,数学是一切科学的基础,科学真理之所以是珍贵的,是因为它们是在数学的形成中被反映出来,即用数量和尺规刻画的。培根认为:“寻找和发

初中数学教学中融入数学史的意义与建议

初中数学教学中融入数学史的意义与建议 郑小瑞 摘要:数学史是研究数学的发生、发展过程及其规律的一门学科,它研究的主要对象是历史上的数学成果和影响数学发展的各种因素,探索前人的数学思想,借以指导数学的进展,并预见数学的未来。我国数学家吴文俊说过: “数学教育和数学史是分不开的。”学习一些数学知识,可以使同学们了解数学的发展轨迹,更好地体会数学概念所反映的思想方法,感受数学家们刻苦钻研和勇于开拓的精神,这对开阔视野,启发思维以及学习和掌握数学知识都大有益处。 关键词:数学史数学教学 一、引言 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学史是研究数学科学发生发展及其规律的学科,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 数学史研究已具有很长的历史,如何在数学教育中运用数学史的知识,充分发挥数学史的作用和价值则是当前数学教育改革面临的一个重要课题。1998年4月20日至26日,由国际数学教育委员会(ICMI)发起,在法国马赛附近的Luminy 镇举行了题为“数学史在数学教育中的作用”国际研讨会。张奠宙教授在《重视“科学史”在科学教育中的应用》一文中指出:在数学教育中,特别是中小学的数学教学过程中,运用数学史知识是进行素质教育的重要方面。目前数学史在数学教育中的应用已经进入系统的研究阶段,并在一些国家和地区进行实践性的操作。我国的数学史研究,乃至科学史研究,已经拥有相当规模的队伍。但是,我们的研究似乎还没有注意到如何运用于教学过程,发挥它的应有效益。 现阶段,在一定程度上,我国中小学数学教育在世界上也算是一流的,也正因为如此,我国的数学才会取得举世瞩目的成就,涌现了一大批优秀的数学家。在中学数学教学中,使学生深刻理解数学基础知识、牢固掌握数学基本技能、提高学生运算能力、思维能力和空间想象能力等方面,我们都有非常成功的经验,也取

数学史(考试重点及答案)

1. 简述数学史的定义及数学史课程的内容。 答:数学史研究数学概念、数学方法和数学思想的起源与发展及其与社会政治经济和一般文化的联系。数学史课程的功能可以概括成以下四部分: (1)掌握历史知识:通过学习关于数学的专门知识,更好的从整体上把握数学。 (2) 复习已有知识:按学科讲述学过的数学知识,系统的提高对该学科的理解。 (3) 了解新的知识:通过学习数学各学科的发展,了解没有学过的学科的内容。 (4) 受到思想教育:通过了解数学家为数学而奋斗的高尚品质,陶冶数学情操。 2.简述数学内涵的历史发展。 答:数学的内涵随时代的变化而变化,一般可分为四个阶段。 A数学是量的科学:公元前4世纪。 B数学是研究现实世界空间形式与数量关系的科学;19世纪。 C 数学研究各种量之间的关系与联系:20世纪50年代。 D数学是作为模式的科学:20世纪80年代。 1.简述河谷文明及其数学。 答:历史学家往往把四大文明古国的文明称之为“河谷文明”,因为这些国家是在河流的入海口建立的。尼罗河孕育了埃及文明;底格里斯河、幼发拉底河孕育了巴比伦文明;黄河和长江孕育了中国文明;印度河和恒河孕育了印度文明。埃及、美索不达米亚的数学产生较早,纪元前已经衰微,而印度、中国的数学崛起较晚,却延续至中世纪。 2. 简述纸草书与泥板文书中的数学。 答: 古埃及人在一种纸莎草压制成的叶片上书写,幸存至今,被称为纸草书。莱茵德纸草书(现存于伦敦大英博物馆)中有84个数学题目;莫斯科纸草书(现存于俄国普希金精细艺术博物馆)中有25个数学题目;还有其他纸草书。 纸草书中的数学知识包括:(1)算术,包括加法运算、单位分数、十进制计数、位置法;(2)几何,包括面积、体积计算和四棱台体积公式。 美索不达米亚人用尖芦管在湿泥板上写字,然后将湿泥板晒干或烘干,幸存至今,被称之为泥板文书。出土50万块其中数学文献300块。 泥板文书中的数学包括:(1)记数,包括偰形文、60制、位值原理;(2)程序化算法,包括??1.414213;(3)数表;(4)x2–px–q=0 ,x3=a,X3+X2=a (5) 几何,测量、面积、体积公式、相似形、勾股数值。代数学。 1.简述几何三大问题及历史发展。 答:用圆规和没有刻度的直尺完成作图(称为尺规作图); (1)画圆为方:作一个与给定圆面积相等的正方形; (2)倍立方体:求作一个正方体,使其体积等于已知正方体体积的两倍; (3)三等分角:分任意角为三等份角。 历史发展:从古代希腊开始,人们对三大问题做了不断的探索但没有解决;直到19世纪人们才能用代数学等的知识彻底解决了;彻底解决证明是不可能的,有的人不了解历史有时仍然盲目的研究它。 2.简述欧几里得的几何《原本》。 答:欧几里德集古代希腊论证数学之大成,写成第一部典范的数学著作几何《原本》。 前六卷相当于几何内容。第1卷首先用23个定义给出了点、钱、面、圆以及平行线等原始概念,接着提出了5个公社和5个公理,第2卷主要讨论几何代数,第3卷是与圆有关的一些问题,包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理,第4卷在引入了圆的内接和外切圆形的概念以后,讨论了给定圆的某些内接和外切正多边形的尺规作图问题,第5卷讨论了有关量的比例理论,第6卷主要是将激励理论应用于平面几何,其中包括相似三角形等。第7、8、9卷主要研究初等数论。第10卷讨论无理数。后3卷是立体几何的内容.

数学史与数学教育

数学史与数学教育 一、数学史有它的教育价值: 普及数学史是新课程改革的基本旨趣;学史能够给数学课堂教学添色增彩;中小学教材渗透着丰富有趣的数学史;数学史是认识数学知识本质的催化剂;数学史本身蕴含着当下教材基本知识。 二、数学发展的几个阶段 目前学术界通常将数学发展划分为以下五个时期: (一、)萌芽数学时期(公元前600年以前); (二、)常量数学时期(前600年至17世纪中叶); (三、)变量数学时期(17世纪中叶至19世纪20年代);(四、)近代数学时期(19世纪20年代至第二次世界大战);(五、)现代数学时期(20世纪40年代以来)。 第一阶段有一下两项重要成果:计数制度的产生和使用(如图1)。测量和 图1 作图(如图2赵爽对勾股定理证明方法,图文结合)。

图2 第二阶段是常量数学时期(初等),那个时期数学发展的两条主线: 1.中国初等数学的辉煌成就、 2.灿烂的古希腊数学。 其中中国初等数学的辉煌成就有三次发展高潮:(1)两汉时期;(2)魏晋南北朝时期;(3)宋元时期。 领先的成就有: 1、计算技术的创用 2、加、减、乘(九九表)、除;分数、小数、近似计算 3、更相减损术、比例算法、盈不足术 4、刘徽的“割圆术”,祖冲之的“圆周率”,祖暅原理,算经十书 宋元四大家:杨辉、秦九韶、李冶、朱世杰。贾宪三角(杨辉三角);秦九韶《数书九章》之“正负开方术”、“大衍求一术”;朱世杰之《算学启蒙》、《四元玉鉴》的“招差术”、“垛积术”;李冶是的“天元术” 第三时期变量数学时期主要有:几何学的变革;微积分的创立与

发展;多分支的形成:集合论、抽象代数、复变函数等,这几个重要成果。 几何学的变革时期代表人物有费尔玛、高斯、笛卡尔等。笛卡尔在实际上建立起了历史上第一个倾斜坐标系,把几何和代数达到了完美的统一。 微积分虽然不是牛顿与莱布尼兹发现创造的,但却是他俩大体完成的。牛顿改变了以往从“和的极限”到“定积分”的老路,开创了从导数到不定积分到定积分的新路。清楚得表明了他对微分和积分互逆关系的认识。莱布尼兹认识到求积依赖于在横坐标的无限小区间上的纵坐标之和或无限窄小的矩形之和。更重要的是他认识的求和(积分)与求差(微分)运算的可逆性。 数学方法:(1)化归的方法、(2)变换的方法、(3)类比的方法、(4)归纳的方法、(5)合情推理的方法、(6)反证法、(7)数形结合的方法、(8)分类讨论的方法、(9)运筹的方法。 数学观点:(1)近似的观点、(2)抽象的观点、(3)一一对应的观点、(4)对称的观点、(5)多样性和统一性的观点、(6)“变中有不变”的观点、(7)偶然性与必然性的观点、(8)运算与结构的观点、(9)博弈的观点、(10)关系、等价关系、序关系、相关关系、比例关系、函数关系的观点 数学思想:(1)“命题需要证明,证明依靠逻辑”的思想、(2)量化的思想、(3)数学建模的思想、(4)最优化的思想、(5)公理化的思想、(6)数学机械化的思想、(7)数据处理与数理统计的

数学史与数学教育2018尔雅满分答案

数学史与数学教育绪言(一) 1 【单选题】(A)于1758年出版的著作《数学史》是世界上第一部数学史经典著作。 ?A、蒙蒂克拉 ?B、阿尔弗斯 ?C、爱尔特希 ?D、傅立叶 2 【单选题】首次使用幂的人是(C)。 ?A、欧拉 ?B、费马 ?C、笛卡尔 ?D、莱布尼兹 3 【单选题】康托于(B)年起开始出版的《数学史讲义》标志着数学史成了一门独立的学科。?A、1870 ?B、1880 ?C、1890 ?D、1900 4 【判断题】历史上最早的数学史专业刊物是1755年起开始出版的《数学历史、传记与文献通报》。错误 5 【判断题】公元前5世纪的《希腊选集》中记载了关于丢番图年龄的诗文。(错误) 数学史与数学教育绪言(二) 1 【单选题】卡约黎的著作《数学的历史》出版于(B)年。 ?A、1890

?C、1898 ?D、1902 2 【单选题】史密斯的著作《初等数学的教学》出版于(A)。 ?A、1900 ?B、1906 ?C、1911 ?D、1913 3 【单选题】(D)数学史教授卡约黎倡导为教育而研究数学史。 ?A、德国 ?B、法国 ?C、英国 ?D、美国 4 【判断题】四等分角以及倍立方问题同属于三大几何难题,是被证明无法用尺规做出的。(错误) 5 【判断题】史密斯倡导建立了ICMI。(正确) 数学史与数学教育绪言(三) 1 【单选题】Haeckel的生物发生定律应用于数学史中即为(C)。 ?A、基础重复原理 ?B、往复创新原理 ?C、历史发生原理 ?D、重构升华原理 2 【单选题】史密斯的数学史课程最早开设于(C)年。

?B、1890 ?C、1891 ?D、1892 3 【单选题】《如何解题》、《数学发现》的作者是(C)。 ?A、庞加莱 ?B、弗赖登塔尔 ?C、波利亚 ?D、克莱因 4 【判断题】M.克莱因认为学生学习中遇到的困难也是数学家历史上遇到的困难,数学史可以作为数学教育的指南。(正确) 5 【判断题】18世纪欧洲主流学术观点不承认负数为数。(正确) 数学史与数学教育绪言(四) 1 【单选题】HPM的研究内容不包括(D)。 ?A、数学教育取向的数学史研究 ?B、基于数学史的教学设计 ?C、历史相似性研究 ?D、数学史融入数学科研的行动研究 2 【单选题】HPM的主要目标是促进三方面的国际交流与合作,其中不包括。D ?A、大中学校数学史课程 ?B、数学史在数学教学上的运用 ?C、各层次数学史与数学教育关系的观点 ?D、数学史对数学发展的推动作用 3

数学史与数学教育的关系

NO.6 时代教育TIME EDUCATION June 关于数学史融入数学教育的思考刘婧摘要:数学史与数学教育关系研究是一个新兴的学术领域,其教育作用已得到我国数学教育界的普遍关注。为了促进数学史与数学教育有机地融合,数学史与数学教育的关系、以教育取向为目的的数学史研究、基于数学史的课堂教学是研究的主要内容。关键词:数学史数学教育融合中图分类号:G420 文献标识码: A DOI:10.3969/j.issn.1672-8181.2010.06.065 1 问题的提出许多年来,数学家、教育家以及历史学家都在探询是否数学的教学能从数学史与数学教育的整合中受益。不可否认的是,数学教育并没有实现为所有学生的目标,因此,研究数学史的融入能否提高现实状况是一个值得关注的问题。近年对数学史的兴趣和价值探讨日渐增多。1972 年,数学史与数学教学关系国际研究小组(International Study Group on the Relations between History and Pedagogy of mathematics,简称HPM)成立,标志着数学史与数学教育关系研究成为一门学术领域[1]。本文旨在阐述数学史在数学教学中所起到的作用,以及如何借助历史促进数学教学。2 数学史与数学教育的融合将数学史整合进数学教育可以通过多种方式使学生、教师和研究者受益。学生能体验到数学是一项在人类影响下探索、发现、改变和扩展的活动,不再将数学看成是一个已经完成的制造品,而是不断自我完善和发展的知识体系,同时,学习者将感受到社会和文化对数学的影响。另外,数学史强调数学课题之间的联系和数学在其他学科中的作用,能帮助学生从更广泛的视角看待数学,从而加深学生的理解。数学史能提供一个较好的机会去看待数学的本质。当一个教师自身对数学的感知和理解改变时,将会影响数学教学的方式,因此影响学生看待数学的方式。此外,史学知识能帮助教师理解学习的不同阶段与典型的困难。从个人的角度上说,历史也能维持教师在数学上的兴趣。教育研究者在课题研究时也能从数学史中受益。它能提供教师和研究者大量有趣的数学问题、资料和方法,可在教学和教材中显形或隐性地利用。数学史的了解能让研究者从新的角度分析学生的学习。20 世纪初盛行的生物起源法则(Biogenetic Law)提出:个体的数学学习遵循着数学自身的发展历史。然而,简单地研究数学史会发现学生学习与数学发展过程并不完全具有一致性。之后,Freudenthal 提出数学再创造” “ (Guided Reinvention)的概念说明数学史与数学教育的关系:提倡学生经历数学家探索问题的过程并不意味着按数学家思考的顺序进行,……但是我们所遵循和关注的不是数学家实际的历史足迹,而是经过完善、更具指导性的历史过程[2]。3 教育取向的数学史研究数学的思想是历史地并且合乎逻辑地发生和发展的。数学教育应当遵循数学历史和逻辑相统一的辩证思想。数学史研究[3] 的一个重要目的就是“教育的目的” 。基于数学思想的历史与逻辑,探究符合学生认知规律,并摸索适合学生数学思维能力发展的教育方式。因此,数学史研究不是纯粹的数学史研究,而是数学史助益数学教学的规律性探究;它也不是纯粹的教学实践,而是数学史促进数学教育的应用性研究[4]。以教育取向为目的的数学史研究,其功能是将数学知识、思想的历史形态加工整理成教师和学生能够方便使用的教育形态基金项目:渭南师范学院研究生专项科研计划项目(09YKZ036)。。从这个意义上说,数学史还只是教师重新运用和思维加工的材料。目前,数学史运用于课堂教学主要采用链接式和融入式的方法。所谓链接式,是在原先的教学中简单地叠加数学史料。而融入式则指依据历史发生原理(即个体对数学概念的认知发展过程与该概念的历史发展过程相似)使数学史成为数学文化的载,体,数学课程的有机组成部分。对比链接式中机械生硬的使用数学史料,融入式的教育方式能更好地帮助学生把握住数学知识的本质,优化学生的数学观念。作为一名教师,在了解一段数学史的基础上设计教学,很大程度取决于对数学史”再创造”的能力。以学习和理解古人数学思维进展过程为教学设计的切入点,捕捉有教育意义的历史题材,并依托数学教育心理学等教育理论中的认知发展规律汲取教学启示,以课堂现实状况为落脚点,明细

关于刘徽的割圆术(终审稿)

关于刘徽的割圆术 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

关于刘徽的割圆术 关键词九章算术, 刘徽, 割圆术, 圆周率 1 刘徽割圆术的内容 刘徽的割圆术, 是刘徽在为《九章算术》第一卷方田中的圆田术所作的 注中提出来 的, 包括如下内容: 1) 刘徽首先解释了圆田术求圆面积的方法, 然后指出“周三径一”是不 对的, 他说: 以 半周乘半径而为圆幂, “此以周径谓至然之数, 非周三径一之率也. 周 三者, 从其六觚之环 耳, 以推圆规多少之较, 乃弓之与弦也. ” 2) 刘徽提出用割圆内接正六边形为正十二边形等步骤, 使圆内接正多边 形的面积逐 次逼近圆的面积. 进而又指出: “割之弥细, 所失弥少. 割之又割, 以 至于不可割, 则与圆周 合体而无失矣. 觚面之外, 又有余径. 以面乘余径则幂出弧表. 若夫觚 之细者, 与圆合体, 则 表无余径. 表无余径, 则幂不外出矣. ” 3) 刘徽详述了割圆的算法, 例如, 关于割圆内接正六边形为正十二边形, 他说: “令半 径一尺为弦, 半面五寸为勾, 为之求股. 以勾幂二十五寸减弦幂, 余七 十五寸, 开方除之, 下

至秒忽, 又一退法求其微数, 微数无名者以为分子, 以下为分母, 约为五分忽之二, 故得股 八寸六分六厘二秒五忽五分忽之二. 以减半径, 余一寸三分三厘九毫七秒四忽五分忽之 三, 谓之小股, 为之求弦, 其幂二千六百七十九亿四千九百一十九万三千四百四十五忽, 余 分弃之, 开方除之, 即十二觚之一面也. ” 4) 刘徽在计算了圆内接正一百九十二边形的面积后, 对圆面积进行了大胆推断, 从而 获得了当时世界上最精确的圆周率的值. 他说: “差幂六百二十五分寸之一百五, 以十二觚 之幂为率消息, 当取此分寸之三十六以增于一百九十二觚之幂( 即三百一十四寸六百二十 五分寸之六十四) , 以为圆幂三百一十四寸二十五分寸之四. ” 5) 刘徽验证了自己获得的结果的正确性, 为此, 他继续用割圆术, 直到求出圆内接正 三千零七十二边形的面积. 他说: “当求一千五百三十六觚之一面, 得三千七十二觚之幂, 而裁其微分, 数亦宜然, 重其验耳. ” 2 刘徽割圆术的历史地位 2. 1 古希腊已有割圆思想 古希腊巧辩学派的学者Ant iphon ( 约公元前五世纪) 提出用边数

数学史朱家生版课后题目参考答案第一章

1.数学的起源于世界古老文明产生的关系 11数本(1)班郭奇 2011041047 “数学”这个词在我们的生活中可谓是无处不在,他作为人类思维的表达形式,反映了人们的积极进取的意志、缜密周详的推理及对完美境界的追求。“数学”与我们身边的其他学科也有着密切联系。例如在天文学方面、医学方面、经济学方面等等。大到天文地理,小到生活琐事,数学的魅力可谓是发挥的淋漓尽致。 然而关于数学的起源,却有着一个古老而神奇的传说。相传在非常非常遥远的古代,有一天在黄河的波涛中突然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的河水中又爬出一只“神龟”来,龟背上也驮着一卷书,书中则阐述了数的排列方法。马背上的图叫“河图”,乌龟背上的书叫做“洛书”,当“河图洛书”出现后,数学也就诞生了。 当然,这个也只不过是个传说罢了。数学作为最古老的一门学科,他的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少,迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。 远在一万五千年以前,人类就可以相当逼真的描绘出人和动物的形象,这是萌发图形意识的最早证据。后来就开始逐渐对圆形和直线型的追求,从而成为数学图形的最早的原型。在日常的生活实践中又逐渐产生了记数的意识和系统。人类摸索过许多种记数的方法,例如用石块记数,结绳记数等,最后逐步发展到现在我们所用的数字。图

形意识和记数意识发展到一定阶段,又产生了度量的意识。 从人类社会的发展史来看,人们对数学本质特征的认识也在不断变化和深化着。欧几里得说过“数学的根源在于普通的常识,最显著的例子是非负整数。”他的算术来自于普通常识中的非负整数。而且直到十九世纪中叶,对于数的科学探索还停留在普通的常识。因此,十九世纪以前,人们普遍认为数学是一门自然学科,经验学科,因为那时的数学与现实之间的联系非常密切。随着数学研究的不断深入,从十九世纪中叶以后,数学是一门演绎科学的观点逐渐占据主导地位。这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学都建立在代数结构、序结构和拓扑结构这三种母结之上。 与这种观点相对应,从古希腊的柏拉图开始,许多人认为数学是研究模式的学问。数学家怀特海在《数学与善》一书中说到:“数学的本质特征就是,在从模式化的个体作抽象的过程中对模式进行研究,数学对于理解模式和分析模式之间的关系,是最强有力的技术。”1931年,歌德尔的不完全性定理的的证明,宣告了公理化逻辑演绎系统中存在的缺憾。人们此时又想到了数学是经验科学的观点。著名数学家·诺依曼就认为,数学兼有演绎科学和经验科学两种特性。波利亚则认为:“数学有两个侧面,他是欧几里得式的严谨的科学,但他也是别的什么东西。” 然而,人们对数学还有些其他的理解。有人认为“数学是一种文化体系”,“数学是一种语言”数学活动是社会性的。他是在人类文明

割圆术

如果说万有引力是牛顿的小苹果,那么圆周率一定是砸中祖冲之爷爷的那只小苹果,因为祖冲之的家喻户晓主要源于“圆周率”π。 祖冲之到底是采用什么样的方法获得这个π值(3.1415926~3.1415927)的呢? 根据古籍记载,三国时期伟大的数学家刘徽利用“割圆术”把圆内接正多边形的面积一直算到了正3072边形,由此而求得了圆周率为3.1415和3.1416这两个近似数值。 圆周长在古代就是多边形的周长:2000多年前,希腊的阿基米德就用上述的方法测算出圆周长。他测量圆周长所用的尺子,是一个圆内接正多边形的边长,用Sn表示,测量几次,就表明正多边形有几条边,用n表示,那么首尾相接测量n次,其周长就是nSn,这也就是用长为sn的尺子测量出来的圆周长。当内接正多边形的边数n越来越多时,其边长Sn 就会越来越短,也就是测量圆周的尺长越来越短,它测量出的圆周长就会越来越精确,假如让n变得没法再大,或者尺长Sn几乎就是个0时,测量出的长度就成了圆的精确长度。 我们上学的时候都知道圆的内接正多边形,“正”的意思就是多边形的每条边都相等。

除了圆的内接正三角形、正六边形,还会有圆的内接正七边形、内接正八边形、内接正九边形,以致无限。 正八边形旋转一周是360度,所以每条边对应的内角就是45度。而每个顶角到正八边形中心的直线恰好平分这个顶角。 所得到的角就是135度的一半,也就是67.5度,她的对顶角也是67.5度,Scratch里竖直朝上是0度,往右旋转是正数角度,因此,画正八边形的初始角度也是67.5度。 割圆术就是利用了“随着内接正多边形边数的增加,内接正多边形的周长和面积也会无限接近圆的周长和面积”这一原理。刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。通过对内接正多边形周长和面积的计算,依据公式求得π值。 科普完毕,接下来小酷就和大家一起看看如果祖冲之大师穿越,他将如何用Scratch如何简单方便地画出圆以及圆的内接多边形。 我们这次需要用Scratch模式画出几个圆作为背景,同时在这些背景上绘制出相应的内接正多边形。 首先导入角色:两个画笔

高校数学史与数学教学融合问题与手段

高校数学史与数学教学融合问题与手段 一、引言 将数学史融入数学教学,就是创造性地使用数学史的各种资源,通过教师教学方法的加工,使数学史有机转化成数学教学内容的组成部分。创设教学情境,帮助学生建立数学科学系统性的认识,提高数学学习兴趣,培养缜密的逻辑思维和创造性思维能力。 一、数学史融入数学教学的现状 数学史与数学教学相结合的方式是数学教育中的重点,也是难点。学习数学史一方面能帮助学生在头脑中建立数学空间,拓展数学思维,在学习和生活中学会应用数学的方法解决问题;另一方面,能够最大程度地激发学生的学习兴趣,将学生的探索精神提升到一个新的层次,站在历史规律的层面上看待和总结问题。当下的高校在数学教学的过程中对数学史和数学教学的关系处于模糊梳理的状态,不能够认识到数学史和数学教学实践的紧密关系,缺乏数学史的必要支持,使得数学教学过于理论和乏味,同时对数学史和数学教学实践的错误理解和拼凑也是突出的问题。 二、高校数学史与数学教学融合中存在的问题 (一)数学史层次应用不合理 当下高校数学史在数学教学的过程中发挥的作用微乎其微,首要存在的问题就是在高校数学教学中数学史层次应用不合理。将数

学史融入数学教学的层次主要有三个:一是讲故事,就是将数学史中相关的事件和故事融入教学当中,为我们的数学教学实践提供一个完整的思路,同时也让学生根据数学史的相关故事更好地理解课堂教学的实际内容。二是梳理历史脉络,将各个时代的数学家的数学思想和数学方法进行对比,帮助学生全方位地认识和了解数学学科,提升思考问题的广度和深度。梳理历史脉络能够使学生在进行学习的同时建立自己关于数学科目学习的学科思维和系统想学习方法,具有极高的建构价值。三是站在历史的角度上分析数学活动体现的意义,在实践数学教学过程中践行多元化的文化理想。这样不仅能够帮助学生进一步挖掘数学学科的意义和深刻的价值,同时也能够使得学生在学习过程中树立远大的学科和文化理想,并将之付诸于实践行动。当下的教学过于强调对数学知识的单一掌握,对于数学史层次的合理应用不同程度地存在忽略的问题,导致了高校数学教学的滞后与单薄。 (二)忽略应用数学史转化教育形态 将数学史融入数学教学的内容,可以有效完成数学形态的转化,即由“学术形态”转化为“教育形态”,这种转化为学生进行人性化教育打下了坚实的基础。在高校的数学教学中,过于强调学术形态,忽略了教育形态,导致当下的高校数学教学中枯燥单一地追求学术造诣,将教育形态的普及作用变成了一种拔高的学术要求,使得高校数学在教学过程中出现了教育形态定位上的倾斜。 三、数学史融入数学教学的具体手段

数学史复习题总结及答案(原创)

1,18世纪主要的数学家:欧拉,雅科布?贝努力,约翰?贝努利,泰勒,麦克劳林,棣莫弗等。2,19世纪主要的数学家:傅里叶,柯西,泊松,刘维尔,若而当,庞加莱,黎曼,魏尔斯特拉斯,克莱因,希尔伯特,切比雪夫,柯瓦列夫斯卡娅等。 3,《四元玉鉴》作者是:元代数学家朱世杰 4,中国古代数学发展的顶峰时期是:宋元时期 5,最早使用“函数”这一术语的是:莱布尼茨 6,首次获得四次方程的一般解法的是:费拉利 7,《九章算术》里“少广”指的是:开方数 8,最早使用位制制计数的国家是:美索不达米亚。他们主要用60进制。 9,希尔伯特在历史上明确提出选择和组织公里的原则:相容性,完备性,独立性 10,二项展开式的系数图表在中学称为:杨辉三角。数学史学者常称:贾宪三角。 11,欧几里得《几何原本》共有13卷,包含5条公理,5条公式 12,被称为现代分析之父的数学家是:魏尔斯特拉斯。被称为数学之王的数学家是:高斯13,第一台能做加减运算的机械式计算机是由数学家:帕斯卡在1642年发明的。 14,1900年德国的希尔伯特在巴黎国际数学大会上提出23 个尚未解决的问题。 15,首先将三次方程一般解法公开的是:卡当(意大利) 首先获得四次方程一般解法的是:费拉利 首先获得三次方程一般解法的是;费罗 16,中国历史上最早叙述勾股定理的著作:《九章算术》 中国历史上最早完成勾股定理证明的是:三国时期的赵爽 17,积分学的起源早于微分学。微积分诞生于17 世纪。 18,数学家为了研究古希腊三大尺规作图问题花费了2000 年的时间,在1882年德国数学家林德曼证明了数PI的超越性,从而确定了尺规画圆为方的不可能性。 19,世界上讲述方程最早的著作是:《九章算术》 20,《数学汇编》是一部总结前人成果的著作,被认为是古希腊数学的安魂曲,作者是:帕波斯21,不属于算经十书的是:《数书九章》 22,以万物皆为数为信条的古希腊学派是:毕达哥拉斯学派 23,首先使用“0”来表示零的国家是:印度。出自《巴克沙利手稿》 24,在《几何原本》中,整体大于部分属于公理 25,刘徽首先建立了可靠的理论来推算圆周率,他所得到的徽率是:3.14 26,“一尺之锤,日取其半”出自:《考工记》 27,祖冲之的代表作:《缀术》 28,《九章算术》全书共有9章,有246个问题 29,发现不可公度的是:毕达哥拉斯学派。该发现导致了数学史上第一次数学危机 30,斐波那契的兔子问题出自:《算经》 31,最早提出对数数学方法的英国数学家是:约翰?纳皮尔 32,数学史上第一次数学危机的产生是由于:无理数的发现 33,“数学”一词是由古希腊数学家毕达哥拉斯创用的。 34,代数问题中数学符号的系统化归功于:韦达 35,费马对微积分诞生的贡献主要在于其发明的:求极值的方法 36,与微分学发展无关的是:用无穷小过程计算特殊形状的面积 37,最先建立“非欧几何”理论的数学家是:罗巴切夫斯基 38,被公认为行列式理论的奠基人的数学家是:范德蒙 39,数学史上最多产的数学家:欧拉

数学史在初中数学教学中的应用

龙源期刊网 https://www.360docs.net/doc/211488872.html, 数学史在初中数学教学中的应用 作者:陈竺 来源:《文理导航》2014年第05期 早在1893年,美国学者Heppel在改进几何教学协会会议上宣读的一篇论文中,曾引用下面这段诙谐的诗句来说明当时学生心目中的数学: 如果又一场洪水爆发, 请飞到这里来避一下, 即使整个世界被淹没, 这本书依然会干巴巴。 直到现在,很多学生依然提不起学习数学的兴趣,于是教材的阅读材料中大量增添了数学史的有关内容,力图让学生做到“知其所以然”。因此将数学史应用于数学教学之中是数学教师对教学探索创新的一个重要方向。 一、通过数学史了解数学的起源及学习数学的意义 在中学数学的第一堂课,我们应当以数学史为依托,让学生对数学留下美好的第一印象。古希腊的“毕达哥拉斯学派”研究数学的驱动力之一是美感的需要,这直接反映在他们对音乐、图形的和谐性的探求上,他们认为音乐之所以动听、图形之所以美丽都与数有关,所以进行了深入的探究,如《费马大定理》这本书就生动地描述了毕达哥拉斯发现音乐和声规律的故事,同时数学中的黄金分割被誉为“世界上最和谐的美”。而中国古代的数学更是从实用出发,很多研究正是基于市集交易、兵法布阵、娱乐游戏而引发。了解这些历史可以让学生体会数学中的美和趣味。 二、利用数学家的故事激励学生 很多学生认为数学是枯燥乏味的,他们在遇到困难时,很快就会放弃,没有数学家那种锲而不舍的精神。我们可以讲一些数学家的故事激励学生。例如,数学史上公认的三位最具影响力的数学家的故事:阿基米德一句“走开,别动我的图!”献出了自己的生命,同时也体现了他如痴如醉的崇高科学精神;高斯的家境并不富裕,但刻苦读书、善于思考的他9岁就巧妙的求出1至100的和,11岁发现了二项式定理的一般展开式,19岁发现了作正十七边形的方法,20 岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;牛顿更是由于同学瞧不起他、说他笨,从而下定决心,发奋读书,取得了伟大成就。 三、在概念课中,巧妙利用数学史正本清源

相关文档
最新文档