基尔霍夫方程

基尔霍夫方程
基尔霍夫方程

基尔霍夫定律及解析

基尔霍夫定律 基尔霍夫定律是分析与计算电路的基本定律,分别称为基尔霍夫电流定律和基尔霍夫电压定律。电路中几个常用名词如下: 支路;同一电流所流经的路径。在图 1.11中有三条支路。 节点;三条或三条以上支路连接点。在图 1.11中有a 、b 两个节点。 回路;由若干支路所组成的闭合路径。在图 1.11中有abca 、abda 、adbca 三个回路。 网孔;不含支路的闭合路径。在图 1.11中abca 、abda 两个网孔。 1.3.1 基尔霍夫电流定律(KCL ) 基尔霍夫电流定律是用来确定电路中任一节点各支路电流间的关系式。由于电流的连续性,在任一瞬时,流向任一节点的电流之和等于流出该节点电流之和。即 =入I ∑出I ∑ (1.5) 在图 1.11所示电路中,对节点a 可写出 I 1+I 2=I 3 上述关系式可改写为 I 1+I 2―I 3=0 即 0=∑I (1.6) 基尔霍夫电流定律也可表述为:在任一瞬时,通过电路中任一节点电流的代数和恒等于零。假定选流入节点的电流取正值,则流出节点的电流取负值。 基尔霍夫电流定律通常应用于节点,还可以应用于任一假想的闭合面。即在任一瞬时,通过电路中任一闭合面的电流代数和也恒等于零。如图 1.12所示闭合面包围的三极管电路。 I b +I c =I e 或 I b +I c -I e =0 ` 图1.12 KCL 用于闭合面 图1.13 例 1.3直流三相供电系统如图 1.13所示,若电流I A =5A ,I B =3A ,试求电流I C 。 解:假想一闭合面将三角形的负载包围起来,则 I A +I B +I C =0 I C =-I A -I B =-5-3=-8A 负号表示电流的实际方向与图中参考方向相反。 图1.11 支路、节点、回路和网孔

物理化学公式复习

物理化学公式复习 第一章气体 1.理气状态方程 2.混合理气的平均摩尔质量 3.道尔顿分压定律(一定T、V条件) 4.分压力和总压力关系 5.阿马格分体积定律(一定T、P条件) 6.压缩因子的定义 7.范德华方程 8 .维里方程 B 、 C 、 D 分别称第二、第三、第四维里系数。 9 .对应状态原理 第二章热力学第一定律 1 . 系统吸热为正,放热为负。 系统得功为正,对环境做功为负。 2 .体积功定义

适用恒外压过程 (可逆过程) (一定量理气恒温可逆过程) (理想气体绝热过程,不论过程是否可 逆都适用) 3 .内能 (1)(W ˊ = 0 dV= 0 的过程) (2) (适用于 n 、 C v,m 恒定,理想气体单纯 PVT 变化的一切过程) 4 .焓的定义式 5 .焓变 (1) (2)() (3) (理气恒定,单纯 PVT 变化的一切过程) 6 .摩尔热容 ( 1 )恒容摩尔热容的定义式 (1mol 物质、, 只有 P 、 T 变化的过程 ) ( 2 )定压摩尔热容的定义式 (3) ( 只适用于理气 ) 7 .反应进度 8 .标准摩尔反应焓

9 .基尔霍夫公式 ( 1 ) (只适用于在 298.155~T 的温度范围内,参加反应各物质的种类和相态皆不发生变化的反应。) ( 2 ) 10 .化学反应的恒压摩尔反应热和恒容摩尔反应热的关系式 (此 式适用于由同 一始态,分别经恒温恒压及恒容反应,达到仅 P 、 V 不同的未态化学反应摩尔热效应的计算。) 11 .理想气体可逆绝热过程方程式 常数 常数 = 常数 12 .节流膨胀系数(焦耳 - 汤姆生系数) 13 .理想气体 14 .火焰最高理论温度 (恒压绝热) 1.隔离系统内发生的可逆变化过程() A .△S=0,△S(环)=0 B. △S>0,△S(环)=0 C. △S=0,△S(环)>0 D.△S>0,△S(环)>0. 2. 实际气体经一不可逆循环( )

基尔霍夫定律介绍

学科《电工学》 课题§1-5《基尔霍夫定律》班级机电57班 人数47 课时2学时课型教授课周次第九周授课时间2008年4月23日星期三第5、6节 教学目的及其目标 知识目标: 1、理解支路、节点、回路、网孔等基本概念 2、掌握基尔霍夫两定律所阐述的内容 3、应用基尔霍夫两定律进行计算 情感目标:培养学生通过实验现象归纳事物本质、将感性认识提升为理论知识的能力 技能目标:1、培养实际操作能力及独立思考、钻研、探究新知识的能力 2、培养创新意识,提高分析问题与解决问题的能力,举一反三,触类旁通 教学重点基尔霍夫定律的内容及表达式 运用基尔霍夫定律的解题步骤及例题讲解 教学难点电流参考正方向的理解及电阻电压、电源电动势正负的确定教学方法观察演示法、讲授法、启发讨论法、媒体应用法 教具及参考书1、完整的基尔霍夫定律实验板一块 2、万用表三支 3、多媒体课件 4、电化教学设备 5、连接导线若干 6、电阻若干 参考书:《电工与电子基础》(机工4版) 教学过程1、组织教学 2、复习提问 3、新课引入 4、新课讲授 5、提问 6、归纳总结 7、布置作业 教材分析 本节课采用实验演示教学法,导出基尔霍夫定律的具体内容及数学表达式,并详细讲解在列节点电流方程和回路电压方程的方程式中,电流、电压、电动势字母前正负号的确定,通过例题讲解,使学生能较好的掌握课程的重点,引导学生释疑解难、突破难点,学好课程内容。

得出: ⑴支路:由一个或几个元件首尾相接组成的无分支电路。(问:请同学们仔细观察,流过同一支路的电流有何特点?) (生答略)师:图中共有5条支路,支路电流分别标于图中。 ⑵节点:三条或三条以上支路的连接点。(生答略)师:图中共有a、b、c三个节点。 ⑶回路:电路中任何一个闭合路径。(生答略)师:图中共有6个回路。 ⑷网孔:中间无任何支路穿过的回路。网孔是最简单的回路,或是不可再分的回路。(请问上图电路中共有几个网孔 呢?)(生答略)师:对,图中最简单的回路aR 1R 2 a,aR 2 R 4 ba,bR 4 R 5 b 三个是网孔。 〖动动脑筋〗请问下列电路有几条支路、几个节点、几个回路、几个网孔? (生答略)师答: 6条支路 4个节点 7个回路 3个网孔 出示EWB仿真模型演示,了解电路组成,以此集中学生注意力。得出结论:同一支路中电流处处相等。 注:名词解释采用问答形式,以增强学生学习的主动性,促使教学效果在教师与学生互动中得到较好的体现。

浅谈基尔霍夫定律

浅谈基尔霍夫定律 摘要:基尔霍夫定律(Kirchhoff laws)阐明集总参数电路中流入和流出结点的各电流间以及沿回路的各段电压间的约束关系的定律,是 1845 年由德国物理学家 G·R·基尔霍夫提出。原始基尔霍夫定律给出了三个必备条件:两组方程的线形函数形式;确定方程组中每项正负号的法则;两组方程的独立方程个数。现在的基尔霍夫定律与原始的基尔霍夫定律并不完全相同,在某种程度上,它破坏了原始基尔霍夫定律所包含的三点的内容的统一,也破坏了原始基尔霍夫定律自己单独可以唯一确定支路电流分布的功能,并且可以通过积分形式的两组独立方程组独立完整和统一的证明原始基尔霍夫定律没有证明的第一点和第二点内容。基尔霍夫定律反映的是电路中各支路电流之间的约束关系或各部分电压之间的约束的关系,与电路中连接的是什么元件(元件小性质)无关分析复杂电路分析复杂电路可见在电路理论中基尔霍夫定律占有重要地位,可以说它是分析求解电路的万能钥匙,本文阐述如何正确利用基尔霍夫定律对电路进行分析计算。 关键词:基本信息、发现背景、几个基本概念、基尔霍夫定律、应用 一、基本信息 基尔霍夫定律Kirchhoff laws是电路中电压和电流所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫(Gustav Robert Kirchhoff,1824~1887)提出。它既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。基尔霍夫定律包括电流定律(KCL)和电压定律(KVL),前者应用于电路中的节点而后者应用于电路中的回路。 二、发现背景 基尔霍夫定律是求解复杂电路的电学基本定律。从19世纪40年代,由于电气技术发展的十分迅速,电路变得愈来愈复杂。某些电路呈现出网络形状,并且网络中还存在一些由3条或3条以上支路形成的交点(节点)。这种复杂电路不是串、并联电路的公式所能解决的,刚从德国哥尼斯堡大学毕业,年仅21岁的基尔霍夫在他的第1篇论文中提出了适用于这种网络状电路计算的两个定律,即著名的基尔霍夫定律。该定律能够迅速地求解任何复杂电路,从而成功地解决了这个阻碍电气技术发展的难题。基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。当基尔霍夫第一、第二方程组联合使用时,可正

基尔霍夫定理的验证实验报告(含数据处理)

基尔霍夫定律的验证实验报告 一、实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的 理解。 2、进一步学会使用电压表、电流表。 二、实验原理 基本霍夫定律是电路的基本定律。 1)基本霍夫电流定律 对电路中任意节点,流入、流出该节点的代数和为零。即∑I=0 2)基本霍夫电压定律 在电路中任一闭合回路,电压降的代数和为零。即∑U=0三、实验设备 四、实验内容 实验线路如图2-1所示

图2-1 1、实验前先任意设定三条支路的电流参考方向, 2、按原理的要求,分别将两路直流稳压电源接入电路。 3、将电流插头的两端接至直流数字毫安表的“+,-”两端。 4、将电流插头分别插入三条支路的三个电流插座中,记录电 流值于下表。 5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。 被测量I1 (mA) I2 (mA) I3 (mA) E1 (V) E2 (V) U FA (V) U AB (V)U AD (V) U CD (V) U DE (V) 计算值 测量值 相对误差%%%0%%%%%%% 五、基尔霍夫定律的计算值: I1 + I2 = I3 …… (1)

根据基尔霍夫定律列出方程(510+510)I1 +510 I3=6 (2) (1000+330)I3+510 I3=12 (3) 解得:I1 = I2 = I3 = U= U BA= U AD= U DE= U DC= 六、相对误差的计算: E(I1)=(I1(测)- I1(计))/ I1(计)*100%=()/=% 同理可得:E(I2) =% E(I3)=% E(E1)=0% E(E1)=% E(U)=% E(U AB)=% E(U AD)=% E(U CD)=% E(U DE)=% 七、实验数据分析 根据上表可以看出I1、I2、I3、U AB、U CD的误差较大。 八、误差分析 产生误差的原因主要有: (1)电阻值不恒等电路标出值,(以510Ω电阻为例,实测电阻为515Ω)电阻误差较大。 (2)导线连接不紧密产生的接触误差。 (3)仪表的基本误差。 九、实验结论 数据中绝大部分相对误差较小,基尔霍夫定律是正确的 十、实验思考题

第7讲基尔霍夫定律

课内试验项目操作分析单 班级________姓名_______学号_______ 编制部门:编制人:编制日期: 项目编号项目名称基尔霍夫定律训练对象 课程名称电工电子技术教材《电工技术》《电子技术基础》学时1 试验目的(1)掌握万用表测量电流、电压的方法及稳压电源的使用方法 (2)掌握基尔霍夫定律的内容和其在电路分析中的应用 (3)培养学生严谨细致,认真负责的工作作风 一、仪器设备: ZH-12通用电学实验台、万用表 二、注意事项: 1、试验之前应先检查设备、器材的好坏。 2、电路连接时,要注意电源极性,避免反接。 3、使用万用表时,要正确选择档位,且要规范操作。若选用电压表和电流表则应注意选 用合适量程的表,并且电路连接时要注意极性。 4、测量电压时,应将表并在所测对象两端;测量电流时,应将表串入电路。 三、试验电路: 试验<1> 图

四、操作步骤: (1)调节ZH-12实验台上的稳压电源,使其输出电压为9V,待用。 (2)(2)按图<1>所示电路图接线。 (3)(3)经教师检查后接通电源,用万用表测电压及各支路电流,并将结果填入表<1>中。 五、结果汇总 六、结果分析 1、分析试验电路(1)中各电流的关系 2、分析试验电路(1)中各段电压的关系 七、评分 1、操作是否符合规范(40%) 2、结果是否正确(30%)总分:_________ 3、分析是否正确(30%)

课题7:基尔霍夫定律 课型:讲练结合 教学目的: 知识目标: (1)掌握基尔霍夫定律。 (2)学会运用基尔霍夫定律进行电路分析。 技能目标: (1)进一步熟悉万用表测量电压、电流的方法。 (2)进一步熟练电路连接技巧。 重点、难点: 重点:(1)基尔霍夫电压和电流定律的内容及表达式。 难点:(1)运用基尔霍夫定律分析电路。 (2)列方程∑I=0、∑U=0过程中,电流,电压,电动势字母前正负号的确 定。 教学分析 本节课采用学生先根据电路及要求进行试验,在课堂讲解过程中老师再加以演示,边演示边讲解,导出基尔霍夫定律的具体内容及表达式,再详细讲解在列KCL、KVL方程式中,电流,电压,电动势字母前正负号的确定,通过例题讲解,使学生能较好的理解课程 的内容,突破难点。 复习、提问: (1)电路开路及短路时的特点? (2)什么是简单电路? 教学过程: 一、引入 问题:简单电路是指可以用元件的串、并联加以化简求解的电路,复杂电路是指不能用元件的串、并联化简得以求解的电路, 如下图所示电路。

基尔霍夫定律

基尔霍夫定律 作者:佚名文章来源:本站原创点击数: 1025 更新时间:2007-9-2 9 一.名词介绍 我们以图1-4-1所示的电路来介绍有关的名词。 1.支路:按狭义定义,把通过同一电流的电流路径成为 支路。如图1-4-1,该电路共有三条支路,其中支路 b1a和b2a中既有电阻又有电源,称为有源支路; 支路a3b只有电阻而无电源,称为无源支路。 2.节点:按狭义定义,三条和三条以上支路的联接点 称为节点,如图1-4-1所始电路有两个节点a和b。 3.回路:由支路构成的闭合路径称为回路,如图1-4-1, 共有三个回路,即a2b1a回路,a3b2a回路,a3b1a 回路。 二.基尔霍夫电流定律(KCL) 基尔霍夫电流定律是描述电路中各支路电流之间相互关系的 的定律。在任意时刻t,流入某个节点的电流的总和等于流出该 节点的电流的总和。此结论称为基尔霍夫电流定律(KCL)。 例如对于图1-4-1所示电路,我们设定各支路电流的大小和 参 考方向如图中所示,则对该点有 i1(t)+i2(t)=i3(t) 将上式改写为-i1(t)-i2(t)+i3(t)=0 上式的物理意义是,流出节点a的电流的代数和等于零。这里流出的电流规定取 正号,则流入的电流即取负号。 若将上式再改写为i1(t)+i2(t)-i3(t)=0 图1-4-1 电路 举例

此式的的物理意义是,流入节点a的电流的代数和等于零。这里流入的电流规定取正号,则流出的电流即取负号。 上两式是KCL的另一中叙述法。它们本质上是一样的,只是在列写方程时把流出节点的电流规定为正,还是把流入节点的电流规定为正而已。 上两式写成一般形式为:∑i1(t)=0即集中在任一节点上的各支路电流的代数和恒为零。 需要注意的是:在写方程时,如把流出节点的电流视为正,则流入节点的电流即需取为负;反之则反之。 推广:KCL原是运用于节点的,但把它加以推广,也可使用于包围几个节点的闭合面。如图1-4-2所示电路中,闭合面S 内有三个节点1,2,3。 图1-4-2 KCL推广于闭合面 当设定各支路电流的大小和参考方向如图中所示时,则对此三个节点即可列出KCL方程 i1= i12 - i31 i2= i23 - i12 i3 = i31- i23 把以上三式相加得:i1+ i2 + i3=0 或∑i1(t)=0 即流入(或流出)一个闭合面的支路电流的代数和恒等于零。此即广义的KCL。需要注意的是:在写方程时,如把流出闭 合面的电流视为正,则流入闭合面的电流即需取为负;反之则反之。 三.基尔霍夫电压定律(KVL) 基尔霍夫电压定律是描述回路中各支路电压之间相互关系的定律。在任意时刻t,沿任一回路 所有支路或元件上电压的代数和恒等于零,即∑u(t)=0(1-4-2) 此结论称为基尔霍夫电压定律(KVL)。在写此方程时,应首先为回路设定一个饶行方向,凡电 压的参考极性从"+"到"-"与回路绕行方向一致者,则该电压前取"+"号,否则取"-"号。 例如对于1-4-3所示电路,我们设定各元件电压的参考极性和回路的绕行方向如图中所示,则有 u1+u2+u3+us3-us4-u4=0 将此式改写为-u1-u2-u3-us3+us4+u4=0 方程意味着把回路的绕行方向设定为与前者相反。由此可见,回路绕行方向的设定直接影响着方 程中各项正负号的确定,但不影响方程的本质,故可以任意设定。

990-1_教案-基尔霍夫定律

课程电工 基础 第六节:基尔霍夫定律 授课班级06电工1班授课时间2006.11.15 授课时数 2 教学分析 上节课已学习过法拉第电磁感应现象,学生学会判断什么情况下能够产生电磁感应。本节所要学习的基尔霍夫定律是为了判断感应电动势的方向,在电磁学中是个很重要的定律,在以后要学习的电机和变压器中有很多的应用。 对于学生而言,磁的知识比较抽象,电与磁之间的变化和联系纷繁复杂,需要较强的空间思维能力和分析能力。基于此,本节课要充分利用实物实验和多媒体将抽象理论形象化,有助于学生直观观察和理解。 同时,结合多元智能理论,注重对学生不同智能的开发,并给不同学生不同智能一个展示的舞台。 教学目标知识目标: 1.通过对演示实验的认真观察,发现分析和解决复杂电路的方法——基尔霍夫定律。 2.充分理解基尔霍夫定律并掌握基尔霍夫定律的应用。 能力目标: 挖掘每一个学生的智能潜力,发展每一个学生的智能优势,满足每一个学生的学习需求,促进每一个学生的发展。 德育目标: 通过实验引起学生的学习积极性,增强参与意识。养成科学的观察习惯,和精益求精的科学态度 重点、难点和关键重点:基尔霍夫定律及应用 难点:对基尔霍夫定律的推广应用 关键:将抽象表达形象化,分析基尔霍夫两个定律的表达式。 授课方式方法、手段1、启发引导式; 2、将现代化教学技术贯穿在课堂中,让试验成为本节课的主线 3、实验与理论相结合,注重学生学习知识的循序渐进。 4、学生分组进行试验,调动学生兴趣,发展每个学生不同的智 能,培养学生集体荣誉感。 作业见详案 教学小结 通过实验课讲解基尔霍夫定律,学生学习兴趣较浓厚,大部分 学生能够达到要求,掌握本次可课所学内容。

基尔霍夫定律

电流源 电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。 由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。 信息概述 电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。在电流 源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电 压。在原理图上这类电阻应简化掉。负载阻抗只有并联在电流源上才有意义,与 内阻是分流关系。 由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。 电流特点 1、输出的电流恒定不变; 2、直流等效电阻无穷大; 3、交流等效电阻无穷大。

实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。 电流应用 电流源,即理想电流源,是从实际电源抽象出来的一种模型,其端钮总能向外提供一定的电流而不论其两端的电压为多少,电流源具有两个基本的性质:第一,它提供的电流是定值I或是一定的时间函数I(t)与两端的电压无关。第二,电流源自身电流是确定的,而它两端的电压是任意的。 由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。 由于电流源的电流是固定的,所以电流源不能断路,电流源与电阻串联时其对外电路的效果与单个电流源的效果相同。此外,电流源与电压源是可以等效转换的,一个电流源与电阻并联可以等效成一个电压源与电阻串联。 电压源 电压源,即理想电压源,是从实际电源抽象出来的一种模型,在其两端总能保持一定的电压而不论流过的电流为多少。电压源具有两个基本的性质:第一,它的端电压定值U或是一定的时间函数U(t)与流过的电流无关。第二,电压源自身电压是确定的,而流过它的电流是任意的。 简介 由于电源内阻等多方面的原因,理想电压源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。实际上,如果一个电压源在电流变化时,电压的波动不明显,我们通常就假定它是一个理想电压源。 电压源就是给定的电压,随着你的负载电阻增大,电流减小,理想状态下电压不变,但实际上电压会在传送路径上消耗,你的负载增大,路径上消耗减少。

《精选总结范文》基尔霍夫定律实验总结

基尔霍夫定律实验总结 一、实验目的 1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。 2、进一步学会使用电压表、电流表。 二、实验原理 基本霍夫定律是电路的基本定律。 1)基本霍夫电流定律 对电路中任意节点,流入、流出该节点的代数和为零。即∑I=0 2)基本霍夫电压定律 在电路中任一闭合回路,电压降的代数和为零。即∑U=0 三、实验设备 xxxxxxxxxxx 四、实验内容 1、实验前先任意设定三条支路的电流参考方向, 2、按原理的要求,分别将两路直流稳压电源接入电路。 3、将电流插头的两端接至直流数字毫安表的“+,-”两端。

4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。 5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。 五、基尔霍夫定律的计算值: I1+I2=I3??(1) 根据基尔霍夫定律列出方程(510+510)I1+510I3=6??(2)(1000+330) I3+510I3=12??(3)解得: I1=0.00193AI2=0.0059AI3=0.00792AUFA=0.98VUBA=5.99VUAD=4.04VUDE=0.98VUD C=1.98V六、相对误差的计算:E(I1)=(I1(测)-I1(计))/I1(计)*100%=(2.08-1.93)/1.93=7.77% 同理可得: E(I2)=6.51%E(I3)=6.43%E(E1)=0%E(E1)=-0.08%E(UFA)=-5.10%E(UAB)=4.17%E(U AD)=-0.50%E(UCD)=-5.58%E(UDE)=-1.02% 七、实验数据分析 根据上表可以看出I1、I2、I3、UAB、UCD的误差较大。 八、误差分析 产生误差的原因主要有: (1)电阻值不恒等电路标出值,(以510Ω电阻为例,实测电阻为515Ω)电阻误差较大。

基尔霍夫定律及基尔霍夫定律推导

基尔霍夫定律及基尔霍夫定律推导

————————————————————————————————作者:————————————————————————————————日期:

基尔霍夫定律及基尔霍夫定律推导 基尔霍夫定律是电路中电压和电流所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家基尔霍夫提出。它既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。基尔霍夫定律包括电流定律(KCL)和电压定律(KVL),前者应用于电路中的节点而后者应用于电路中的回路。该定律能够迅速地求解任何复杂电路,从而成功地解决了这个阻碍电气技术发展的难题。基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。当基尔霍夫第一、第二方程组联合使用时,可正确迅速地计算出电路中各支路的电流值。由于似稳电流(低频交流电)具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。 基尔霍夫第一定律的实质是稳恒电流情况下的电荷守恒定律,其中推

导过程中推出的重要方程是电流的连续性方程即SJ*dS=-dq/dt(第一个S是闭合曲面的积分号,J是电流密度矢量,*是矢量的点乘,dS是被积闭合曲面的面积元,dq/dt是闭合曲面内电量随时间的变化率)意思是说电流场的电流线是有头有尾的,凡是电流线发出的地方,该处的正电荷的电量随时间减少,电流线汇聚的地方,该处的正电荷的电量随时间增加对稳恒电流,电流密度不随时间变化,必有SJ*dS=-dq/dt=0,这就是稳恒电流的闭合性,同时也是基尔霍夫定律的推导基础基尔霍夫第二定律的实质是电力线闭合。 第二定律又称基尔霍夫电压定律,是电场为位场时电位的单值性在集总参数电路上的体现,其物理背景是能量守恒。基尔霍夫电压定律是确定电路中任意回路内各电压之间关系的定律,因此又称为回路电压定律,它的内容为:在任一瞬间,沿电路中的任一回路绕行一周,在该回路上电动势之和恒等于各电阻上的电压降之和,形象地说就是电力线闭合。也称作:克希荷夫电路定律。

高二物理 第六讲 基尔霍夫定律

第六讲 基尔霍夫定律和戴维南定理 1 基尔霍夫定律 1.1基尔霍夫第一定律 对电路中任何一个节点,流出的电流之和等于流入电流之和。 ∑∑=出入j i I I 或可表达为:汇于节点的各支路电流强度的代数和为零。 ∑=±0i I 若规定流入电流为正号,则从节点流出的电流强度为负号。对于有n 个节点的完整回路,可列出n 个方程,实际上只有1-n 个方程是独立的。 1.2基尔霍夫第二定律 沿回路环绕一周,电势降落的代数和为零,即 ()∑∑=±+±0j j i R I E 对于给定的回路绕行方向,理想电源,从正极到负极,电势降落为正,反之为负;对电阻及内阻,若沿电流方向则电势降落为正,反之为负。若复杂电路包括m 个独立回路,则有m 个独立回路方程。 【例1】如图1所示电路中,已知E 1=32V ,E 2=24V ,电源内阻均不计,R 1=5Ω,R 2=6Ω,R 3=54Ω求各支路的电流。 解: 题中电路共有2个节点,故可列出一个节点方程。而支路3个,只有二个独立的回路,因而能列出两个回路方程。三个方程恰好满足求解条件。 规定321I I I 、、正方向如图所示,则有 0321=-+I I I 两个独立回路,有 0112221=+-+-R I R I E E 033222=++-R I R I E 联解方程得:I 1=1A ,I 2=-0.5A ,I 3=0.5A 2I <0,说明2I 实际电流方向与图中所假定电流方向相反。 2 戴维南定理 实际的直流电源可以看作电动势为E ,内阻为零的恒压源与内阻r 的串联,如图2所示,这部分电路被称为电压源。 不论外电阻R 如何,总是提供不变电流的理想电源为恒流源。实际电源E 、r 对外电阻R 提供电流I 为 r R r r E r R E I +? =+= 其中E /r 为电源短路电流0I ,因而实际电源可看作是一定的内阻与恒流源并联的电流源,如图3所示。 实际的电源既可看作电压源,又可看作电流源,电流源与电压 源等效的条件是电流源中恒流源的电流等于电压源的短路电流。利 用电压源与电流源的等效性可使某些电路的计算简化。 2.1等效电压源定理 又叫戴维南定理,内容是:两端有源网络可等效于一个电压源, 其电动势等于网络的开路电压,内阻等于从网络两端看除电源以外网络的电阻。 图3 图2 I 3 R 图1

基尔霍夫定律的实质研究

2012年第·12期太原城市职业技术学院学报 Journal of TaiYuan Urban Vocational college期 总第137期 Dec2012 [摘要]基尔霍夫电流定律的实质是电荷守恒定律,基尔霍夫电压定律的实质是能量守恒定律。本文从宏观和微观两个方面去研究。 [关键词]电荷守恒定律;能量守恒定律;基尔霍夫电流定律;基尔霍夫电压定律 [中图分类号]TM[文献标识码]A[文章编号]1673-0046(2012)12-0163-02 基尔霍夫定律的实质研究 刘爱萍 (晋中职业技术学院,山西晋中030600) 物理学的任务在于发现普遍适用的规律,这种规律 最简单的形式之一,就是某种物理量的守恒。基尔霍夫定律是电路计算的理论基础,需要用基尔霍夫定律对电路作定量的分析,因而用电荷守恒定律和能量守恒定律对它作更深入的研究是很有必要的。 一、基尔霍夫电流定律的实质是电荷守恒定律 电荷既不能创造,也不能消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,这就是电荷守恒定律。它是物理学最基本的定律之一。基尔霍夫电流定律为:在任一时刻,流入任一节点(或封闭面)全部支路电流的代数和等于零。基尔霍夫电流定律的实质是电荷守恒定律,这是因为对于一个节点或封闭面来说,它不可能储存电荷。 (一)电荷守恒定律在电路中的宏观体现 在电路中进入某一地方多少电荷,必定同时从该地方出去多少电荷。无论是抽象出来的电路节点还是包围电路的任一闭合面,流入量等于流出量,没有储存电荷,电流是电荷的运动形成的,基尔霍夫电流定律正好体现了这一无法证明的电荷守恒定律,守恒量是电荷。 (二)电荷守恒定律在电路中的微观体现 对于电路中的任一节点,在某一时刻,流进该节点的电流代数和为Σik(t)(k为节点处的支路数),等于单位时间内通过导体任一截面的电荷量,即dq/dt=Σik(t)(其中q为节点处的电荷)。而节点只是理想导体的汇合点,不可能积累电荷,电荷既不能创造,也不能消灭,因而节点处的dq/dt必须为零,即得:Σik(t)=0。即基尔霍夫电流定律是电荷守恒定律的体现。 二、基尔霍夫电压定律的实质是能量守恒定律 能量守恒定律是自然界最普遍、最重要的定律,自然界任何现象都符合这一定律。物体有许多不同的运动形式,每种运动形式都有一种对应的能,例如机械能、内能、电能、磁能、化学能、核能。 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变,这就是能量守恒定律。它用于热现象的形式就是热力学第一定律,它用于磁现象的形式就是楞次定律,它用于运动的形式就是机械能守恒定律,它用于电路就是基尔霍夫电压定律。基尔霍夫电压定律是它的特例,它表述为:任意时刻沿任一回路中的所有支路电压的代数和为0。基尔霍夫电压定律的实质是能量守恒定律,这是因为当电荷在电场力的作用下沿着任一回路绕行一周后,其做功代数和为0。 (一)能量守恒定律在电路中的宏观体现 单位正电荷沿回路绕行一周的过程中,一部分电源消耗的非电能等于另一部分电源所储存的非电能与所有内外电阻上放出的焦耳热之和。 如图1所示电路中,Us1=130V、R1=1Ω为直流发电机的模型,电阻负载R3=24Ω,Us2=117V、R2=0.6Ω为蓄电池组的模型。 应用基尔霍夫电流定律、基尔霍夫电压定律列出方程式: 解得:I1=10A,I2=-5A,I3=5A。 电源Us1发出的功率为:Us1I1=130×10=1300W 电源Us2的功率为:Us2I2=117×(-5)=-585W(吸收功率) 即Us2接受功率585W。说明电源Us2不是输出功率,而是从外部输入功率,处于充电状态。 各电阻接受的功率为: 即电源Us1输出的功率等于各个电阻接受的功率与Us2吸收的功率之和。 可见,电源Us1输出的功率,一部分消耗在各个电阻 上, 另一部分输入电源Us2,为之充电。它是能量守恒定律在电路中的体现,也是非电能与热能之间的转换。从一种形式转化为其他形式,在转化的过程中,能量的总量不变。 如图2元件1吸收功率500W,元件3、4分别发生功率400W和150W,由于电路也遵守能量守恒定律,则 163 ··

黑体辐射公式及基尔霍夫公式重新推导论证

实际原子的热辐射公式及爱因斯坦吸收系数确定 彭国良 福建省武夷山市环保局 ( 354300 ) E-mail (pengguoliang513@https://www.360docs.net/doc/2115703387.html, ) 摘要:本文通过假定绝对黑体同一般物质一样由分子组成,称为黑体分子。黑体分子满足在截面内所有频率的光子都被吸收,在截面外全部不吸收,也称为绝对黑体分子的吸收截面。对所有频率的光子都相同,所有真实的物质原子的吸收截面都不大于黑体分子的吸收截面,黑体分子的吸收截面也是黑体分子的辐射截面,所有实际原子的辐射截面都相同,都与黑体分子的吸收截面相等。在此基础上,根据基尔霍夫公式和普朗克公式可以推导出一个实际原子在各种温度下辐射热能谱的公式;根据原子中电子跃迁的几率与原子吸收相应光子的速率存在对应关系,可确定爱因斯坦吸收系数A ,吸收系数B 的函数关系。本文还推导了在两个不同温度原子之间辐射与吸收光子的相应关系。 关键词:黑体辐射;活化光子吸收截面;辐射截面;爱因斯坦吸收系数。 1引言 所有物体都能发射热辐射,而热辐射与光辐射一样,都是一定频率范围内的电磁波。1859年 【1】 ,基 尔霍夫(G.R.Kirchhoff )证明,黑体与热辐射达到平衡时,辐射能量密度),(T f u 随频率变化曲线的形状与位置只与黑体的绝对温度有关,而与空腔的形状及组成的物质无关。1893年,维恩(W.Wien )发现黑体辐射的位移律实验测得黑体辐射本领在不同温度下,随波长的变化规律。根据维恩位移公式,可以确定黑体的辐射本领极大值所对应的频率f m 与黑体绝对温度成正比。1900年10月19日,基尔霍夫的学生普朗克,在德国物理学会会议上提出了一个黑体辐射能量密度的分布公式。但普朗克黑体辐射公式只能应用于黑体辐射情况,而不能对实际原子的热辐射情况进行预测,实际上,现代就没有各种物质原子的热能谱辐射公式。 原子能级之间的跳跃一般伴随着辐射的吸收和发射,这是原子体系与辐射场相互作用的结果。爱因斯坦在1917年提出的辐射的发射和吸收理论,他用清晰的物理概念简洁地给出了受激发射与自发发射,吸收系数三者之关系,即著名的A 、B 系数;并推导出A 、B 系数之间的关系,但爱因斯坦没能给出A 、B 系数单独存在的物理函数关系;本文将推导和阐明A 、B 系数单独存在的物理公式及其物理意义。 2. 黑体原子或黑体分子的热辐射场 原子之间的碰撞也可以改变原子内部运动状态,引起原子激发,从而发出电磁辐射。原子动能越大,通过碰撞引起的原子激发就越高,从而发出的辐射量子的频率也就越高。而这种辐射量子的频率,则与辐射原子的内部能级结构有关[1][2][3][4][5]。 考虑由大量原子组成的宏观系统。一定温度下,原子的动能有一个分布,则发出的辐射量子的频率也有一个分布。这时的辐射场,是由大量具有不同频率的辐射量子组成的宏观体系。其中具有哪些频率,

(完整版)基尔霍夫定律练习题

基尔霍夫定律 一.填空题 1.能应用 电路和 电路 的规律进行分析和计算的电路,叫简单电路.这种电路可用 定律进行分析和计算.不能应用 电路和 电路的规律进行分析和计算的电路叫复杂电路,适用此电路重要定律是 . 2.三个或三个以上电流的汇聚点叫 .两个 节点间的任一电流所经过的路径叫 .电路中从某一节点出发,任意绕行回到原出发点的闭合路径叫 .最简单的回路叫 .任何一个独立的回路中,必须至少包含一条其它 中没有用过的新 . 3. 基尔霍夫第一定律也叫 定律 ,可用字母 表示.其数学表达式Σ.I=0含义是:进某一 的全部电流之和恒等于零;数学表达式ΣI 入=ΣI 出的含义是:进入某一节点的全部电流之际 恒等于流出该节点的全部电流之 . 4. 基尔霍夫第二定律也叫 定律 ,可用字母 表示.其数学表达式.ΣU=0含义是:沿回路绕行一周,沿途各部分 的 恒等于零;数学表达式ΣE=ΣIR 的含义:沿回路绕行一周,沿途各电动势的 恒等于沿途各 两端电压的 . 5.应用基尔霍夫定律列节点电流方程时,若电路中有n 个节点,就可以列出 个 的节点电流方程,若电路 中有m 条支路,应该列出 个 的回路电压方程. 6.如果某复杂电路有3个节点,3个子网孔,5条支路,要采用支路电流法求解各支路电流共应列出其 个方程.其中,节点电流方程 个,回路电压方程 个. 7. 基尔霍定律是进行电路 和 的 的最 的定律.它适合于 电路. 8.如图.有 个节点,其中独立的节点 个,有 条支路;有 个回路,有 网孔. 9.如图,应用支路电流法求解的五个方程应是.(1) (2) (3) (4) (5) . 10.电路中各点的电位都是 ,参考点而言的.如果事先没有指 ,谈电路中某点电位就毫无意义了.在计算电路中某点电位时,必须首先确定该电路 的 .电位的高低与计算时绕行 和参考点的 有关,而与绕行的 无关. 二.选择题 A直流电路B交流电路C简单电路D.复杂电路E.线性电路F.非线性电路 2.如图.为某一电路中的一个节点,则I4是( ) 3.如图,E1=10V,E2=25V,R1=5Ω,R2=10Ω,I=3A,则I 1与I 2分别是( ) A.1A,2A B.2A,1A C.3A,0A D.0A, 3A 4.如图,E 1=12V,E 2=9V ,R 1=R 6=1Ω,R 2=0.5Ω,R 3=5Ω,R 4=6Ω,R 5=3Ω,则A,B 两点电位( ) A.V A >V B ,B,V A

基尔霍夫定律

第三章复杂直流电路 3.1 基尔霍夫定律 学习目标: 1、了解支路、节点、回路、网孔的概念。 2、掌握基尔霍夫定律内容及推广及其使用场合; 学习重点:基尔霍夫定律内容。 学习难点:KCL和KVL的推广应用。 内容提要: 复杂电路的定义:有两个以上的有源的支路组成的多回路电路,且不能运用电阻串、并联方法简化成单回路电路的电路。 一、几个基本概念 1、支路:由一个或几个元件首尾相接构成的无分支电路。 2、节点:三条或三条以上支路汇聚的点。 3、回路:电路中任一闭合路径。 4、网孔:中间无分支的回路。 注意:回路和网孔的区别:网孔一定是回路,但是回路不一定是网孔。 二、基尔霍夫电流定律(又称为节点电流定律或KCL定律) 1、定律内容:电路中任意一个节点上,在任一时刻,流入节点的电流之和,等于流出节点的电流之和。

(表达式:∑I入=∑I出) (1)也可以表示为:在任一电路的任一节点上,电流的代数和永远等于零。(∑I=0) 例:基尔霍夫电流定律指出流过任一节点的________________为零,其数学表达式为_____________。(2)电流定律推广:对于任意假定的封闭面也成立 (3)使用场合:任何电路 三、基尔霍夫电压定律(又称为回路电压定律或KVL定律) 1、定律内容:在任一回路中,从一点出发绕回路一周回到该点时,各段电压(电压降)的代数和等于零。 (表达式:∑U=0) 【对负载电阻而言,若绕行方向与电压或电流方向相同,则该元件上的电压为正值,若绕行方向与电压或电流方向相反,则该元件上的电压为负值】 例:基尔霍夫电压定律指出从电路上的任一点出发绕任意回路一周回到该点时________________为零,其数学表达式为________________。 (1)使用场合:任何电路 (2)基尔霍夫电压定律只与元件的连接方式有关,与元件的性质无关

浅析基尔霍夫定律的理解与应用

浅析基尔霍夫定律的理解与应用 摘要:基尔霍夫定律是电路的基本定律,是分析计算电路的重要工具。基尔霍夫定律反映的是电路中各支路电流之间的约束关系或各部分电压之间的约束的关系,与电路中连接的是什么元件(元件小性质)无关分析复杂电路分析复杂电路可见在电路理论中基尔霍夫定律占有重要地位,可以说它是分析求解电路的万能钥匙,所以我们必须深刻的理解和熟练的应用。 关键词:基尔霍夫定律、理解、应用。 一、基尔霍夫定律的理解 (一)、基尔霍夫定律的基础 基尔霍夫定律是描述电路中电压、电流遵循的最基本的规律。在介绍基尔霍夫定律之前,首先介绍若干表述电路结构的名词。 1、支路 2、节点 3、回路 4、网孔 1、支路:单个或若干个元件串联成的分支称为一条支路。例如上图所示电路中含有6条支路:和电压源串联成一条支路;和电压源串联成一条支路;、、 和分别单独成为一条支路。 2、节点:三条或三条以上的支路的联接点称为节点。图1-4-1中含有4个节点①②③ ④ 。

3、回路:由若干支路组成的闭合路径。在图1-4-1所示电路中,和、、所在的三条支路组成一个回路;和、和、所在的三条支路组成一个回路;、 、和、所在的四条支路也组成回路。 4网孔:回路内部不含有支路的回路称为网孔。上述的和、、所在的三条 支 路组成的回路就是网孔。 (二)、基尔霍夫定律的基本内容 1.节点电流定律: 对于任意一个节点或封闭面有:流进节点(或封闭面)的电流等于 流出节点(或封闭面)的电流。 即:∑I入=∑I出 如果流进节点(或封闭面)的电流为正,则流出节点(或封闭面)的电流为负,则电 流定律的另一个表达式为: ∑I入—∑I出=0 即:∑I=02. 2. 回路电压定律: 对于电路中的任意一个回路(此回路断开与否均可)。 有:电动势的代数和等于电压降的代数和。其数学表达式为: ∑E=∑IR=∑U 电动势和电压降的正负由方向确定,即电动势和电压降的正方向与回路的循行方向一 致时取正,反之取负。 (三)、基尔霍夫定律基本内容的论述 基尔霍夫电流定律是电荷守恒法则运用于集总电路的结果。电荷守恒的意思是:电荷既不能创生也不能消灭。对于集总电路中的任一节点,在某一时刻,流进该节点的电流代数和为Σi (t),即:dq/dt=Zi k(t)(其中q为节点处的电荷)。而节点只是理想导体的汇合点,不可能积累电荷,电荷既不能创生,也不能消灭,因而节点处的dq/dt必须为零,即得:Σi (t)=0(式中i (t)为流出或流人节点的第K条支路的电流,K为节点处的支路数)。KCL定律指出:任一瞬间,流入一个电路节点电路节点的电流代数和为零,KCL定律也可以推广应用到电路中任意假设的电流总和等于从该电路节点流出的电流总和,或表述为,所有流入和流出一个封闭界面的电流相等。即如下图中的流入和流出单元电路的各条支路的电流总和为零。

基尔霍夫定律

基尔霍夫定律(电学定律) 发现背景 基尔霍夫定律是求解复杂电路的电学基本定律。从19世纪40年代,由于电气技术发展的十分迅速,电路变得愈来愈复杂。某些电路呈现出网络形状,并且网络中还存在一些由3条或3条以上支路形成的交点(节点)。这种复杂电路不是串、并联电路的公式所能解决的。 刚从德国哥尼斯堡大学毕业,年仅21岁的基尔霍夫在他的第1篇论文中提出了适用于这种网络状电路计算的两个定律,即著名的基尔霍夫定律。该定律能够迅速地求解任何复杂电路,从而成功地解决了这个阻碍电气技术发展的难题。[1] 由于似稳电流(低频交流电)具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。[1] 基本概念 1、支路: (1)每个元件就是一条支路。 (2)串联的元件我们视它为一条支路。 (3)在一条支路中电流处处相等。[2] 2、节点: (1)支路与支路的连接点。 (2)两条以上的支路的连接点。 (3)广义节点(任意闭合面)。 3、回路: (1)闭合的支路。 (2)闭合节点的集合。 4、网孔: (1)其内部不包含任何支路的回路。 (2)网孔一定是回路,但回路不一定是网孔。 基尔霍夫第一定律(KCL) 定义 基尔霍夫第一定律又称基尔霍夫电流定律,简记为KCL,是电流的连续性在集总参数电路上的体现,其物理背景是电荷守恒公理。基尔霍夫电流定律是确定电路中任意节点处各支路电流之间关系的定律,因此又称为节点电流定律。基尔霍夫电流定律表明: 所有进入某节点的电流的总和等于所有离开这节点的电流的总和。 或者描述为: 假设进入某节点的电流为正值,离开这节点的电流为负值,则所有涉及这节点的电流的代数和等于零。 以方程表达,对于电路的任意节点满足: 其中,是第k个进入或离开这节点的电流,是流过与这节点相连接的第k个支路的电流,可以是实数或复数。应用方法 在列写节点电流方程时,各电流变量前的正、负号取决于各电流的参考方向对该节点的关系(是“流入”还是“流出”);而各电流值的正、负则反映了该电流的实际方向与参考方向的关系(是相同还是相反)。 通常规定,对参考方向背离(流出)节点的电流取正号,而对参考方向指向(流入)节点的电流取负号。 KCL定律不仅适用于电路中的节点,还可以推广应用于电路中的任一不包含电源的假设的封闭面。即在任一瞬间,

相关文档
最新文档