微分方程(习题及解答)0001

微分方程(习题及解答)0001
微分方程(习题及解答)0001

2

第十二章 微分方程 § 微分方程基本概念、可分离变

量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2?微分方程5y y xy (A) 1 ; (B) 2 ;

3. 下列所给的函数,是微分方程 (A) y C i cosx ;

(C) y cosx Csinx ;

齐次微分方程

2y (3)

( x 2

(7x

(B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ;

6y)dx (x y)d y ).

(D) 4 ; 0的通解的是( ). C 2 sin x ;

G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ;

xy x 0 ;

(B) xy (D) (x 答(B). 答(C).

C 2 si nx 答(D).

y)dy 0.

答(A).

(

2

y x y)dx

答(D).

1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是.

2 . 微分方程 dx dy

0, y x 3 4的解是 .答:

2

x 2

y

25 .

y x

3

x

2

冬C .

3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y

5 2

4 . 微分方程 xy y ln

y 0的通解是 答: y

Cx

e .

5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x

6

. 微分方程 xy y y(ln y ln x)的通解是 . 答: _y

x

Cx

e

三、解答题

y);

C .

xy a(y 2

(x y)d y

1?求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解:

解:

dy 心y

⑶ —10 ; ⑷

dx

解:

解:

2 . 求下列微分方程满足所给初始条件的特解:

(1) 2x y

y e ,

y x 0 0 ;

(2) 解

:

解:

⑶ xdy 2ydx 0, y

x 2

1;

解:

解:

y (y 2 x 3 o.

y si nx yl ny

2x

t

f - dt ln 2,求f (x)的非积分表达式. 答:f(x) e x ln2 .

0 2

§ 一阶线性微分方程、全微分方程

2

3xy xy 的通解.

可降阶的高阶微分方程、二阶线性微分方程

、单项选择题 1.方程y

sinx 的通解是(

).

1.下列所给方程中,是一阶微分方程的是

(

(A)字址

dx (C)乎

dx 2?微分方程(X (A) 齐次微分方程; (C) 可分离变量的微分方程;

2

3(lnx)y ;

(B)

(x y)2 ;

(D) y 2)dx 2xydy ).

dy dx

2y x 1

(x

(x y)dx (x y)dy 答(B).

0的方程类型是 (B) 一阶线性微分方程; (D)全微分方程.

( ).

答(D).

二、填空题

1 .微分方程

x

y e 的通解为

.

答: y Ce

dx

3

2 .微分方程 (x 2 y)dx xdy 0的通解为

.答:

x

3

xy 3 ?方程(x y)(dx dy) dx dy 的通解为

.答: x y 三、简答题

C .

ln(x y)

1 .求下列微分方程的通解:

3.方程xy . x (A)齐次方程;

(C)伯努利方程;

(B) 一阶线性方程;

(D)可分离变量方程.答(A).

x

x

xe

(1)

ycosx sin x

e

x 竺

dx

解:

⑶ 解:

xy

3x 解:

解:

ytanx sin2x ;

(5) (y 2 6x)塑 dx 2y

e y

(xe y 2y)dy 0 ;

解:

解:

(a 2

2xy y 2

)dx (x y)2

dy 0 . 解: 2 .求下列微分方程满足所给初始条件的特解. (1)

乎 3y 8, y x 0 2 ;

dx

解:

dy dx

解:

sin x ,

y x

x

3* ?设连续函数f (X )

、单项选择题 y 2 y 是(

)? 3* .求伯努利方程— dx

解:

(A) y cosx (C) y sin x

2.微分方程

1

C 1x 2 C 2x C 3 ; 2 Gx? C 2X C 3 ;

2

y xy 满足条件y (A) y (x 1)2

(B) y cosx G ; (D) y

(B)

2sin 2x .

答(A) y x2

的解是(

2

).

1

(C) y -(x

3. 对方程y

1)2

1 2 ;

y 2,以下做法正确的是 y p 代入求解;

(D)

答(C).

(A)令 y p(x), (C)按可分离变量的方程求解;

4. 下列函数组线性相关的 是(

2 x

2 x

(A) e , 3e ;

(C) sinx, cosx ;

5. 下列方程中,二阶线性微分方程是

(A) y (C) y 6. y 1, (A) y (C) y (D) y

p(y), y

p p 代入求

解;

答(B).

).

3

2y(y)

0 ;

2 o 2

y 3x ; py qy y 2 ; C 2『2,其中

C 2『2,其中

2

x y y 2是y

C i y i C i y i

G% (B) 2x

e 3x ,e ;

(D)

2x

e 2x

,xe

).

(B) y 2yy xy (D) y 2xy

2

x y

则其通解是

(

).

(B) y

C 1y

1

C 2 y

2 ;

(

0的两个解, x

e ;

2e x .

(

(B)令 y

(D)按伯努利方程求解. 答(A).

答(D).

y 1与y 线性相关; y 与y 2线性无关.

7.下列函数组线性相关的 是( ).

(A) e 2x , 3e 2x ; (C) si nx,

、填空题 答(D).

1 .微分方程 cosx

; (B) (D) 3x

2x

y x sinx 的通解为 2x : e , e

2x

e , xe

答(A).

答:

sin x C 1e x

C 1x C 2. x C 2.

三、简答题 1 ?求下列微分方程的通解.

2

(1) y 1 (y); (2) y 如)2

解: 解:

2 .求方程y x(y )2 0满足条件y x1

2

,y x 1 1的特解.

2 .微分方程 答:

y y x 的通解为 解: § 二阶常系数线性齐次微分方程

、单项选择题 1.下列函数中,不是微分方程 y y 0的解的是( ).

(A) y sin x ; (B) y cosx ; (C) y e x ;

(D) y sin x cosx .

答(C).

x 3 x

2.下列微分方程中,通解是 y Ge

C ?e 的方程是( ).

(A) y 2y 3y 0 ;

(B) y 2y 5y 0 ; (C) y

y 2y 0 ;

(D) y 2y y 0 .

答(A)

3.下列微分方程中, 通解是

y C 1e x

C 2 x xe 的方程是(

).

(A) y 2y y 0 ;

(B) y 2y

y 0 ;

(C) y

2y y 0 ;

(D) y 2y

4y 0 .

答(B)

4.下列微分方程中, 通解是

y x

e (C 1 cos2x C 2sin2x)的方程是(

).

(A) y 2y 4y 0 ;

(B) y

2y 4y 0

(C) y

2y

5y 0 ;

(D)

y 2y

5y 0 .

答(D) 5.若方程 y

py

qy 0的系数满足1 p q 0 ,则方程的一个解是( ).

(A) x ;

(B) x e ;

(C) x

e

(D) sin x . 答(B)

6*.设 y f(x)是方程 y 2y 2y 0 的一个解,若 f(X o ) 0, f (xj 0,则 f(x)在 x x 0 处

( ).

(A) x 0的某邻域内单调减少;

(B) X 0的某邻域内单调增加;

(C)取极大值;

(D)取极小值.

答(C).

、填空题

1 ?微分方程的通解为 y 4y 0的通解为

. 答: y C 1 C 2e 4x .

2 .微分方程y y 2y 0的通解为 答: y C 1e x C 2e 2x .

3 .微分方程y

4y 4y 0的通解为 答: y Ge 2x C 2xe 2x .

4 .微分方程y 4y 0的通解为

答: y C 1 cos2x C 2si n2x 5 .方程 y 6y 13y 0 的通解为 __________________________ . 答:y e 3x (C 1 cos2x C 2sin 2x). 三、简答题

1 ?求下列微分方程的通解:

(1) y y 2y 0 ; (2) 4d ^ 20空 25x 0 .

dt 2 dt

解:

解:

、单项选择题 1.微分方程 y y

2

x 的一个特解应具有形式 ( ).

(A) Ax 2;

(B) Ax 2

Bx ;

(C) Ax 2

Bx C ;

(D) x(Ax 2

Bx C).

答(C).

2.微分方程 y y

2

x 的一个特解应具有形式 (

).

(A) Ax 2 ;

(B) Ax 2

Bx -

(C) Ax 2

Bx C ;

(D) x(Ax 2

Bx C).

答(C)

3.微分方程

y 5y

6y xe 2x 的一个特解应具有形式

( ).

(A) Axe 2x

;

(B) (Ax 2x B)e

(C) (Ax 2

Bx C)e 2x ;

(D) x(Ax B)e 2x

答(B) 4.微分方程

y y

2 y x 2e x 的一个特解应具有形式(

).

(A) Ax 2e x

(B) (Ax 2

x Bx)e

解:

2 ?求下列方程满足初始条件的特解.

(1) y 4y 3y 0,y x 0 10, y x 0

6

⑵ y 25y 0, y x 0

5,

y x 0

2

.

解:

§ 二阶常系数线性非齐次微分方程

(C) x(Ax2B

x C)e x;(D) (Ax2 Bx C)e x.答(C).

5. 微分方程y 2y 3y e x sin x的一个特解应具有形式().

(A) e x(Acosx

Bsin

x);

(B) Ae x sinx ;

(C) xe x (Asin x Bcosx) ;(D) Axe x sinx 答(A). 、填空题

1 .微分方程y 4y 3 x x的一个特解形式为答:y*

3

x x

4 8

2

.微分方程y 2y x的一个特解形式为. 答:y* x(Ax B).

3 .微分方程y 5y 6y xe x的一个特解形式为.答:y* (Ax B)e x.

4

.微分方程y 5y 6y xe3x的一个特解形式为.答:y* x(Ax B)e3x.

5 .微分方程y y sin x的一个特解形式为. 答:y* Asin x .

6 .微分方程y y si n x的一个特解形式为. 答:y* x(Acosx Bsin x)

三、简答题

1.求下列微分方程的通解?:

(1) 2y y y 2e x;(2) y 5y 4y 3 2x ;解:解:

⑶y 6y 9y (x 1)e2x.

解:

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

小学解方程经典50题

小学解方程(经典50题) 35 3141=+ x x 2、45 9 4=- x )( 3、 18 5 1=+ x x 4、8 516 5=+ x 5、15 84 3 = ÷x 6、185 1=+x x 7、2753=x 8、 14 17 2= - x x 9、 9 88 9= ÷ x 10、33 211 3=-x 11、 0.4x=0.72 12、 3212 5=-x 13、283 11(=+x ) 14、 40 )7 21(=- x 15、 365 2=- x x 16、5574=+ x x 17、 16 5 4=÷ x 18、 6 53 2= x

19、10 495 13 2= - x x 20 5)4 18 3( =- x 21、 4 92 14 3= + x x 22、8 35 4= -x x 23、 9 55 68= ÷ x 24、 16 510 9=- x x 25、3 216 34 12 1? = - x x 26、 10 95 14 1= + x x 27、 6 53 510 15 3= ? + x 28、40 7)4 13 1(= + ?x 29、 10 1489 1÷ =- x x 30、 18 59 5= x 31、5 412=x 32、 156 5=x 33、 3 28 3= ÷ x

34、9 84 3= +x 35、 5 215 4= - x 36、 20 74 3= + x x 37、3 27 6= ÷x 38、 2 74 72 3= - x 39、 8 9 44 3÷= ÷ x 40、56 1=-x x 41、 214 3=+ x x 42、 12 )3 11(=+ x 43、15 5 25 1=+ x x 44、10 )4 18 3( =+ x 45、 24)7 11(=- x 46、4 36 1= ÷x 47、 5 215 7= ? x 49、 3 17 6= ÷ x 50、25 1852= x 51、6x+4(50-x)=260 52、 8x+6(10-x)=68 53、5x+2(20-x)=82 54、 4x+2(35-x)=94

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

解方程练习题【经典】

解方程测试题 请使用任意方法解下列方程,带*的必须检验。 x-104=33.5 x+118=11.9 26.4×x=40 62.2-x=70.7 x÷31=21.0 69.4+x=87.4 94.8+x=48.2 37.3x=84.1 91.1x=38.7 x÷13.3=14.5 31.4x=59.8 41.7x=69.9 105x=82.6 x×7.1=10.7 x+75.4=16 x÷63=42.2 x-8=32.8 64.2x=78 14÷x=21 59.9-x=40 9.8+x=99.3 44.2-x=86.1 x÷35.0=9.0 52.6-x=52.0 x×63.4=62.7 2.8-x=52 x÷41.0=139 9.6x=97.2 51x=42.9 x-48.8=95 x×6.8=25.4 118+x=35 56.6x=54.0 23x=145 x+50.3=28.1 54.6+x=96.2 x+89.2=59.1 45x=48 28.7x=83.5 17.3x=60.8 x+101=20.8 55.9x=75.2 59.7-x=23 x÷61.6=55.0 45.3÷x=79.5 x-48.2=85 x×43.6=62.6 5.9x=6.1 80.3x=11.7 104x=47.7 x×100.7=70 92.1x=27.3

56x=56 x÷16.8=88.3 95x=90.8 49.6x=125 2.1+x=73.4 16.7÷x=76.8 x+99=37.9 33÷x=56.6 48.5÷x=61.8 x÷3.6=96.5 68.0÷x=73 x×16.8=5.0 26.9x=88.0 45.5x=87 x×82=48.1 88.5+x=20.8 53.3x=21.3 95x=42.1 68÷x=139 x+34.7=135 x-63.1=43 19.5÷x=116 1.6x=5.7 2.3x=68.1 55.6+x=99.4 94.8÷x=28.9 100.3÷x=101 x+21.0=128 17-x=6.6 x-51=95.5 33.7×x=126 1.8x=111 48.4x=56 x×43.3=93.6 65.6x=100.9 6.8÷x=78.7 38.7-x=90.8 100x=143 64+x=31.9 x×122=28.7 x-55.1=95 17-x=92.8 x+20.8=53.1 90.9x=80.1 30.6x=58 43.9-x=37.2 6x=25.6 66.6x=113 x×21.0=65.6 x×30.6=51.1 58x=88.5 86.1x=89.5 x÷19.2=22.3 8.9×x=55 94.5+x=36.4 129x=86.3

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

五年级数学简易方程典型练习题

简易方程 【知识分析】 大家在课堂上已经学了简单的解方程,现在我们学习比较复杂的解方程。首先,我们要对方程进行观察,将能够先计算的部分先计算或合并,使其化简,然后求出X的值。 【例题解读】 例1解方程:6X+9X-13=17 【分析】方程左边的6X与9X可以合并为15X,因此,可以将原方程转化成15X-13=17,从而顺利地求出方程的解。 解:6X+9X-13=17, 15X-13=17 15X=30 X=2。 例2解方程:10X-7=4.5X+20.5 【分析】方程的两边都有X,运用等式的性质,我们先将方程的两边同时减去4.5X,然后再在两边同时加上7,最后求出X. 解:10X-7-4.5X=4.5X+20.5-4.5X, 5.5X-7=20.5 5.5X-7+7=20.5+7 5.5X=27.5, X=5. 【经典题型练习】解方程:7.5X-4.1X+1.8=12 解方程:13X+4X-19.5=40

解方程:5X+0.7X-3X=10-1.9 解方程练习课【巩固练习】 1、解方程:7(2X-6)=84 2、解方程5(X-8)=3X 3、解方程4X+8=6X-4 4、解方程7.4X-3.9=4.8X+11.7

列方程解应用题 【知识分析】 大家在三四年级的时候一定学过“年龄问题”吧!记得那时候思考这样的问题挺麻烦的,现在可好啦!我们学习了列方程解应用题,就可以轻松地解决类似于这样的应用题。 【例题解读】 例题1 今年王老师的年龄是陈强的3倍,王老师6年前的年龄和陈强10年后的年龄相等,陈强和王老师今年各是多少岁? 【分析】要求陈强和王老师两个人的年龄,我们不妨设今年陈强的年龄是X岁,王老师的年龄是3X岁,然后根据“王老师在6年前的年龄和陈强10年后的年龄相等”这个数量关系式,列出方程。解:设今年陈强的年龄是X岁,王老师的年龄是3X岁,可列方程:3X-6=X+10,2X=16,X=8 3X=3×8=24 答:陈强今年8岁,王老师今年24岁。 例题2 今年哥哥的年龄比弟弟年龄的3倍多1岁,弟弟5年后的年龄比3年前哥哥的年龄大1岁,兄弟俩现在各多少岁? 【分析】先表示出哥哥和弟弟今年的年龄,然后运用弟弟5年后,哥哥3年前的年龄作为等量关系。 解:设弟弟今年X,那么哥哥今年(3X+1)岁,可列方程 X+5=3X+1-3+1,X+5=3X-1,6=2X,X=3。 3X+1=3X3+1=10 答:哥哥今年10岁,弟弟今年3岁。

一阶微分方程典型例题

一阶微分方程典型例题 例1 在某一人群中推广新技术是通过其中掌握新技术的人进行的.设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为0x ,在任意时刻t 已掌握新技术的人数为)(t x (将)(t x 视为连续可微变量),其变化率与已掌握新技术的人数和未掌握新技术人数之积成正比,比例常数0>k ,求)(t x . 解 由题设知未掌握新技术人数为)(t x N ?,且有 )(x N kx dt dx ?=,00x x t == 变量分离后,有 kdt x N x dx =?)(,积分之,kNt kNt ce cNe x +=1,由00x x t ==,求得 0 0x N x c ?= 例2 求2 sin 2sin y x y x y ?=++′的通解. 解:利用三角公式将方程改写为2sin 2cos 2y x y ?=′.当02 sin ≠y 时,用它除方程的两端,得变量分离方程dx x y dy 2cos 22 sin ?=, 积分之,得通积分 2 sin 44tan ln x c y ?=. 对应于02 sin =x ,再加特解 ),2,1,0(2"±±==n n y π. 在变量分离时,这里假设02sin ≠y ,故所求通解中可能会失去使 02 sin =y 的解.因此,如果它们不能含于通解之中的话,还要外加上这种形式的特解. 例3 求微分方程 x xe y y x =+′ 满足条件11==x y 的特解.

解法1 把原方程改写为x e y x y =+′1,它是一阶线性方程,其通解为 ()11()()1()1dx dx p x dx p x dx x x x x y e q x e c e e e dx c x e c x ????∫∫??∫∫??=+=?+=?+?????????? ∫∫ 用1,1==y x 代入,得 1=c ,所以特解为x e x x y x 11+?=. 解法2 原方程等价于x xe xy dx d =)(,积分后,得c e x xy x +?=)1(. 当 1,1==y x 时, 1=c 故所求特解为x e x x y x 11+?=. 例4 求方程 0)cos 2()1(2=?+?dx x xy dy x 满足初始条件 10 ==x y 之特解. 解 将原方程改写为1 cos 1222?=?+x x y x x dx dy . 于是,通解为 ????????+∫?∫=∫??? c dx e x x e y dx x x dx x x 12212221cos 即 1sin 2?+=x c x y , 由01x y ==,得1c =?,故特解为2sin 11 x y x ?=?. 例5 求方程 4y x y dx dy +=的通解. 解 将原方程改写成以 为未知函数的方程 31y x y dx dy =?. 于是,由一阶线性方程的通解公式,得 ?? ????+=????????+∫∫=∫?c y y c dy e y e x dy y dy y 313131 在判断方程的类型时,不能只考虑以y 为因变量的情况.因有些方程在以 x 为因变量时方能为线性方程或伯努利方程,解题时必须全面分析.

小学解方程经典例题

列方程解应用题及解析 例1甲乙两个数,甲数除以乙数商2余17.乙数的10倍除以甲数商3余45.求甲、乙二数. 分析:被除数、除数、商和余数的关系:被除数=除数×商+余数.如 果设乙数为x,则根据甲数除以乙数商2余17,得甲数=2x+17.又 根据乙数的10倍除以甲数商3余45得10x=3(2x+17)+45,列出 方程. 解:设乙数为x,则甲数为2x+17. 10x=3(2x+17)+45 10x=6x+51+45 4x=96 x=24 2x+17=2×24+17=65. 答:甲数是65,乙数是24. 例2电扇厂计划20天生产电扇1600台.生产5天后,由于改进技术,效率提高25%,完成计划还要多少天 思路1: 分析依题意,看到工效(每天生产的台数)和时间(完成任务 需要的天数)是变量,而生产5天后剩下的台数是不变量(剩余工作 量).原有的工效:1600÷20=80(台),提高后的工效:80×(1+25 %)=100(台).时间有原计划的天数,又有提高效率后的天数,因 此列出方程的等量关系是:提高后的工效x 所需的天数=剩下台数. 解:设完成计划还需x天. 1600÷20×(1+25%)×x=1600-1600÷20×5 80×=1600-400 100x=1200 x=12. 答:完成计划还需12天.例4 中关村中学数学邀请赛中,中关村一、二、三小六年级大约有380~450人参赛.比赛结果全体学生的平均分为76分,男、女生平均分数分别为79分、71分.求男、女生至少各有多少人参赛 分析若把男、女生人数分别设为x人和y 人.依题意全体学生 的平均分为76分,男、女生平均分数分别为79分、71分,可以确 定等量关系:男生平均分数×男生人数+女生平均分数×女生人数= (男生人数+女生人数)×总平均分数.解方程后可以确定男、女生 人数的比,再根据总人数的取值范围确定参加比赛的最少人数,从而 使问题得解. 解:设参加数学邀请赛的男生有x人,女生有y人. 79x+71y=(x+y)×76 79x+71y=76x+76y 3x=5y ∴x:y=5:3 总份数:5+3=8. 在380~450之间能被8整除的最小三位数是384,所以参加邀 请赛学生至少有384人. 男生:384×=240(人) 5 8 女生:384×=144(人) 3 8 答:男生至少有240人参加,女生至少有144人参加. 例 5 瓶子里装有浓度为15%的酒精1000克.现在又分别倒入 100克和400克的A、B两种酒精,瓶子里的酒精浓度变为14%.已 知A种酒精的浓度是B种酒精的2倍,求A

【典型例题】 第三章 一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 例3-1 求方程 22y x dx dy += 满足初始条件0)0(=y 的解的逐次逼近)(),(),(321x y x y x y ,并求出h 的最大值,其中h 的意义同解的存在唯一性定理中的h 。 解 函数2 2 ),(y x y x f +=在整个平面上有意义,则在以原点为中心的任一闭矩形区域 b y a x D ≤≤,:上均满足解的存在唯一性定理的条件,初值问题?????=+=0 )0(22y y x dx dy 的解在],[h h -上存在唯一,其中)(max ),, min(22),(y x M M b a h D y x +==∈。 因为逐次逼近函数序列为 ?-+=x x n n dx x y x f y x y 0 ))(,()(10, 此时,2 200),(,0,0y x y x f y x +===,所以 0)(0=x y , ?=+=x x dx x y x x y 03 2 02 13 )]([)(, | 63 3)]([)(7 032 12 2x x dx x y x x y x +=+=?, ?? +++=+=x x dx x x x x dx x y x x y 0 14 1062 2 223)3969 18929()]([)( 59535 20792633151173x x x x +++=。 现在求h 的最大值。 因为 ),, min(2 2b a b a h += 对任给的正数b a ,,ab b a 22 2 ≥+,上式中,当 b a = 时, 2 2b a b +取得最大值

a ab b 21 2= 。 此时,)21,min()2, min(a a ab b a h ==,当且仅当a a 21 = ,即22==b a 时,h 取得最大值为 2 2 。 评注:本题主要考查对初值问题的解的存在唯一定理及其证明过程的基本思想(逐次逼近方法)的理解。特别地,对其中的b y a x D y x f M M b a h D y x ≤≤==∈,:),,(max ),, min(),(等常数意义的理解和对逐次逼近函数列? -+=x x n n dx x y x f y x y 0 ))(,()(10的构造过程的理 解。 例3-2 证明下列初值问题的解在指定区间上存在且唯一。 1) 2 1 0,0)0(cos 2 2≤ ≤=+='x y x y y ,。 2) 32 2 )2 1 (0,0)0(≤≤=+='x y y x y , 。 | 证 1) 以原点为中心作闭矩形区域1,2 1 :≤≤ y x D 。 易验证2 2 cos ),(x y y x f +=在区域D 上满足解的存在唯一性定理的条件,求得 2cos m ax 22),(=+=∈x y M D y x ,则2 1 )21,21min(==h 。 因此初值问题 ?? ?=+='0 )0(cos 2 2y x y y 的解在]21,21[- 上存在唯一,从而在区间]2 1 ,0[上方程 cos 22, x y y +='满足条件0)0( =y 的解存在唯一。 2) 以原点为中心作闭矩形区域b y a x D ≤≤,:。 易验证x y y x f +=2 ),(在D 上满足解的存在唯一性定理的条件,并求得 22),(m ax b a x y M D y x +=+=∈,

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

六年级列方程解决实际问题典型例题解析1(通用)

【同步教育信息】 一、本周教学主要内容: 列方程解决实际问题(1) 二、本周学习目标: 1、在解决实际问题的过程中,理解并掌握形如ax±b=c的方程的解法,会列上述方程解决两步计算的实际问题。 2、在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。 3、在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯。 三、考点分析: 经历寻找实际问题中数量之间的相等关系并列方程解决问题的过程,在过程中自主理解并掌握有关方程的解法,加深对列方程解决实际问题的体验。 四、典型例题 例1、小强的爸爸今年37岁,比他年龄的3倍还大4岁,小强今年是多少岁? 分析与解: 这个题目包含的信息有:(1)小强爸爸的年龄(已知)37岁;(2)小强的年龄(未知)乘3再加上4岁和他爸爸年龄一样。 根据(1)(2)之间的关系,很快就可以找出下面的数量关系,小强今年多少岁不知道,可以设为x岁。 小强的年龄×3 + 4 岁 = 小强爸爸的年龄 根据上面的数量关系可以列出方程,再解答。 解:设小强今年是x岁。 3x + 4 = 37 3x + 4 - 4 = 37 – 4 ┄┄() 3x = 33

x = 33 ÷ 3 ┄┄() x = 11 这道题你会检验吗? 答:小强今年11岁。 这道题你还会列其它方程解答吗?(依据不同的数量关系可以列出不同的方程) 点评:实际解答这一题时,还可以想出几种不同的数量关系式。但是,对于符合题意的数量关系式,我们在解题时一般用最容易想到的数量关系式,即顺着题目的意思所想到的数量关系式。 例2、一种墨水有两种包装规格,大瓶容量是1.5升,比小瓶容量的4倍少0.9升,小瓶容量是多少? 分析与解: 这个题目包含的信息有:(1)大瓶容量(已知)1.5升;(2)小瓶容量(未知)乘4减去0.9升和大瓶容量一样。 根据(1)(2)之间的关系,很快就可以找出下面的数量关系,小瓶容量不知道,可以设为x升。 小瓶的容量×4 - 0.9升 = 大瓶的容量 根据上面的数量关系可以列出方程,再解答。 解:设小瓶的容量是x升。 4x – 0.9 = 1.5 4x - 0.9 + 0.9 = 1.5 + 0.9 4x = 2.4 x = 2.4 ÷ 4 x = 0.6 这道题你会检验吗? 答:小瓶的容量是0.6升。 点评:在解形如ax±b=c的方程时,要先把ax看作一个整体,根据等式的性质在方程的两边同时加上或减去或乘一个相同的数,变形为“ax= b”的形式,最后再求出x的值。 例3、一个三角形的面积是100平方厘米,它的底是25厘米,高是多少厘米? 分析与解: 根据题目可以得出这一题的等量关系式是:三角形的面积=底×高÷2

微分方程例题选解演示教学

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2x e x xdy y x dx y =+-== 。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+??=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 2 1[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11ln ln 2 y x x =+。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2u u u x u -='+, 分离变量得 dx x u du 12=-, 积分得 C x u +=ln 1, 原方程的通解为 ln x y x C =+。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03223=---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3223--- 4222244 1)(2141dy dy x dx y dx -+-= )2(4 14224y y x x d --=, 得 0)2(4224=--y y x x d , 原方程的通解为 C y y x x =--42242。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222=--r r ,特征根为 i r ±=1,

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

四年级解方程典型练习题

四年级解方程典型练习题 练习一 【知识要点】学会解含有三步运算的简易方程。 2、口算下面各题。 3.4a-a= a-0.3a= 3.1x- 1.7x= 0.3x+3.5x+x= 15b-4.7b= 6.7t-t= 32x-4x x-0.5x-0.04x= 3、解方程。 2x+0.4x=48(并检验) 8x- x=14.7 35x+13x=9.6 4、列出方程,并求出方程的解。 ①x的7倍比52多25。②x的9倍减去x的5倍,等于24.4。 ①0.3乘以14的积比x的3倍少0.6。②x的5倍比3个7.2小3.4。 ③一个数的3倍加上它本身 2、苹果:x千克 梨子:比苹果多270千克 求苹果、梨子各多少千克?

3、两个数的和是144,较小数除较大数,商是3,求这两个数各是多少? 练习二 1、解方程 0.52×5-4x=0.6 0.7(x+0.9)=42 1.3x+2.4×3=12.4 x+(3-0.5)=12 7.4-(x-2.1)=6 5(x+3)=35 x+3.7x+2=16.1 14x+3x-1.2x=158 5x+34=3x +54 【拓展训练】 1、在下面□里填上适当的数,使每个方程的解都是x=2。 □+5x=25 5x-□=7.3 2.3x×□ =92 2.9x÷□=0.58 2、列方程应用题。 ①果园里有苹果树270棵,比梨树的3倍少30棵,梨树有多少棵?

②王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元? ③一个长方形的周长是35米,长是12.5米,它的宽是多少米? 练习三 1、①学校有老师x人,学生人数是老师的20倍,20x表 示,20x+x表示。 ②一本故事书的价钱是x元,一本字典的价钱是一本故事书的2.5倍。一本字典元,3本故事书和2本字典一共 是元。 ③甲数是x,乙数是甲数的3倍,甲乙两数的和是。 ④如果x=2是方程3x+4a=22的解,则a= 。 2、解方程。 5x+2x=1.4+0.07 6x-3x=6÷5 x-13.4+ 5.2=1.57 0.4×25-3.5x=6.5 7x+3×1.4x=0.2×56 5×(3-2x)=2.4×5

微分方程(习题及解答)0001

2 第十二章 微分方程 § 微分方程基本概念、可分离变 量的微分方程、 、单项选择题 1.下列所给方程中,不是微分方程的是 (A) xy 2y ; (C) y y 0 ; 4 2?微分方程5y y xy (A) 1 ; (B) 2 ; 3. 下列所给的函数,是微分方程 (A) y C i cosx ; (C) y cosx Csinx ; 齐次微分方程 2y (3) ( x 2 (7x (B) (D) 0的阶数是( (C) 3 ; y (B) (D) 4. 下列微分方程中,可分离变量的方程是 (A) y e x y ; (B) xy (C) y xy 1 0 ; (D) (x ). 2 2 y C ; 6y)dx (x y)d y ). (D) 4 ; 0的通解的是( ). C 2 sin x ; G cosx ( ). y x ; y)dx (x 5. 下列微分方程中,是齐次方程是微分方程的是 (A) y (C) y 、填空题 c x y e ; xy x 0 ; (B) xy (D) (x 答(B). 答(C). C 2 si nx 答(D). y)dy 0. 答(A). ( 2 y x y)dx 答(D). 1. 函数y 5x 2是否是微分方程 xy 2y 的解? 答: 是. 2 . 微分方程 dx dy 0, y x 3 4的解是 .答: 2 x 2 y 25 . y x 3 x 2 冬C . 3 . 微分方程 3x 2 5x 5y 0的通解是 . 答: y 5 2 4 . 微分方程 xy y ln y 0的通解是 答: y Cx e . 5 . 微分方程 1 2 x y -1 y 2的通解是 . 答: arcsin y arcsin x 6 . 微分方程 xy y y(ln y ln x)的通解是 . 答: _y x Cx e 三、解答题 y); C . xy a(y 2 (x y)d y 1?求下列微分方程的通解. ⑵ (1) sec xtanydx s ec ytanxdy 0 ; 解: 解: dy 心y ⑶ —10 ; ⑷ dx 解: 解: 2 . 求下列微分方程满足所给初始条件的特解: (1) 2x y y e , y x 0 0 ; (2) 解 : 解: ⑶ xdy 2ydx 0, y x 2 1; ⑷ 解: 解: y (y 2 x 3 o. y si nx yl ny

相关文档
最新文档