自适应控制大作业

自适应控制大作业
自适应控制大作业

自适应控制结课作业

班级:

组员:

2016年1月

目录

1 遗忘因子递推最小二乘法 (1)

1.1最小二乘理论 (1)

1.2带遗忘因子的递推最小二乘法 (1)

1.2.1白噪声与白噪声序列 (1)

1.2.2遗忘因子递推最小二乘法 (2)

2.2仿真实例 (3)

2 广义最小方差自校正控制 (5)

2.1广义最小方差自校正控制 (5)

2.2仿真实例 (6)

3 参考模型自适应控制 (9)

3.1参考模型自适应控制 (9)

3.2仿真实例 (12)

3.2.1数值积分 (12)

3.2.2仿真结果 (12)

参考文献 (16)

1 遗忘因子递推最小二乘法

1.1最小二乘理论

最小二乘最早的想法是高斯在1795年预测行星和彗星运动轨道时提出来的,“未知量的最大可能的值是这样一个数值,它使各次实际观测和计算值之间的差值的平方乘以度量其精确度的数值以后的和为最小”。这一估计方法原理简单,不需要随机变量的任何统计特性,目前已经成为动态系统辨识的主要手段。最小二乘辨识方法使其能得到一个在最小方差意义上与实验数据最好拟合的数学模型。由最小二乘法获得的估计在一定条件下有最佳的统计特性,即统计结果是无偏的、一致的和有效的。

1.2带遗忘因子的递推最小二乘法

1.2.1白噪声与白噪声序列

系统辨识中所用到的数据通常含有噪声。从工程实际出发,这种噪声往往可以视为具有理想谱密度的平稳随机过程。白噪声是一种最简单的随机过程,是由一系列不相关的随机变量组成的理想化随机过程。白噪声的数学描述如下:如果随机过程()t ξ均值为0,自相关函数为2()σδτ,即

2()()R ξτσδτ=

式中,()δτ为单位脉冲函数(亦称为Dirac 函数),即

,0

()0,0τδττ∞=?=?

≠?,且-()1d δττ∞

=? 则称该随机过程为白噪声,其离散形式是白噪声序列。

如果随机序列{}()V k 均值为零,且两两互不相关,即对应的相关函数为:

2,0

()[()()]0,0v n R n E v k v k n n σ?==+=?=?

则这种随机序列称为白噪声序列。其谱密度函数为常数2(2)σπ。白噪声序列的功率在π-到π的全频段内均匀分布。

建立系统的数学模型时,如果模型结构正确,则模型参数辨识的精度将直接依赖于输入信号,因此合理选用辨识输入信号是保证能否获得理想的辨识结果的

50

100

150

200

250300

350

400

450

500

-4

-3-2-101234白噪声序列

仿真长度

噪声幅值

关键之一。理论分析表明,白噪声作为被辨识系统的输入时,可以激发系统的所有模态,可对系统充分激励,可防止数据病态,保证辨识精度,可以保证获得较好的辨识效果。

图1-1 白噪声序列

1.2.2遗忘因子递推最小二乘法

假设被辨识的系统为一单入单出的离散时间系统,且已知为CAR 模型(带控制量的自回归模型),如图2所示:

图1-2 辨识系统模型

11()()()()()A z y k B z u k d k ξ--=-+

式中,()u k 为输入变量,()y k 为输出变量,()k ξ为白噪声,且

112

12112

012()1()a a b b n n n n A z a z a z a z

B z b b z b z b z

--------?=++++??=++++?? 则上式可转化为如下最小二乘格式:

120()(1)(2)()()()()

()()()

a b n a n b T y k a y k a y k a y k n b u k d b u k d n k y k k k ξ?θξ=-----

--+-++--+=+式中,()k ?为数据向量,θ待估参数向量,且

)

(k u )

(k ξ)

(k y )

()(11

---z A z B z d

(1)1

(1)1

10()[(1),,(),(),,()][,,,,,]a b a b a b n n T a b n n T

n n k y k y k n u k d u k d n R a a b b R

?θ++?++??=-------∈??=∈??

取算法的性能指标为

21

?[()()]L

L k T k J y k k λ?θ

-==-∑ 式中,λ为遗忘因子(01λ<≤)。

带遗忘因子的递推最小二乘估计的算法公式为:

???()(1)()[()()(1)](1)()()()(1)()1()[()()](1)T T T k k K k y k k k P k k K k k P k k P k I K k k P k θ

θ?θ?λ???λ?=-+--?

-??=

?+-??=--??

公式表明,新的参数估计?()k θ

是用新的实际测量值()y k 与基于老模型进行预测得到的量?()(1)T k k ?θ

-之偏差,对前面的参数估计加以修正得到的,修正系数阵为()K k 。(1)P k -的物理意义是参数估计误差的方差,作为参数估计精度的一种度量。遗忘因子λ的作用是削弱过去数据的作用,通常λ选择0.95到0.998之间的数。

带遗忘因子的递推最小二乘估计算法属于在线辨识所用方法的一种,它既能克服离线辨识的缺点,也能克服递推最小二乘估计中的“数据饱和”现象,同时它充分重视了当前数据的作用。 遗忘因子最小二乘法的算法:

已知A 式阶次a n 、B 式阶次b n 以及延迟d 。

步骤1:设置初值(0)θ和(0)P 及遗忘因子λ,输入初始数据; 步骤2:采样当前输出()y k 和输入()u k ;

步骤3:利用递推公式,计算()k K 、()k θ和()k P ; 步骤4:1k k →+,返回步骤2,继续循环。

2.2仿真实例

系统模型如下:

)()5(7.0)4()3(1.0)2(6.0)1(1.1)(k k u k u k y k y k y k y ξ+-+-=-+-+-- 其中,输入()u k 为方差为1的白噪声,()k ξ为方差为0.1的白噪声。 由于(0)P 和(0)θ的选择可按如下方法:

(0)(0)α=???

=??P I

θε

式中,α为充分大的正实数410(10~10),ε为零向量或充分小的正的实向量。因此,取初值6(0)10=P I 、(0)=θ0。 仿真结果如下:

1002003004005006007008009001000

-2-1.5-1-0.500.511.52

a1a2a3b1b2

图 1-3 参数估计结果

1002003004005006007008009001000

-20-15-10-505101520

实际输出模型输出

图 1-4 实际输出与辨识输出对比

2 广义最小方差自校正控制

2.1广义最小方差自校正控制

当考虑干扰对系统的作用时,控制器的设计就是要最大限度的减小干扰对系统的影响。鉴于一般被控对象或过程都存在不同程度的纯迟延,控制()u k 对系统的作用要到()k d +时刻才有响应。在这段纯迟延的时间内,干扰仍会作用于系统,所以在k 时刻预测()k d +时刻的输出,并按照预测误差的方差最小的原则,设计现时控制()u k ,并加以实施。当过程参数未知,或者时变时,用递推最小二乘法估计,或者直接估计控制器参数,然后算出控制量来,这就是最小方差自校正控制的基本思想。但最小方差自校正控制器存在一些固有的问题,特别是其不适用于非最小相位系统且输入控制量不受约束,因此考虑在性能指标中加入控制量的罚函数,限制过大的控制输出,便形成了广义最小方差自校正控制器。控制算法框图如下:

11()()

d z B z A z ---11()

()

C z A z --()

w k ()

y k ()

r y k +

++

()u k )

(1-Z RC )

(1-Z PE )

()()()

(1111----+Z PC Z D Z PB Z E

被控对象为:111()()()()()()d A z y k z B z u k C z k ξ----=+

其中:d 为延迟因子,()u k 为输入变量,()y k 为输出变量,()k ξ为白噪声。1()C z -为 H u r w i t 多项式。 选择性能指标函数为:

{}11212[()()()()][()()]r J E P z y k d R z y k d Q z u k ---=+-++

式中,()r y k 为期望输出;()y k d +为第()k d +拍的输出;()u k 为第k 拍的控制;

1()P z -、1()R z -和1()Q z -分别为输出、期望输出和控制的加权多项式,它们分别

具有改善闭环系统性能,软化输入和约束控制量的作用。并且

11212112012112012()1...()...()...p

r r q q n

n n n n n P z p z p z p z R z r r z r z r z Q z q q z q z q z

------------=++++=++++=++++

上述多项式的阶次及参数根据实际需要确定。 由此,据文献[1]知,广义最小方差控制律为:

111111110

()()()()()()

()()()()()r C z R z y k d G z P z y k u k q C z Q z F z P z b --------+-=

+ 在进行控制系统设计时,一般可以取加权多项式1()1P z -=、1()1R z -=和

10()Q z q -=,而0q 大小的选取需要在快速性和稳定性方面进行权衡。而要稳态误

差为零,则需满足条件:

P B QA R +=

)

1()

1( 广义最小方差直接自校正控制的算法: 已知:模型阶次a n 、b n 、c n 以及延迟d 。

步骤1:设置初值(0)θ和(0)P ,输入初始数据,并设置加权多项式1()P z -、1()Q z -、

1()R z -;

步骤2:采样当前实际输出()y k 和期望输出()r y k d +;

步骤3:构造观测数据向量)?d k -(?

并利用递推增广最小二乘法在线实时估计被 控对象参数θ,即C F G

???和、; 步骤4:利用最小方差控制律计算并实施()u k ; 步骤5:1k k →+,返回步骤2,继续循环。

2.2仿真实例

设系统模型如下:

)1(6.0)()5(2)4()3(5.0)2(8.0)1(9.0)(-++-+-=---+--k k k u k u k y k y k y k y ξξ

其中,()k ξ为方差为0.1的白噪声,采用广义最小方差控制。取初值6(0)10=P I 、

0?0

;设置加权多项式1()1P z -=、5.1)(1=-Z R 、1()Q z -=2。期望输出采用幅值为10的方波型号,其控制结果如下:

50100150200

250300350400450500

-20-15-10-505

101520

k

y r (k )、y (k )

实际输出跟踪模型输出图

模型输出y r (k)

实际输出y(k)

图 2-1 期望输出与实际输出对比

50

100

150

200

250

300

350

400

450

500

-10

-8-6-4-202

46810k

u (k )

控制量变化图

图 2-2 控制量u(k)

50

100

150

200

250300

350

400

450

500

-1-0.8-0.6-0.4-0.200.20.4

0.60.81k

参数估计g 、c

g 0g 1c 1

图 2-3 估计参数

50100150200

250300350400450500

-2-1

1

2

3

4

k

辨识参数f

f 0

f 1f 2f 3

f 4

图 2-4 辨识参数

3 参考模型自适应控制

3.1参考模型自适应控制

模型参考自适应控制器(MRAC,model reference adaptive control),即为利用可调系统(包含被控对象)的各种信息,度量或测出某种性能指标,把它与参考模型期望的性能指标相比较;用性能指标偏差(广义误差)通过非线性反馈的自适应律来调节可调系统,以削弱可调系统因“不确定性”所造成的性能指标的偏差,最后达到使被控的可调系统获得较好的性能指标的目的。

模型参考自适应控制可以处理缓慢变化的不确定性对象的控制问题。它由于可以不必经过系统辨识而度量性能指标,因而有可能或得快速跟踪控制。由于被控对象的全部状态要准确得到很困难,按被控对象输入和输出直接设计自适应控制系统更有价值,一般有直接法和间接法。所谓直接和间接,指的是对未知的被控对象进行直接控制和间接控制。间接控制的基本思想是用未知的被控对象的输入输出数据来估计被控对象的参数,并用这些参数估计值产生一个反馈函数去调整调节器参数。直接控制和间接控制不同,在产生反馈控制信号之前没有明显的被控对象的辨识。所以二者之间主要不同在于:在直接控制中要有一个显式的理想特性的参考模型,而间接控制则需要被控对象模型进行在线辨识并用隐式方法去产生自适应律。

现用一种分母分子相对阶数为2的直接法,即K.S.Narendra 提出的稳定性自适应控制方案。原理框图如图3-1所示:

参考模型W m (s)

被控对象W p (s)

辅助信号发生器辅助信号发生器k 0c T d T d 0F 1

F 2

V (1)

V (2)

ω

(1)

ω(2)

r(t)

+

+

++_

_

_y m (t)y p (t)

e(t)

u(t)

图3-1 模型参考自适应控制原理框图

1) 设系统为单入单出(SISO)的系统,被控对象的状态方程和输出方程为:

?????+=+=?

u

D x C y u b x A x p p p p p p p p 式中p x 为n 维状态向量,u 为控制向量;p y 为输出量,n n A P ?为的矩阵,p b 为1?n 的输入向量; 被控对象传递函数如下:

)

()()(s D s N k s W p p p

p =

2) 选取的参考模型为:

?????+=+=?r

m m m m r m m m m y D x C y y b x A x

式中m x 为n 维状态向量,r y 为分段连续一致有界输入;m y 为参考模型输出,

m A 量n n ?的矩阵,m b 为1?n 的输入向量;

参考模型传递函数为:

)

()

()(s D s N k s W m m m

m =

式中)(s W m 严格正实,)(s N m 和)(s D m 都是首一的Hurwitz 多项式,其阶

数分别为m 和n ,m k 为模型增益。 3) 设广义输出误差为:

)()()(t y t y t e p m -=

控制系统的设计目标便是利用Lyapunov 稳定性理论设计一个不含误差导

数的自适应控制率,并由它产生一个有界控制量输入,是广义误差)(t e 满足:

)(lim =∞

→t e t

4) 被控对象与参考模型的传递函数的选取需满足分子分母多项式为稳定多项

式,同时参考模型必须为严正实函数,严正实即传递函数)(s W 的极点都在s 的左半平面(虚轴上只容许有一阶极点,且其留数为正)且对于任意ω,都有0)](Re[>ωj W ,则)(s W 为严正实函数。辅助信号发生器传递函数的分母多项式应当等于参考对象的分子乘上一个一阶稳定多项式,具体设计过程如下,两个辅助信号发生器状态方程和传递函数分别为:

???

????=+=?

)()(1

111S D S N W u b v A v F f c f f :

???

?

???+=+=?

02

222)()

(d S D S N W y b v A v F f d p f f : 为严格正实函数;

使选择(s)L(s)W 0),a(a s L(s)m >+= (s ),L (s )N (s )D m f =选择构建可调参数自适应律如下:

?????+-=Γ=?

?

)

()()()

()()(t t a t t e t t ?ξξξθ 式中,21

0[]T T T n c

f f k d ?=∈θc d R ,21

1

2[]T

T T n r p

y y ?=∈φv v R

, 22n n ?∈ΓR 为正定矩阵。

自适应控制律为:)()()()()()(t t t e t t t u T T ξξ?θΓ+=

参考模型自适应控制的算法: 已知:被控对象)(s W p 的阶数n 、m 。

步骤1:选择参考模型)(s W m 为稳定最小相位系统,与)(s W p 阶数及相对阶相同,并具有理想的动态性能;

步骤2:为严格正实函数;使选择(s)L(s)W 0),a(a s L(s)m >+=并利用)()(S N S L m 构造辅助信号发生器状态矩阵f A ;

步骤3:设置初值(0)θ,选择自适应增益矩阵Γ和输入信号()r y t ,并初始化数据; 步骤4:采样当前参考模型输出()m y t 和系统实际输出()p y t ,并计算()e t ; 步骤5:利用辅助信号状态方程计算1v 和2v ;

步骤6:利用可调参数自适应律状态方程计算)()(t t ξθ和; 步骤7:组建()t φ,并有自适应控制律计算()u t ; 步骤8:t t h →+,返回步骤4,继续循环。

3.2仿真实例

3.2.1数值积分

连续函数的动态特性一般可由一个微分方程或一组微分方程加以描述,因此对连续系统进行编程或计算机仿真时,就需要对连续系统微分方程运用数值积分的方法来求数值解,针对如下一阶微分方程:

00()

(,())()dx t f t x t dt

x t x ?=?

??=?

在离散系统中可采用欧拉法求解,其递推公式如下

1()()(,())

k k k k x t x t hf t x t +≈+

式中,h 称为计算步长或者步距。

该方法简单、计算量小,由前一点即可推出后一点的值,属于单步法。适当减小计算步长h 有助于提高计算精度。

3.2.2仿真结果

采用的对象模型为

5

202181

3)(2342++++++=s s s s s s S W p

采用的参考模型为

105176861624

10)(234

2++++++=s s s s s s S W p

改模型是严格正实的最小相位系统,并且具有良好的动态性能。

输入信号()r y t 为方波信号,使用模型参考自适应控制后的仿真结果如下:

020406080100120140160180200

-3

-2

-1

1

2

3

图 3-2 设定值输入

20

40

60

80

100120

140

160

180

200

-0.5-0.4-0.3-0.2-0.100.10.2

0.30.40.5t

y m (t )、y p (t )

y m (t)y p (t)

图 3-3 实际输出与参考输出对比

020406080

100120140160180200

-0.2

-0.15-0.1-0.0500.05

0.10.15

0.2t

e (t )

图 3-4 偏差值e(t)

20

40

60

80

100120

140

160

180

200

-50-40-30-20-10010

203040

50t

u (t )

图 3-5 控制量u(t)

1002003004005006007008009001000

-0.50

0.5

1

1.5

2

2.5

3

d 0

d 1d 2

d 3

图 3-6 可调参数d 0、d 1、d 2、d 3曲线

100

200

300

400

500

600

700

800

900

1000-15-10-505101520253035

kc c 1c 2c 3

图 3-7 可调参数k c 、c 1、c 2、c 3曲线

参考文献

[1]庞中华,崔红. 系统辨识与自适应控制MATLAB仿真[M]. 北京:北京航空航天大学出版

社,2009.

[2]谢新民,丁峰. 自适应控制系统[M]. 北京:北京航空航天大学出版社,2002.

[3]韩正之,陈彭年,陈树中. 自适应控制与应用[M]. 北京:清华大学出版社,2011.

[4]杨承志. 系统辨识与自适应控制[M]. 重庆:重庆大学出版社,2003

.

自动控制原理作业答案

作业一: 第一章 1-2【P7】 (1)在结构上,系统必须具有反馈装置,并按负反馈的原则组成系 统。 (2)由偏差产生控制作用。 (3)控制的目的是力图减小或消除偏差,使被控制量尽量接近期望 值。 1-3【P8】 1-7 优点缺点 开环控制系统结构简单、造价低控制精度低、适应性不强闭环控制系统适应性强、控制精度高结构复杂、稳定性有时难 保证 补充1:自动控制系统有什么基本要求?【P14】 1-8 开( 2-1. (a)

1121 1112211 i o o R i i dt C u R i u i i i R i idt u C ?=?? -=?? +=??+=?? ??L L L L L L L L ① ② ③④ 化简得: 212121 211212121211 ()(1)i o i i o o du du R C R C R C u u dt R C u u dt dt R C R C dt R C R C +++=++++?? 2-1(d)

2-2 (a) 011020()()i i i d x x x f k x x f kx dt dt -+-=+ 化简 01212011()()i i dx dx f f k k x f k x dt dt +++=+ (b ) 处于静止时刻(平衡的时候),质量块m 的重力mg 已经被弹簧跟阻尼器所平 衡掉,所以列方程的时候不应该出现重力mg 。 以质量块m 为研究对象,由牛顿第二定律得: 22()()()d y t dz t m kz t f dt dt =--L L L ① 结合: ()()()z t y t x t =-L L L ② 消去()y t 得:

自动控制控大作业

SHANGHAI UNIVERSITY 课程项目 MATLAB的模拟仿真实验专业课:自动控制原理 学院机自学院 专业(大类)电气工程及其自动化 姓名学号 分工:蒋景超负责MATLAB仿真部分 顾玮负责分析结论 其它共同讨论

二阶系统性能改善 一、要求 (1)比例-微分控制与测速反馈控制的传递函数求解 (2)性能分析与对比 (3)举出具体实例,结合matlab分析 二、原理 在改善二阶系统性能的方法中,比例-微分控制和测速反馈控制是两种常用的方法。(1)比例-微分控制: 比例-微分控制是一种早期控制,可在出现位置误差前,提前产生修正作用,从而达到改善系统性能的目的。 图1 比例微分控制系统 (2)测速反馈控制: 测速反馈控制是通过将输出的速度信号反馈到系统输入端,并与误差信号比较,其效果与比例微分-控制相似,可以增大系统阻尼,改善系统性能。 图2测速反馈控制系统 (3)经典二阶控制系统

图3经典二阶控制系统 三、实例分析 1、标准传递函数 )2()(G 2n n s s s ζωω+= 22)2()(n n n s s s ωζωω++=Φ 00.2n =ω 15.0=ζ MATLAB 代码: num=[4]; den=[1,0.6,4]; G=tf(num,den); t=0:0.1:10; step(G,t); 图4标准传递函数仿真 2、比例微分控制系统与经典二阶系统比较 22 )2()1()(n n d n d s s s T s ωωζω+++=Φ 2n d d T ωζζ+= 设置d T =0.15 d ξ=0.30 00.2=n ω ξ=0.15 MATLAB 代码:

哈工大自动控制原理 大作业

自动控制原理 大作业 (设计任务书) 姓名: 院系: 班级: 学号: 5. 参考图5 所示的系统。试设计一个滞后-超前校正装置,使得稳态速度误差常数为20 秒-1,相位裕度为60

度,幅值裕度不小于8 分贝。利用MATLAB 画出 已校正系统的单位阶跃和单位斜坡响应曲线。 + 一.人工设计过程 1.计算数据确定校正装置传递函数 为满足设计要求,这里将超前滞后装置的形式选为 ) 1)(() 1)(1()(2 12 1T s T s T s T s K s G c c ββ++++= 于是,校正后系统的开环传递函数为)()(s G s G c 。这样就有 )5)(1()(lim )()(lim 00++==→→s s s K s sG s G s sG K c c s c s v 205 ==c K 所以 100=c K 这里我们令100=K ,1=c K ,则为校正系统开环传函) 5)(1(100 )(++= s s s s G

首先绘制未校正系统的Bode 图 由图1可知,增益已调整但尚校正的系统的相角裕度为? 23.6504-,这表明系统是不稳定的。超前滞后校正装置设计的下一步是选择一个新的增益穿越频率。由)(ωj G 的相角曲线可知,相角穿越频率为2rad/s ,将新的增益穿越频率仍选为2rad/s ,但要求2=ωrad/s 处的超前相角为? 60。单个超前滞后装置能够轻易提供这一超前角。 一旦选定增益频率为2rad/s ,就可以确定超前滞后校正装置中的相角滞后部分的转角频率。将转角频率2/1T =ω选得低于新的增益穿越频率1个十倍频程,即选择2.0=ωrad/s 。要获得另一个转角频率)/(12T βω=,需要知道β的数值, 对于超前校正,最大的超前相角m φ由下式确定 1 1 sin +-= ββφm 因此选)79.64(20 ==m φβ,那么,对应校正装置相角滞后部分的极点的转角频率为 )/(12T βω=就是01.0=ω,于是,超前滞后校正装置的相角滞后部分的传函为 1 1001 520 01.02.0++=++s s s s 相角超前部分:由图1知dB j G 10|)4.2(|=。因此,如果超前滞后校正装置在2=ωrad/s 处提供-10dB 的增益,新的增益穿越频率就是所期望的增益穿越频率。从这一要求出发,可 以画一条斜率为-20dB 且穿过(2rad/s ,-10dB )的直线。这条直线与0dB 和-26dB 线的交点就确定了转角频率。因此,超前部分的转角频率被确定为s rad s rad /10/5.021==ωω和。 因此,超前校正装置的超前部分传函为 )1 1.01 2(201105.0++=++s s s s 综合校正装置的超前与之后部分的传函,可以得到校正装置的传递函数)(S G c 。 即) 1100)(11.0() 15)(12(01.02.0105.0)(++++=++++= s s s s s s s s s G c 校正后系统的开环传递函数为

自动控制原理大作业完成版

一、 设计任务书 设计任务是考虑到飞机的姿态控制问题,姿态控制转换简化模型如图所示,当飞机以4倍音速在100000英尺高空飞行,姿态控制系统的参数分别为: 4,0.1,0.1,0.11 1====a a a K ωεωτ 设计一个校正网络(),s G c 使系统的阶跃响应超调量小于5%,调节时间小于5s (按2%准则)

2、计算机辅助设计 (1)simulink仿真框图 Simulink仿真框图 双击scope显示图像,观察阶跃相应是否达到指标

放大图像观察超调量为s t s p 7.4%,3==σ满足要求 (2)绘制bode 图

校正前的bode图 校正后的bode图

(3)绘制阶跃相应曲线 校正前的阶跃相应曲线 校正后的阶跃相应曲线

三、校正装置电路图 前面为放大装置放大25倍,后面为超前补偿电路,它自身的K 为0.1,相乘之 后为指标中的2.5,校正装置电路完成1 60 ) 16( 5.2++= s s G c 。 四、设计结论 设计的补偿网络为1 60 ) 16( 5.2++=s s G c 。经过仿真得出超调量为s t s p 7.4%,3==σ满足 要求。 五、设计后的心得体会 实际的控制系统和我们在书中看到的标准系统差别很大,参数的要求比书 中要求相对要苛刻,在设计校正网络的过程中,遇到很多困难超前滞后用根轨迹法无法求出,只能用simulink 画出仿真框图,通过经过一定的计算大概确定某些参数,通过不断地尝试修改,才能最终得到满足指标要求的阶跃相应曲线,很多时候现实中的参数没有书中的参数给的那么简单,会遇到很多难以想象的复杂状况,所以我们学习控制原理关键是学习怎么处理,如何应用好软件来配合完成系统的设计,现代控制理论不能单纯的通过简单的计算得出结论的,需要我们熟练运用软件来辅助设计,这样我们才能设计好一个校正网络。

自动控制原理作业参考答案(第五章

5.1 (1))(20)(20)(20)(12)(t r t r t c t c t c +=++ (2)21)10)(2()1(20)(s s s s s C ?+++= = s s s s 4 .0110275.02125.02+++-++- 所以 c(t)=4.0275.0125.0102++----t e e t t c(0)=0;c(∞)=∞; (3)单位斜坡响应,则r(t)=t 所以t t c t c t c 2020)(20)(12)(+=++ ,解微分方程加初始条件 解的: 4.04.02)(102++-+=--t e e t c t t c(0)=2, c(∞)=∞; 5.2 (1)t t e e t x 35.06.06.3)(---= (2)t e t x 2)(-= (3) t w n n n t w n n n n n n n e w b w a e w b w a t x )1(22)1(22221 2)1(1 2)1()(----+----+-+ -+----= ξξωξξωξξξωξξξω(4)t a A t a Aa e a a b t x at ωωωωωωωcos sin )()(2 22222+-++++=- 5.3 (1)y(kT)=)4(16 19 )3(45)2(T t T t T t -+-+-δδδ+…… (2) 由y(-2T)=y(-T)=0;可求得y(0)=0,y(T)=1; 则差分方程可改写为y[kT]-y[(k-1)T]+0.5y[(k-2) T]=0;,k=2,3,4…. 则有0))0()()((5.0))()(()(121=++++----y T y z z Y z T y z Y z z Y 2 11 5.015.01)(---+--=z z z z Y =.....125.025.025.05.015431----++++z z z 则y *(t)=0+)5(25.0)4(25.0)3(5.0)2()(T t T t T t T t T t -+-+-+-+-δδδδδ+… (3)y(kT)=k k k k k T T k T T )1(4 )1(4)1(4)1(4++---- 5.4

自动控制原理作业答案1-7(考试重点)演示教学

红色为重点(2016年考题) 第一章 1-2仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如下图所示。 1-4 题1-4图为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的?系统的被控对象和控制装置各是什么? 解工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水

流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。 其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。 系统方块图如下图所示。这是一个按干扰补偿的复合控制系统。 1-5图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。 解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压Uf。Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压Uf正好等于给定电压Ur。此时,Ue=Ur-Uf=0,故U1=Ua=0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使Uc保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T°C由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T°C的实际值等于期望值为止。 系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压ru(表征炉温的希望值)。系统方框图见下图。

哈工大自动控制原理大作业

自动控制原理大作业 1.题目 在通常情况下,自动导航小车(AGV )是一种用来搬运物品的自动化设备。大多数AGV 都需要有某种形式的导轨,但迄今为止,还没有完全解决导航系统的驾驶稳定性问题。因此,自动导航小车在行驶过程中有时会出现轻微的“蛇行”现象,这表明导航系统还不稳定。 大多数的AGV 在说明书中都声明其最大行驶速度可以达到1m/s ,但实际速度通常只有0.5m/s ,只有在干扰较小的实验室中,才能达到最高速度。随着速度的增加,要保证小车得稳定和平稳运行将变得越来越困难。 AGV 的导航系统框图如图9所示,其中12=40ms =21ms ττ, 。为使系统响应斜坡输入的稳态误差仅为1%,要求系统的稳态速度误差系数为100。试设计合适的滞后校正网络,试系统的相位裕度达到50o ,并估计校正后系统的超调量及峰值时间。 ()R s () Y s 2.分析与校正主要过程

2.1确定开环放大倍数K 100) 1021.0)(104.0(lim )(lim =++==s s s sK s sG K v (s →0) 解得K=100 ) 1021.0)(104.0(100++=s s s G s 2.2分析未校正系统的频域特性 根据Bode 图: 穿越频率s rad c /2.49=ω 相位裕度?---=?-?--=99.18)2.49021.0(arctan )2.4904.0(arctan 9018011γ 未校正系统频率特性曲线

由图可知实际穿越频率为s rad c /5.34=ω 2.3根据相角裕度的要求选择校正后的穿越频率1c ω 现在进行计算: ???--=+=---55550)021.0(arctan )04.0(arctan 901801111c c ωω 则取s rad c /101=ω可满足要求 2.4确定滞后校正网络的校正函数 由于1120 1~101c ωω)(= 因此取s rad c /1101 11== ωω)(,则由Bode 图可以列出

自动控制原理课后习题答案

. 第一章引论 1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。答: 自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。如下图所示为自动控制系统的基本组成。 开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。此时,系统构成没有传感器对输出信号的检测部分。开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。 闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。 闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。 < 1-2 请说明自动控制系统的基本性能要求。 答: 自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。 稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。稳定性通常由系统的结构决定与外界因素无关。对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。 快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。 准确性用稳态误差来衡量。在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。显然,这种误差越小,表示系统的精度

自动控制大作业

Harbin Institute of Technology 自动控制大作业

哈尔滨工业大学课程设计任务书 已知技术参数和设计要求:如图所示的系统,设计一个校正装置,使得稳态误差常数等于50/s,相位裕度为50度,幅值裕度不小于8分贝。利用MATLAB画出已校正系统和未校正系统的单位阶跃响应和单位斜坡响应曲线。

(1)人工设计过程 1数据计算,确定补偿形式 校正之前系统的传递函数为()0G s = (1) K S S + ,由题目要求,系统的稳态速度误差常数Kv 为50-1 秒 ,由公式()0 lim(1) 1 11 e lim ()lim () 50 s ss s s s sE s sG s K Kv →→∞→∞+== == =得开环放大系数为K=50。0G 由放大环节、积分环节和一个惯性环节构成。未校正时系统的幅值穿越频率为 0c w =7.07rad/s 。γ0=180-90-arctan(0c w )=8.05。可见,未加补偿时,系统是稳定的,但是相位 裕度不满足要求。由于设计后要求γ=50,而对校正后的幅值穿越频率无要求,若取c w <=0c w , γ-γ0=41.95,所以可以采用滞后补偿来实现。 2确定补偿装置参数并设计期望的剪切频率 补偿装置的传递函数为1 11(s)=1 12 s w Gc s w ++ ,其中21w w β=。原系统的Bode 图以-40Db/dec 穿越0dB 线,有可能满足要求。原系统的转折频率为1rad/s ,令校正后的相位裕度γ(Wc )=γ0(0c w )+ ?≥50,(其中?为相角余量,取?为-6,即90- arctan(Wc )-6=50,解得Wc =0.67,则1 w =0.067rad/s,再由20lg|()0G jWc |+20lg|β|=0,解得β=0.0223,所以2w =0.0015rad/s 。所以校正装置的传递函数为 11 1110.067(s)=111120.0015 s s w Gc s s w ++=++, 校正后的传递函数为()()Ge s Gc s =*()0G s =1 1 500.067 (1)10.0015 s s s s +++ 。

哈工大自动控制原理 大作业

自动控制原理 大作业 (设计任务书) 姓名: 院系: 班级: 学号:

5、 参考图 5 所示的系统。试设计一个滞后-超前校正装置,使得稳态速度误差常数为20 秒-1,相位裕度为60度,幅值裕度不小于8 分贝。利用MATLAB 画出 已校正系统的单位阶跃与单位斜坡响应曲线。 + 一.人工设计过程 1、计算数据确定校正装置传递函数 为满足设计要求,这里将超前滞后装置的形式选为 ) 1)(()1)(1()(2 12 1T s T s T s T s K s G c c ββ++++ = 于就是,校正后系统的开环传递函数为)()(s G s G c 。这样就有 )5)(1()(lim )()(lim 00++==→→s s s K s sG s G s sG K c c s c s v 205 ==c K 所以 100=c K 这里我们令100=K ,1=c K ,则为校正系统开环传函) 5)(1(100 )(++=s s s s G 首先绘制未校正系统的Bode 图 由图1可知,增益已调整但尚校正的系统的相角裕度为? 23.6504-,这表明系统就是不稳定的。超前滞后校正装置设计的下一步就是选择一个新的增益穿越频率。由)(ωj G 的相角曲线可知,相角穿越频率为2rad/s,将新的增益穿越频率仍选为2rad/s,但要求2=ωrad/s 处的超前相角为? 60。单个超前滞后装置能够轻易提供这一超前角。 一旦选定增益频率为2rad/s,就可以确定超前滞后校正装置中的相角滞后部分的转角频率。将转角频率2/1T =ω选得低于新的增益穿越频率1个十倍频程,即选择2.0=ωrad/s 。要获得另一个转角频率)/(12T βω=,需要知道β的数值,

自动控制原理大作业

自动控制原理大作业 学院:航天学院 专业:飞行器设计与工程 姓名:XX 学号:XXXXXXXXXXX

目录 自动控制原理大作业................... 错误!未定义书签。设计任务书............................ 错误!未定义书签。 一、设计过程 错误!未定义书签。 1.人工设计 错误!未定义书签。 2.系统校正前后bode图 错误!未定义书签。 3.性能指标验算数据 错误!未定义书签。 二、计算机辅助设计 错误!未定义书签。 1.Simulink仿真框图 错误!未定义书签。 2.Bode图 错误!未定义书签。 3.校正后的bode图: 错误!未定义书签。 4.校正前的bode图 错误!未定义书签。

5.阶跃响应曲线 错误!未定义书签。 校正后阶跃响应曲线.............. 错误!未定义书签。 校正前阶跃响应曲线.............. 错误!未定义书签。 6.校正装置电路图 错误!未定义书签。 三、设计结论 错误!未定义书签。 四、设计后的心得体会 错误!未定义书签。 五、参考文献 错误!未定义书签。

设计任务书 (钻机控制系统)技术要求:增益;阶跃信号输入时超调量22%,调整时间为;阶跃输入且干扰为零时误差为0;干扰为阶跃,输入为0时,稳态响应为。 一、设计过程 1.人工设计 已知阶跃信号输入时超调量,调整时间 根据高阶系统性能指标关系的经验公式 可得:,, 系统是单位负反馈系统,所以误差信号就是偏差信号E(s)。设和分别为R(s)、D(s)产生的误差信号,那么有

按题目要求 解得K=100 代入可知,校正前的开环传递函数为: 采用超前补偿即可满足。 超前补偿网络公式 满足: 解得,取,

自动控制原理大作业

自动控制原理大作业集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

恒温箱自动控制系统的分析与实现 (北京通大学机械与电子控制工程学院,北京 100044) 摘要:本文的主要内容是对恒温箱自动控制系统结构图进行分析,画出结构框图,算出传递函数。在对恒温箱 自动控制系统仿真的基础上,在控制器选择,执行机构选型,对象的建模与时域和频域分析等方面进行全面、 综合的分析,并对其进行频域校正,针对系统存在的问题找到合适的解决办法,构建校正网络电路,从而使得 系统能够满足要求的性能指标。 关键词:增益系统传递函数频域分析频域校正 Constant temperature box automatic control system analysis and Implementation Zhang Xinjie,Jia Chengcheng,Xian Zhuo,Zhou Jing,Shi Zhen (School of Mechanical, Electronic and Control engineering, Beijing Jiaotong University, Beijing 100044,China) Abstract:The system is mainly to solve the problem of constant temperature box automatic control system structure diagram analysis, draw the structure diagram, calculate the transfer function. In the constant temperature box automatic control system based on the simulation, in the controller, actuator selection, object modeling and analysis of time domain and frequency domain and other aspects of a comprehensive, integrated analysis, and carries on the frequency domain correction system, aiming at the existing problems to find a suitable solution, constructing a calibration network circuit, thereby enabling the system to to meet the requirements of performance index. Key words: gain transfer function of the system frequency domain analysis frequency domain correction 1 工作原理及性能要求 恒温箱自动控制系统的工作原理图如图1所示。 图1 恒温箱自动控制系统的工作原理图

2019-2020学年第一学期期末考试《自动控制原理》大作业

吉林大学网络教育学院2019-2020学年第一学期期末考试《自动控制原理》大作业 学生姓名专业 层次年级学号 学习中心成绩 年月日

作业完成要求:大作业要求学生手写,提供手写文档的清晰扫描图片,并将图片添加到word 文档内,最终wod文档上传平台,不允许学生提交其他格式文件(如JPG,RAR等非word 文档格式),如有雷同、抄袭成绩按不及格处理。 综合题(每小题10分,共100分) 1、试用部分分式法、幂级数法和反演积分法,求下列函数的z反变换: (1) )2 )(1 ( 10 ) ( - - = z z z z E (2) 2 1 1 2 1 3 ) ( - - - + - + - = z z z z E 2、试确定下列函数的终值: (1) 2 1 1 ) 1( ) ( - - - = z Tz z E (2) )1.0 )( 8.0 ( ) ( 2 - - = z z z z E 3、设开环离散系统如图所示,试求开环脉冲传递函数G(Z)。 第3题图 4、当 z z z z z z C 5.0 5.1 1 2 ) ( 2 3 2 3 + - + + =时,计算系统前4个采样时刻c(0),c(T),c(2T)和c(3T)的响应。 5、已知线性离散系统的闭环脉冲传递函数为 2.0 1.0 ) ( 2 2 - + + = Φ z z z z z,试判断该系统 是否稳定。 6、设有零阶保持器的离散系统如下图所示,试求: (1)当采样周期T为1s和0.5s时,系统的临界开环增益K c; (2)当r(t)=1(t),K=1,T分别为2s,4s时,系统的输出响应c(kT)。

自动控制原理习题及答案

第一章 习题答案 1-1 根据题1-1图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与c ,d 用线连接成负反馈状态; (2) 画出系统方框图。 解 (1)负反馈连接方式为:d a ?,c b ?; (2)系统方框图如图解1-1 所示。 1-2 题1-2图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 题1-2图 仓库大门自动开闭控制系统 解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如图解1-2所示。

1-3 题1-3图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。 题1-3图 炉温自动控制系统原理图 解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流 电动机驱动。炉子的实际温度用热电偶测量,输出电压f u 。f u 作为系统的反馈电压与给定 电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。 ?→T C ?→↑→↑→↑→↑→↑→↓→↓T u u u u u c a e f θ1C ↑ 系统中,加热炉是被控对象,炉温是被控量,给定量是由给定电位器设定的电压r u (表征炉温的希望值)。系统方框图见图解1-3。

哈工大自动控制原理大作业完整版

哈工大自动控制原理大 作业 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

Harbin Institute of Technology 课程设计说明书(论文) 课程名称:自控控制原理大作业 设计题目:控制系统的矫正 院系:自动化测试与控制系 班级: 设计者: 学号: 指导教师:强盛 设计时间: 2016.12.21 哈尔滨工业大学 题目8 8. 在德国柏林,磁悬浮列车已经开始试验运行,长度为 1600m的M-Bahn号实验线路系统代表了目前磁悬浮列车的发展水平。自动化的磁悬浮列车可以在较短的时间内正常运行,而且具有较高的能量利用率。车体悬浮控制系统的框图模型如图 8 所示,试设计一

个合适的校正网络,使系统的相位裕度满足45°≤ γ ≤55°,并估算校正后系统的阶跃响应。 图 8 题 8 中磁悬浮列车悬浮控制系统 一、人工设计 利用半对数坐标纸手工绘制系统校正前后及校正装置的Bode图,并确定出 校正装置的传递函数。验算校正后系统是否满足性能指标要求。 1)未校正系统的开环频率特性函数应为: γ0(γγ)= 1 γ2(γ+10) 2)未校正系统的幅频特性曲线图如下: 由图中可以得出: γγ=√γ=0.316 rad/s 对应的相位裕度为: γ(γγ)=180°?180°?arctan( γγ 10 )=?1.81° G c(s) 1

3)超前校正提供(m)=50° 4)γ?1 γ+1 =γγγ50°解得 a=7.5 5)?10γγγ=?8.75γγ,得到γγ=0.523 rad/s 6)1 γ=√γγγ=1.43 rad/s 1 γγ =0.19 rad/s 7)γγ(γ)=1+5.3γ 1+0.7γ 二、计算机辅助设计 利用MATLAB语言对系统进行辅助设计、仿真和调试 g = tf(1,[1 10 0 0]); gc = tf([5.3 1],[0.7 1]); ge = tf([5.3 1],conv([0.7 1],[1 10 0 0])); bode(g,gc,ge); grid legend('uncompensated','compensator','compensated') [kg,r,wg,wc]=margin(ge)

(完整版)自动控制原理课后习题及答案

第一章 绪论 1-1 试比较开环控制系统和闭环控制系统的优缺点. 解答:1开环系统 (1) 优点:结构简单,成本低,工作稳定。用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。 (2) 缺点:不能自动调节被控量的偏差。因此系统元器件参数变化,外来未知扰动存在时,控制精度差。 2 闭环系统 ⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量 偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。它是一种按偏差调节的控制系统。在实际中应用广泛。 ⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。 1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说 明之。 解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。 闭环控制系统常采用负反馈。由1-1中的描述的闭环系统的优点所证明。例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。 1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非 线性,定常,时变)? (1)22 ()()() 234()56()d y t dy t du t y t u t dt dt dt ++=+ (2)()2()y t u t =+ (3)()()2()4()dy t du t t y t u t dt dt +=+ (4)() 2()()sin dy t y t u t t dt ω+= (5)22 ()() ()2()3()d y t dy t y t y t u t dt dt ++= (6)2() ()2() dy t y t u t dt +=

自动控制原理 课后习题答案

第1章控制系统概述 【课后自测】 1-1 试列举几个日常生活中的开环控制与闭环控制系统,说明它们的工作原理并比较开环控制与闭环控制的优缺点。 解:开环控制——半自动、全自动洗衣机的洗衣过程。 工作原理:被控制量为衣服的干净度。洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。 闭环控制——卫生间蓄水箱的蓄水量控制系统与空调、冰箱的温度控制系统。 工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。 1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用就是什么? 解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件与执行元件。各个基本单元的功能如下: (1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。 (2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。 (3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。 (4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。常用的比较元件有差动放大器、机械差动装置与电桥等。 (5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器与功率放大级加以放大。 (6)执行元件—用于驱动被控对象,达到改变被控量的目的。用来作为执行元件的有阀、电动机、液压马达等。 (7)校正元件:又称补偿元件,它就是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,以改善控制系统的动态性能与稳态性能。 1-3 试阐述对自动控制系统的基本要求。 解:自动控制系统的基本要求概括来讲,就就是要求系统具有稳定性、准确性与快速性。 稳定性就是对系统最基本的要求,不稳定的系统就是无法正常工作的,不能实现预定控制

自动控制原理大作业

H a r b i n I n s t i t u t e o f T e c h n o l o g y 自动控制原理大作业 课程名称: 学院: 专业: 方向: 班级: 设计者: 学号: 哈尔滨工业大学

一、设计参数与指标 已知单位反馈系统的开环传递函数为 (1)若要求校正后系统具有相位裕量,增益裕度为10~12dB ,试设计串联超前校正装置。 (2)若要求校正后系统具有相位裕量,增益裕度为30~40dB ,试设计串联滞后校正装置。 未校正系统参数: 未校正系统的根轨迹图: 未校正系统的Nyquist 图如下: 绘制未校正系统的Bode 图 MATLAB 程序1 : >> num=[40]; >> den=[ 1 0]; >> w=logspace(-1,1,100); >> bode(num,den,w) >> grid >> title('Bode Diagram of Gk(s)=40/[s+1)+1)]') >> [kg,r,wg,wc]=margin(num,den); 可以求出以下各值为: kg = r = wg = wc = 未校正系统的simulink 图: (1) 下面对系统进行超前校正: a 取,按照超前校正设计步骤设计并用matla b 辅助仿真得到下列程序: m m a ??sin 1sin 1-+=

经过很多值的多次尝试,我得到了如下的校正函数: 115/15.1/)(++=s s s G c 但是为了补偿因超前校正网络的引入而造成系统开环增益的衰减,必须使附加放大器的放大倍数为a= 所以 1 15/15.1/)(++=s s s G c * Matlab 程序如下: >> num=[ 4]; den=conv([ 1 0],[ 1]); w=logspace(-1,1,100); >> num=[ 4]; >> den=conv([ 1 0],[ 1]); >> w=logspace(-1,1,100); >> bode(num,den,w) >> grid 校正后系统的bode 图为: 超前校正系统的simulink 框图: 阶跃响应曲线: 各指标均满足题目要求。 ) 1067.0)(10625.0)(12.0(1.0)167.0(40)()(++++=s s s s s s G s G c (2)滞后校正系统: 取wc ‘= L0(’c) = -20lg ( > 0)得出 = W1=;w2= 校正后系统函数为: ) 11200)(10625.0)(12.0()175.6(40)()(++++=s s s s s s G s G c

《自动控制原理》习题及解答

《自动控制原理》习题解答西北工业大学自动化学院

第一章习题及答案 1-1 根据题1-1图所示的电动机速度控制系统工作原理图 (1) 将a ,b 与c ,d 用线连接成负反馈状态; (2) 画出系统方框图。 解 (1)负反馈连接方式为:d a ?,c b ?; (2)系统方框图如图解1-1 所示。 1-2 题1-2图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 题1-2图 仓库大门自动开闭控制系统 解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏

差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如图解1-2所示。 1-3 题1-3图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。 题1-3图 炉温自动控制系统原理图 解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比, c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动 机驱动。炉子的实际温度用热电偶测量,输出电压f u 。 f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。 在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。 当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程:

自动控制原理大作业过山车车速系统设计

《自动控制原理》 ——大作业过山车车速控制系统设计 班级:自动化091 姓名1:王诚杰学号:30 姓名2:汤涛学号:25 姓名3:汤奔驰学号:24 指导教师:刘毅华

过山车车速控制系统概述 过山车是一种机动游乐设施,常见于游乐园和主题乐园中。一个基本的过山车构造中,包含了爬升、滑落、倒转,其轨道的设计不一定是一个完整的回圈,也可以设计为车体在轨道上的运行方式为来回移动。如今过山车的速度一般都在100公里/小时以上,虽然惊险,但是却十分安全。实际上过山车的速度控制是通过电动机实现的,利用直流电动机作为驱动,测速电动机作为反馈测速,从而实现对过山车速度的精确控制。为了使得系统的响应更加精确,本系统应用了一些必要的校正环节。 当今社会中,由于对过山的的需求仅仅是一种追求次的娱乐活动,一次并没有与过山车速度控制的任何研究出现,绝大多数过山车(可以说全部)都是通过重力势能与动能之间的相互转化而运动的。但是,如果过山车能够以一个稳定的速度运动,能使更多身体不太好的人加入这项娱乐活动,从而有一项惊险刺激的娱乐项目转化为一个老少皆宜的观光项目,不也很值得人们期待么? 本系统主要功能是实时测速变速,以保证过山车在既定的速度下行驶。驱动环节依靠直流电动机通过输入一个阶跃信号(电压)从而输出一个角位移量,通过与电动机轴相连的车轮输出,从而达到控制转速的目的。为了使控制可靠与精确,在本系统中还引入了测速反馈环节与校正环节。 建立被控对象的数学模型: 1)电枢直流伺服电动机的数学模型: 图1 如图1所示,U(t)为输入量,电机转速ω(t)为输出量。图中,R,L分别是电枢电路的电阻和电感;M是折合到电动机轴上的总负载转矩。激磁磁通设定为常值。 那么有: U(t)=L*[dI(t)/dt]+R*I+E;---------------------------------------------(1) 式中,E是电枢反电势,他是电枢旋转时产生的反电势,其大小与磁激及转速成正比,方向与电枢电压U(t)相反,即E=C*ω(t),C为反电势系数。 电磁转矩方程:

相关文档
最新文档