骨传导、骨传导原理与未来蓝牙耳机发展趋势

骨传导、骨传导原理与未来蓝牙耳机发展趋势
骨传导、骨传导原理与未来蓝牙耳机发展趋势

骨传导、骨传导原理与未来蓝牙耳机发展趋势

的琴声,从而继续进行创作的..

骨传导原理

听觉中枢),我们或多或少还都有些感性认识,但是对骨传导,则有些不知所云了。也许举个例子你就明白了:用双手捂住耳朵,自言自语,无论多么小的声音,我们都能听见自己说什么,这就是骨传导作用的结果。

骨传导的实例

请你想一想,我们挠脑袋时,吃饼干时,刷牙时所发出的各种声音是怎样传进大脑的?有没有感觉到这些声音不是通过耳朵而是通过其它途径直接传入大脑的?对,这就是通过骨传导原理所听到的声音。据说,生活在海洋里的蛇

过指挥棒把钢琴所发出的声音转入听觉器官,这些都是骨传导原理。我们已经在无意识当中亲身体验着它们。

骨传导的方式

耳的病变使声波传递受阻时,则可以利用骨传导来弥补听力。如骨传导式助听器、骨传导式耳机等,就是利用骨传导来感受声音的。

例如用两个棉花球塞住耳朵。取一根音叉,用橡皮锤敲击多次,使音叉振动,但它的振动声很轻,这时你的耳朵

声音马上消失。

骨科概念

骨传导:是指来自植床周边的宿主骨表面和骨髓中的定向成骨前体细胞通过增殖伸延长入植入骨及其腔隙的表面,产生成骨细胞形成新骨。

传给听觉神经的,加上大脑的加工处理后形成的另一种听觉。

也就是说,前者通过空气传播的方式,让别人听到声音;后者通过颅骨传播,让自己听到声音。

为什么两种传播方式会有那么大的差别?其实这是因为通过空气传播的声音受环境影响,其能量会大量衰减,导致音色发生很大的变化,而且在声音到达其他人的内耳时,还要通过外耳,耳膜,中耳,这个过程也会对声音的能量和音色效果产生影响。通过颅骨传播的声音则是经过喉管与耳朵之间的骨头直接到达内耳的,声音的能量和音色的衰减、变化自然相对较小。因此,所引起的听觉不太一样~

录音呢则就跟别人听到你的声音一样,其实别人很习惯你这样的声音,而你又因为长期习惯于听从通过颅骨传播途径传来的自己的声音,所以别人不会觉得你的语音的音色有什么变化,而是你自己觉得难听和陌生~

打个最最简单的例子,你吃过饼干吗?吃过就好办了,我们在吃饼干的时候你有没有发现咀嚼的时候感到有很大

我其实也觉得自己通过颅骨传声来自己的声音好听,而录音机里面发生的声音很难听的。

但是别人却不这样认为,因为我们人人在对话的时候听到对方都是通过空气传播的途径的,正如你听某个语音面貌好的人讲话的声音一样,你觉得他说得很棒,但其实他也会存在跟你一样的感觉,觉得自己讲话很难听。

蛇,没有耳朵,几个世纪以来科学家一直奇怪他是怎样听到声音的,后来才知道,也是通过骨传导…

那么对应于骨传导,我们日常生活中“听到”的更多的声音都是来自“空气传导”,其传输途径是“声波-耳廓

而骨传导蓝牙耳机在收听或说话时都会有优势,无疑会成为未来蓝牙耳机的趋势。

蓝牙BQB检验概述

蓝牙BQB测试简介(一) BQB认证知识介绍 只有Bluetooth SIG的会员才有权将Bluetooth的商标使用在商品和服务上。只有通过Bluetooth资格认证程序确认的有关Bluetooth无线技术的产品和服务,会员才能将商标用在产品和服务上。蓝牙资格认证实验室(BQTF)和蓝牙资格认证专家(BQE)可以协助厂商取得产品的资格认证 简言之就是如果您的产品具有蓝牙功能并且在产品外观上标明蓝牙标志,必须通过一个叫做BQB的认证。蓝牙认证是任何使用蓝牙无线技术的产品所必须经过的证明程序. 蓝牙认证团体(BQB)是由蓝牙认证评估委员会(BQRB)授权的,为需要获得蓝牙产品认证的成员提供服务的团体。成员直接通过BQB获得认证服务。 BQTF的全称是Bluetooth Qualification Test Facility,蓝牙认证测试工具(BQTF)是经过BQRB正式认可的,能完成测试实例引用列表(TCRL)中的“A类”蓝牙认证一致性测试鉴别。BQTF角色的权威描述在蓝牙认证程序参考文档(PRD)中4.3.3一节。成员可以直接将BQTF用于测试服务。通常,BQTF也可以提供额外的蓝牙测试服务。 4. BQB认证测试内容简介

●蓝牙资格认证所要求的测试项目全部在TCRL中有定义和分类;基本上划Core分为两大类 Core测试项目: 包含RF、BB、LM、L2CAP、SDP和GAP; 以及其他扩展测试(包含Profile, Protocol测试)和Profile IOP互通性测试。 ●按照测试类型来分,BQB 测试包含如下测试项目 1.RF Testing .射频测试 2.Protocol Conformance Test 协议一致性测试 3.Profile Conformance Test 概要文件一致性测试 4.Profile Interoperability Test .配置互操作性测试 ●所有测试●项又分为A, B, C, D四类, 细则如下

麻醉机的发展趋势

麻醉机的发展趋势 现代麻醉学经过150余年的发展,目前已成为临床医学的重要组成部分。麻醉机也随着麻醉学和电子技术的发展而不断发展,现今已成为麻醉医师施行麻醉的必备工具。 自1901年,德国人Johann-Heinrichger及他的儿子制成世界上第一台简单的麻醉机,以后经科技和医务人员的共同努力,麻醉机的功能不断完善,技术含量不断提高,从较简单的麻醉机到现代麻醉机,直至目前的麻醉工作站。 麻醉机的基本组成包括:气体流量计,吸入和呼出阀门,报警装置以及麻醉残气清除系统等。其中麻醉呼吸机,挥发罐,呼吸功能监测装置为其核心组成部分,在任何一种麻醉机上都是必不可少的,本文就此介绍一下它们的发展及趋势。 一、麻醉呼吸机从手动到电动电控活塞,涡轮式呼吸机的发展 麻醉呼吸机俗称“麻醉机的心脏”,由此可见它在麻醉机中的重要性。但是之前进行吸入麻醉时都是通过减压阀对高压气体(氧气)进行减压以后直接输送给患者的,当时只是考虑将氧气简单地提供给患者以便维持其生命,后来发现利用这种方法给患者输送气体一方面输送量控制不准确,另一方面还存在压力不够的情况。所以在第一台麻醉机上采用了手动皮囊的方法,就是通过医生用手在麻醉过程中挤压皮囊来输送气体给患者,这就是最初意义上的“麻醉呼吸机”,准确的说法应该是“人力麻醉呼吸机”。 随着麻醉机在临床上的应用的不断推广,医生们发现通过手动皮囊给患者输送气体虽然通过不断的使用和经验的积累,医生能通过手动挤压给患者输送较准确的潮气量,但同时也发现由于需要在麻醉过程中不停地挤压,所以不能很好地观察患者的情况或者需要多位医生同时工作才能保证麻醉的实施,这样的效率实在太低。1911年出现了世界上第一台具有机械通气功能的麻醉机,随着它的问世,医生们就可以从单调乏力的劳动中解脱出来,有更多时间关注患者。尽管这样,但此时的机械通气功能在准确度和使用的简便方面还是不够的,因此在1946年研发出了Model“D”麻醉机,它带有控制面板,可用以控制所有功能部件,这样大大提高了麻醉机的操作方便程度;之后在1952发布了全球第一台自动控制,容量控制的呼吸机“Pulmomat”并在1959年生产出了第一台电动压缩机驱动的呼吸机Spiromat5000实现了对潮气量,呼吸频率以及吸呼比的准确自动控制,初步完成了麻醉呼吸机的自动化,大大提高了医生的工作效率和患者的安全性。 随着麻醉学的不断发展,麻醉呼吸机也不断发展成熟,逐渐形成了有气动、气动电控和电动电控三种类型,当前主要以气动电控和电动电控为主导。气动电控麻醉呼吸机是最传统的,常使用密闭室中的风箱作为呼吸机的储气部件,呼吸风箱有上升型和下降型。由于下降型风箱在管道脱开时,风箱的上下活动无异常表现,甚至容量监测装置亦无异常表现,因此目前已较少使用;而上升型风箱在管道发生脱开时,将不再充盈并容易被发现,所以目前得到了广泛的应用。

蓝牙技术原理及应用

蓝牙技术的原理及应用 学院:****姓名:**** 班级:*** 学号:**** 产生背景 随着经济的发展,人们对随时随地提供信息服务的移动计算机和宽带无线通信的需求越来迫切。以人为本、个性化、智能化的移动计算机,以其方便、快捷的无线接人、无线互联的新产品,已经逐渐融入到人们的日常生活和工作中。随之而来的便携式终端和无线通信相关的新技术层出不穷,其中短距离的无线通讯技术更是百花齐放、目不暇接。蓝牙技术就是在这种背景下产生的。 蓝牙技术的起源 1998年5月,爱立信、IBM、Intel、Nokia和东芝五家公司联合成立T蓝牙特别利益集团(Bluetoothspeeial Interest Group—BSIG),并制订了近距离无线通信技术标准—蓝牙技术。旨在利用微波取代传统网络中错综复杂的电缆,使家庭或办公场所的移动电话、便携式计算机、打印机、复印机、键盘、耳机及其它手持设备实现无线互连互通。它的命名借用了一千多年前一位丹麦皇帝哈拉德·布鲁斯(Harald Bluetooth)的名字。 所谓蓝牙技术,实际上是一种短距离无线电技术,它以低成本的近距离无线连接为基础,为固定和移动设备通信环境建立一个特别连接的短程无线电技术。利用“蓝牙”技术,能够有效地简化掌上电脑、笔记本电脑和移动电话等移动通信终端设备之间的通信,也能够成功地简化以上这些设备与因特网之间的通信,从而使这些现代通信设备与因特网之间的数据传输变得更加迅速高效,为无线通信拓宽了道路。它具有无线性、开放性、低功耗等特点。因此,蓝牙技术已经引起了全球通信业界和广泛用户的密切关注。 蓝牙技术的特点 蓝牙技术具有许多优越的技术性能,主要有蓝牙特性、TDMA结构、使用跳频技术、蓝牙设备的组网、软件的层次结构等,下面详细介绍其特点。 蓝牙设备的工作频段选在全球通用的2.4GHz的ISM(工业、科学、医学)频段,这样用户不必经过申请便可以在2400~2500MHz范围内选用适当的蓝牙无线电收发器频段。频道采用23个或79个,频道间隔均为1MHz,采用时分双工

(完整版)泵与风机的分类及其工作原理

第一章泵与风机综述 第一节泵与风机的分类和型号编制 一、泵与风机的分类 泵与风机是利用外加能旦输送流体的流体机械。它们大量地应用于燃气及供热与通风专业。根据泵与风机的工作原理,通常可以将它们分类如下: (一)容积式 容积式泵与风机在运转时,机械内部的工作容积不断发生变化,从而吸入或排出流体。按其结构不同,又可再分为; 1.往复式 这种机械借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体,如活塞泵(piston pump)等; 2.回转式 机壳内的转子或转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和排出流体,如齿轮泵(gear pump)、螺杆泵(screw pump)等。 (二)叶片式 叶片式泵与风机的主要结构是可旋转的、带叶片的叶轮和固定的机壳。通过叶轮的旋转对流体作功,从而使流体获得能量。 根据流体的流动情况,可将它们再分为下列数种: 1.离心式泵与风机; 2.轴流式泵与风机; 3.混流式泵与风机,这种风机是前两种的混合体。 4.贯流式风机。 (三)其它类型的泵与风机 如喷射泵(jet pump)、旋涡泵(scroll pump)、真空泵(vacuum pump)等。 本篇介绍和研讨制冷专业常用的泵与风机的理论、性能、运行、调节和选用方法等知识。由于制冷专业常用泵是以不可压缩的流体为工作对象的。而风机的增压程度不高(通常只有9807Pa或1000mmH2O以下),所以本篇内容都按不可压缩流体进行论述。 二、泵与风机的型号编制 (一)、泵的型号编制 1、离心泵的基本型号及其代号 泵的型式型式代号泵的型式型式代号 单级单吸离心泵IS.B大型立式单级单吸离心泵沅江

蓝牙技术与原理概述

英特网和移动通信的迅速发展,使人们对电脑以外的各种数据源和网络服务的需求日益增长。蓝牙作为一个全球开放性无线应用标准,通过把网络中的数据和语音设备用无线链路连接起来,使人们能够随时随地实现个人区域内语音和数据信息的交换与传输,从而实现快速灵活的通信。 一、蓝牙出现的背景 早在1994年,瑞典的爱立信公司便已经着手蓝牙技术的研究开发工作,意在通过一种短程无线链路,实现无线电话用PC、耳机及台式设备等之间的互联。1998年2月,爱立信、诺基亚、因特尔、东芝和IBM共同组建特别兴趣小组。在此之后,3COM、朗讯、微软和摩托罗拉也相继加盟蓝牙计划。它们的共同目标是开发一种全球通用的小范围无线通信技术,即蓝牙。它是针对目前近距的便携式器件之间的红外线链路(IrDA)而提出的。应用红外线收发器链接虽然能免去电线或电缆的连接,但是使用起来有许多不便,不仅距离只限于1~2m,而且必须在视线上直接对准,中间不能有任何阻挡,同时只限于在两个设备之间进行链接,不能同时链接更多的设备。“蓝牙”技术的目的是使特定的移动电话、便携式电脑以及各种便携式通信设备的主机之间在近距离内实现无缝的资源共享。 蓝牙是一个开放性的无线通信标准,它将取代目前多种电缆连接方案,通过统一的短程无线链路,在各信息设备之间可以穿过墙壁或公文包,实现方便快捷、灵活安全、低成本小功耗的话音和数据通信。它推动和扩大了无线通信的应用范围,使网络中的各种数据和语音设备能互连互通,从而实现个人区域内的快速灵活的数据和语音通信。 二、蓝牙中的主要技术 蓝牙技术是一种无线数据与语音通信的开放性全球规范,它以低成本的近距离无线连接为基础,为固定与移动设备通信环境建立一个特别连接的短程无线电技术。其实质内容是要建立通用的无线电空中接口(Radio Air Interface)及其控制软件的公开标准,使通信和计算机进一步结合,使不同厂家生产的便携式设备在没有电线或电缆相互连接的情况下,能在近距离范围内具有互用、互操作的性能(Iteroperability)。 “蓝牙”技术的作用是简化小型网络设备(如移动PC、掌上电脑、手机)之间以及这些设备与Internet之间的通信,免除在无绳电话或移动电话、调制解调器、头套式送/受话器、PDA、计算机、打印机、幻灯机、局域网等之间加装电线、电缆和连接器。此外,蓝牙无线技术还为已存在的数字网络和外设提供通用接口以组建一个远离固定网络的个人特别连接设备群。 蓝牙的载频选用在全球都可用的2.45GHz工科医学(ISM)频带,其收发信机采用跳频扩谱(Frequency Hopping Spread Spectrum)技术,在2.45GHz ISM频带上以1600跳/s的速率进行跳频。依据各国的具体情况,以2.45GHz为中心频率,最多可以得到79个1MHz 带宽的信道。在发射带宽为1MHz时,其有效数据速率为721kb/s,并采用低功率时分复用方式发射,适合30英尺(约10m)范围内的通信。数据包在某个载频上的某个时隙内传递,不同类型的数据(包括链路管理和控制消息)占用不同信道,并通过查询(Inquiry)和寻呼(Paging)过程来同步跳频频率和不同蓝牙设备的时钟。除采用跳频扩谱的低功率传输外,蓝牙还采用鉴权和加密等措施来提高通信的安全性。 蓝牙支持点到点和点到多点的连接,可采用无线方式将若干蓝牙设备连成一个微微网(Piconet),多个微微网又可互连成特殊分散网,形成灵活的多重微微网的拓扑结构,从而实现各类设备之间的快速通信。它能在一个微微网内寻址8个设备(实际上互联的设备数量是没有限制的,只不过在同一时刻只能激活8个,其中1个为主7个为从)。 蓝牙技术涉及一系列软硬件技术、方法和理论,包括无线通信与网络技术,软件工程、

麻醉机原理与发展趋势

医疗设备信息 综 合 麻醉机原理与发展趋势 傅守勇, 帅训军, 孙 丽, 万效梅 ( 青岛市市立医院, 山东 青岛 266011) [ 摘 要] 本文详细阐述了麻醉机的发展史、结构原理与以后的发展趋势。 [ 关键词] 麻醉; 麻醉气体; 麻醉蒸发器; 麻醉工作站; 麻醉信息管理 [ 中图分类号] R197. 39 [ 文献标识码] B [ 文章编号] 1007- 7510( 2003) 12- 0033- 03 Princi p le and develo p ment trend of anesthesia a aratus pp FU Shou- yong, SH U AI Xun- jun, S U N Li, WAN Xiao - m ei ( Qingdao M unicipal H ospit al , Qingdao S handong 266011, Ch in a) Abstract: T his p a p er m ainl y describes t he hist or y , st ru cture and p rinci le of th e modern anest hesia a pp aratus as w ell as p its developm en t t rend. Key words: anesth esia ; anesth esia g as; anesth esia canister; anest hesia w orkstation; in form ation m an ag em en t of anaest hetic 科学技术的不断发展, 使得麻醉机的发展不仅成为可能, 且计算机在麻醉机上的应用成为现实, 成为麻醉机是否现代化的一个显着特征。同时, 麻醉信息管理在临床上的重要性越来越受到医务人员的重视。本文结合麻醉机的原理结构、国内外现状、发展趋势及现代麻醉工作站的技术特点做一阐述。 1 历史回顾 1901 年, 德国人H ein nich Drag er 及他的儿子用氧气和氯气制成世界上第一台简单的麻醉机, 以后经过科技和医务人员的不断努力, 麻醉机的功能不断完善, 技术含量不断提高, 从较简单的麻醉机到普及性的麻醉机, 现代麻醉机, 直至麻醉工作站。今天, 麻醉机已发展成世界几大着名品牌。如德尔格( Drag er) 、 得恩- 欧美达 (Datex- Ohm eda) 、西门子 (Siem ens)、 英国的 T ontr on 等品牌的麻醉机。 2 麻醉机原理及结构 基本结构见图 1, 麻醉机的主要结构包括通气装置, 麻醉蒸发器, 麻醉呼吸机和麻醉环路等。 通气装置 通气装置包括气源、压力表、压力调节器、流量计、O 2 与 N 2O 比例调节装置、快速充氧开关等。氧气 ( O 2 ) 、氧化亚氮( N 2O ) 和空气通常为中央供气, 麻醉 [ 收稿日期] 2003- 05- 12 [ 修回日期] 2003- 08- 06 机也有贮气筒备用。中央供气压力约为 3. 5kg / cm 2 , N 2O 在贮气筒内被压缩为液态, 一直保持约 52. 5k g / cm 2 的压力, 直到氧化亚氮耗尽为止。贮气筒内氧气进入麻醉机流量计前, 由压力调节器将压力降为 1. 0 至 1. 75k g / cm 2。气体经流量计输送至标准 刻度、专用麻醉药物、温度补偿、双路可变的蒸发器,然后, 麻醉混合气体流出共同气体出口。而氧气快速充气开关使 O 2 不流经流量计, 直接流出气体出口。流量计可精确测量流向共同气体出口的气体流量。 图 1 麻醉机的基本结构图 18 卷 12 期 1 2003. 12 # 33 #

蓝牙天线设计

引言 蓝牙是一种支持设备短距离通信(一般是1Om之内)的无线电技术,能在设备之间进行无线信息交换,其工作频段是2.4~2.483 GHz的全球通信自由频段,目前已广泛应用在移动通信设备中。天线是蓝牙无线系统中用来传送与接收电磁波能量的重要必备组件。由于目前技术尚无法将天线整合至半导体芯片中,故在蓝牙模块里除了核心的系统芯片外,天线是另一个影响蓝牙模块传输特性的关键性组件。本文给出了一款倒F型天线的设计,该天线尺寸小,设计简约,制造成本低,工作效率高,适用于蓝牙系统应用。 1 天线设计 倒F型天线是上世纪末发展起来的一种天线,具有结构简单、重量轻、可共形、制造成本低、辐射效率高、容易实现多频段工作等独特优点,因此,近几年来,倒F型天线得到了广泛的应用研究和发展。 倒F天线是在倒L天线abc的垂直元末端加上一个倒L结构edb构成。它使用附加的edb结构来调整天线和馈电同轴线的匹配。该天线具有低轮廓结构,辐射场具有水平和垂直两种极化,另外由于结构紧凑而且具有等方向辐射特性,同时其良好的接地设计可以有效提高天线的工作效率。图1所示是典型的倒F型天线结构图,该天线可以看作是e端短路,a端开路的谐振器,所以,a端电压最大,电流为零,e端电压为零,电流最大。由于倒F天线的结构中包含了接地的金属面,可以降低对射频模块中接地金属面的敏感度,因此非常适合用于片上系统。另外,由于倒F天线只需利用金属导体配合适当的馈线来调整天线短路端到接地面的位置,因而制作成本较低,可以直接与PCB电路板焊接在一起。图2所示为倒F型天线在电路板上的布置图。 倒F型天线在电路板上的布置图 2 测量基本原理 图3所示是一个网络分析仪的原理框图。在对倒F天线进行测量时,先由仪器发出扫频信号,并将该信号通过输出口送到被测设备,当信号通

送引风机及一次风机讲义

第九章送引风机及一次风机

第一节概述 ?轴流风机具有结构紧凑、体积小、重量轻、低负荷时效率高、风机容量大等优点。大容量锅炉采用轴流风机是目前发展的主要趋势。 ?轴流风机和离心风机一样都是在叶轮的作用下,使气流获得能量,所不同的是轴流风机的工作原理是利用旋转叶片的挤压推进力使气流获得能量,升高其压能和动能,而离心风机的工作原理是利用旋转时产生的离心力使气流获得能量。 ?轴流风机一般由整流罩、前导叶、叶轮、扩散筒和机壳等组成。转子由轮毂和轮毂上径向布置的叶片组成。使流过的气流提高压头,并尽可能降低损失,轴流风机的叶片,一般采用机翼型。

?轴流风机的气体是从轴向流入叶轮并沿轴向流出,气体在轴流式叶轮中,因不受离心力的作用,即离心力作用而升高的静压头为零。因此,它所产生的压头远低于离心式风机。轴流风机一般只适用于大流量、低压头的系统,属于高比转速范围。离心式风机比转速一般在15~90之间,轴流式风机比转速一般大于100。轴流风机应用最广范的是动叶可调式。 ?离心风机具有结构简单,运行可靠,效率较高,制造成本较低,噪音较小,抗腐蚀性较好等特点。随着锅炉单机容量的增长,离心风机的容量已经受到叶轮材料强度的限制。轴流风机使用日益广范。因为锅炉容量增大,烟、风流量增大,但所需要的压力没有增大,很明显从风机的效率角度看采用轴流风机要比离心风机有利。随着轴流风机制造技术的发展,目前新建大机组的六大风机均以采用轴流式风机为多。

?一、轴流风机与离心风机相比较主要特点?(1)轴流风机采用动叶或静叶可调的结构,其调节效率高,运行费用较离心风机低。 ?两种类型风机在设计负荷时的效率相差不大,轴流风机效率最高达90%,机翼形叶片离心风机效率92.8%。但是,当机组带低负荷时,动叶可调轴流风机的效率要比具有入口导向装置的离心风机高许多。

蓝牙收发器IC测试

蓝牙收发器IC测试 蓝牙规范的第一个正式版本1.0版已于1999年7月发布,之后许多厂商都推出了支持蓝牙产品的高性价比集成电路芯片。随着蓝牙产品越来越普及,制造商需要以较低的成本完成大量测试工作。本文针对蓝牙射频前端收发器,着重介绍蓝牙技术规范中定义的各类测试参数。 今天的电子工程师几乎没有人没听说过“蓝牙”的概念,这个词出自公元10世纪丹麦国王Harald Blaatand,他为了联系他的臣民曾在挪威和丹麦建立了一个通信系统。开发蓝牙技术是为了使个人数字助理(PDA)、移动电话外设及其它移动计算设备不必使用昂贵的专用线缆就可以进行通信,正因为此,蓝牙又被称作“个人区域网络(PAN)”。对蓝牙产品来说,最基本的要求是低价格、 高可靠性、低能耗和有限工作范围。 最初蓝牙定义为采用全球适用的2.4GHz ISM频段进行短距离通信(10至15米),不过最近芯片制造商的不断提高使蓝牙技术远远超出当初的设计水平,一些OEM制造商希望能在20到30 米办公室环境和100米开放环境下使用蓝牙技术,他们期待将蓝牙作为网络连接技术,使笔记 本电脑用户通过无线接入点进入到局域网中。 蓝牙技术由4个主要部分组成,分别是应用软件、蓝牙栈、硬件和天线,本文针对硬件和射频 前端收发器,重点介绍蓝牙技术规范中定义的各类测试参数。 蓝牙收发器 对集成RF收发器的测试要求可以典型的RF蓝牙原理框图(图1)来说明。 ◆蓝牙发射器蓝牙无线信号采用高斯频移键控(GFSK)方式调制,发射数据(Tx)通过高斯滤波器滤波后,用滤波器的输出对VCO频率进行调制。根据串行输入数据流逻辑电平,VCO频率会 从其中心频率向正负两端偏离,偏移量决定了发射器的调制指数,调制的信号经放大后由天线发射出去。 蓝牙无线信号在半双工模式下工作,用一个RF多路复用开关(位于天线前)将天线连接到发射或接收模式。 ◆蓝牙接收器与设备接收部分相似,从另一个蓝牙设备发射来的GFSK信号也是由天线接收的。在这期间,开关与低噪声放大器(LNA)相连,对接收到的信号(Rx)进行放大。下一级混频器将接收信号下变换到IF频率 (

蓝牙技术原理2

蓝牙技术 SIG组织于1999年7月26日推出了蓝牙技术规范1.0版本。蓝牙技术的系统结构分为三大部分:底层硬件模块、中间协议层和高层应用。底层硬件部分包括无线跳频(RF)、基带(BB)和链路管理(LM)。无线跳频层通过2.4GHz无需授权的ISM频段的微波,实现数据位流的过滤和传输,本层协议主要定义了蓝牙收发器在此频带正常工作所需要满足的条件。基带负责跳频以及蓝牙数据和信息帧的传输。链路管理负责连接、建立和拆除链路并进行安全控制。 蓝牙技术结合了电路交换与分组交换的特点,可以进行异步数据通信,可以支持多达3个同时进行的同步话音信道,还可以使用一个信道同时传送异步数据和同步话音。每个话音信道支持64kb/秒的同步话音链路。异步信道可以支持一端最大速率为721kb/秒、另一端速率为57.6kb/秒的不对称连接,也可以支持43.2kb/秒的对称连接。 中间协议层包括逻辑链路控制和适应协议、服务发现协议、串口仿真协议和电话通信协议。逻辑链路控制和适应协议具有完成数据拆装、控制服务质量和复用协议的功能,该层协议是其它各层协议实现的基础。服务发现协议层为上层应用程序提供一种机制来发现网络中可用的服务及其特性。串口仿真协议层具有仿真9针RS232串口的功能。电话通信协议层则提供蓝牙设备间话音和数据的呼叫控制指令。 主机控制接口层(HCI)是蓝牙协议中软硬件之间的接口,它提供了一个调用基带、链路管理、状态和控制寄存器等硬件的统一命令接口。蓝牙设备之间进行通信时,HCI以上的协议软件实体在主机上运行,而HCI以下的功能由蓝牙设备来完成,二者之间通过一个对两端透明的传输层进行交互。 在蓝牙协议栈的最上部是各种高层应用框架。其中较典型的有拨号网络、耳机、局域网访问、文件传输等,它们分别对应一种应用模式。各种应用程序可以通过各自对应的应用模式实现无线通信。拨号网络应用可通过仿真串口访问微微网(Piconet),数据设备也可由此接入传统的局域网;用户可以通过协议栈中的Audio(音频)层在手机和耳塞中实现音频流的无线传输;多台PC或笔记本电脑之间不需要任何连线,就能快速、灵活地进行文件传输和共享信息,多台设备也可由此实现同步操作。 总之,整个蓝牙协议结构简单,使用重传机制来保证链路的可靠性,在基带、链路管理和应用层中还可实行分级的多种安全机制,并且通过跳频技术可以消除网络环境中来自其它无线设备的干扰。 蓝牙技术的优势:支持语音和数据传输;采用无线电技术,传输范围大,可穿透不同物质以及在物质间扩散;采用跳频展频技术,抗干扰性强,不易窃听;使用在各国都不受限制的频谱,理论上说,不存在干扰问题;功耗低;成本低。蓝牙的劣势:传输速度慢。蓝牙的技术性能参数:有效传输距离为10cm~10m,增加发射功率可达到100米,甚至更远。收发器工作频率为2.45GHz ,覆盖范围是相隔1MHz的79个通道(从2.402GHz到2.480GHz )。数据传输技术使用短封包,跳频展频技术,1600次/秒,防止偷听和避免干扰;每次传送一个封包,封包的大小从126~287bit;封包的内容可以是包含数据或者语音等不同服务的资料。数据传输带宽为同步连接可达到每个方向32.6Kbps,接近于10倍典型的56kb/s Modem的模拟连接速率,异步连接允许一个方向的数据传输速率达到721kb/s,用于上载或下载,这

麻醉机原理与发展趋势

医疗设备信息 麻醉机原理与发展趋势 傅守勇,帅训军,孙丽,万效梅 (青岛市市立医院,山东青岛266011) [摘要]本文详细阐述了麻醉机的发展史、结构原理与以后的发展趋势。 [关键词]麻醉;麻醉气体;麻醉蒸发器;麻醉工作站;麻醉信息管理[中图分类号]R197.39 [文献标识码]B [文章编号]1007-7510(2003)12-0033-03 Princi p le and develo p ment trend of anesthesia a pp aratus FU Shou-yong,SH U AI Xun-jun,S U N Li,WAN Xiao-m ei (Qingdao M unicipal H ospit al ,Qingdao S handong 266011,Ch in a) Abstract:T his p a p er m ainl y describes t he hist or y ,st ru cture and p rinci p le of th e modern anest hesia a pp aratus as w ell as its develo p m en t t rend. Ke y words:anesth esia ;anesth esia g as;anesth esia canister;anest hesia w orkstation;in form ation m an a g em en t of anaest hetic [收稿日期]2003-05-12 [修回日期]2003-08-06 图1麻醉机的基本结构图 综合 科学技术的不断发展,使得麻醉机的发展不仅成为可能,且计算机在麻醉机上的应用成为现实, 成为麻醉机是否现代化的一个显著特征。同时,麻醉信息管理在临床上的重要性越来越受到医务人员的重视。本文结合麻醉机的原理结构、国内外现状、发展趋势及现代麻醉工作站的技术特点做一阐述。1 历史回顾 1901年,德国人H ein nich Dra g er 及他的儿子用氧气和氯气制成世界上第一台简单的麻醉机,以后经过科技和医务人员的不断努力,麻醉机的功能不断完善,技术含量不断提高,从较简单的麻醉机到普及性的麻醉机,现代麻醉机,直至麻醉工作站。今天,麻醉机已发展成世界几大著名品牌。如德尔格(Drag er)、得恩-欧美达(Datex-Ohm eda )、西门子(Siem ens)、英国的T ontr on 等品牌的麻醉机。2麻醉机原理及结构 基本结构见图1,麻醉机的主要结构包括通气装置,麻醉蒸发器,麻醉呼吸机和麻醉环路等。 通气装置 通气装置包括气源、压力表、压力调节器、流量计、O 2与N 2O 比例调节装置、快速充氧开关等。氧气(O 2)、氧化亚氮(N 2O )和空气通常为中央供气,麻醉 机也有贮气筒备用。中央供气压力约为3.5k g /cm 2,N 2O 在贮气筒内被压缩为液态,一直保持约52.5k g /cm 2的压力,直到氧化亚氮耗尽为止。贮气筒内氧气进入麻醉机流量计前,由压力调节器将压力降为1.0至1.75k g /cm 2。气体经流量计输送至标准刻度、专用麻醉药物、温度补偿、双路可变的蒸发器,然后,麻醉混合气体流出共同气体出口。而氧气快速充气开关使O 2不流经流量计,直接流出气体出口。流量计可精确测量流向共同气体出口的气体流量。

锅炉结构 及工作原理

锅炉结构及工作原理 锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。

汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙内表面被水冷壁管遮盖,所以炉墙温度大为降低,使炉墙不致被烧坏。而且又能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,

风机的工作原理

风机的工作原理 轴流式风机,就是与风叶的轴同方向的气流(即风的流向和轴平行),如电风扇,空调外机风扇就是轴流方式运行风机。 轴流式风机又叫局部通风机,是工矿企业常用的一种风机,安不同于一般的风机它的电机和风叶都在一个圆筒里,外形就是一个筒形,用于局部通风,安装方便,通风换气效果明显,安全,可以接风筒把风送到指定的区域. 风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是我国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,压缩机以及罗茨鼓风机,离心式风机,回转式风机,水环式风机[2]?,但是不包括活塞压缩机等容积式鼓风机和压缩机。气体压缩和气体输送机械是把旋转的机械转换为气体压力能和动能,并将气体输送出去的机械。 风机应用范围: 风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。风机是我国对气体压缩和气体输送机械的习惯简称,通常所说的风机包括通风机,鼓风机,压缩机以及罗茨鼓风机,离心式风机,回转式风机,水环式风机,但是不包括活塞压缩机等容积式鼓风机和压缩机。气体压缩和气体输送机械是把旋转的机械转换为气体压力能和动能,并将气体输送出去的机械。 风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 风机历史 风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心风机基本相同。1862年,英国的圭贝尔发明离心风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心风机,结构已比较完善了。 1892年法国研制成横流风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心风机,并为各国所广泛采用;19世纪,轴流风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。1935年,德国首先采用轴流等压风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流风机;旋轴流风机、子午加速轴流风机、斜流风机和横流风机也都获得了发展。 风机分类 1.风机按使用材质分类可以分好几种,如铁壳风机(普通风机)、玻璃钢风机、塑料风机、铝风机、不锈钢风机等等 2.风机分类可以按气体流动的方向,分为离心式、轴流式、斜流式(混流式)和横流式等类型。 3.风机根据气流进入叶轮后的流动方向分为:轴流式风机、离心式风机和斜流(混流)式风机。 4.风机按用途分为压入式局部风机(以下简称压入式风机)和隔爆电动机置于流道外或在流道内,隔爆电动机置于防爆密封腔的抽出式局部风机(以下简称抽出式风机)。 5.风机按照加压的形式也可以分单级、双级或者多级加压风机。

罗德与施瓦茨培训资料之蓝牙技术原理与测试

蓝牙技术原理与测试
摘要: 本文前部分详细讲述了蓝牙的射频、基带和协议的关键技术。内容涵盖蓝牙调制方 式、数据包的构成、跳频序列、网络拓扑结构、核心协议以及纠错编码机制。后半部 分核心为蓝牙规范的 23 个测试项目。作者对此做了系统规类,对每个测试项从测试目 的、测试设置、测试方法到测试结果进行阐述。文末还对蓝牙的音频测试和生产线测 试做了简单介绍。

罗德与施瓦茨中国有限公司培训中心 1 2 3 4 引言............................................................................................................................... - 1 概述............................................................................................................................... - 1 蓝牙应用举例............................................................................................................... - 1 蓝牙关键技术............................................................................................................... - 2 4.1 蓝牙网络拓扑结构............................................................................................... - 2 4.1.1 微微网........................................................................................................... - 2 4.1.2 散射网........................................................................................................... - 2 4.2 协议体系............................................................................................................... - 3 4.2.1 物理硬件部分............................................................................................... - 3 4.2.2 核心协议....................................................................................................... - 4 4.2.3 高层协议....................................................................................................... - 4 4.3 蓝牙调制方式....................................................................................................... - 5 4.3.1 GFSK............................................................................................................. - 5 4.3.2 π/4-DQPSK 和 8DPSK ................................................................................. - 6 4.4 频率范围和信道................................................................................................... - 7 4.5 跳频序列和跳频机制........................................................................................... - 7 4.5.1 跳频周期....................................................................................................... - 7 4.5.2 自适应跳频技术........................................................................................... - 7 4.6 蓝牙数据包........................................................................................................... - 8 4.6.1 蓝牙链路 SCO 和 ACL ................................................................................ - 8 4.6.2 蓝牙前导接入码........................................................................................... - 9 4.6.3 蓝牙数据包结构........................................................................................... - 9 4.6.3.1 蓝牙单时隙、多时隙结构....................................................................... - 9 4.6.3.2 V1.2 标准数据包结构 ............................................................................ - 10 4.6.3.3 EDR 数据包结构 .................................................................................... - 11 4.7 蓝牙编址............................................................................................................. - 12 4.7.1 蓝牙地址..................................................................................................... - 12 4.7.2 从节点地址................................................................................................. - 13 4.8 蓝牙状态............................................................................................................. - 13 4.8.1 蓝牙待命状态............................................................................................. - 14 连接状态..................................................................................................... - 14 4.8.2 4.8.3 蓝牙状态转换............................................................................................. - 15 4.9 蓝牙纠错机制..................................................................................................... - 16 4.10 蓝牙技术特征总结............................................................................................. - 17 4.10.1 蓝牙技术的优势......................................................................................... - 17 4.10.2 蓝牙的劣势................................................................................................. - 17 4.10.3 蓝牙的技术性能参数(V1.2) ...................................................................... - 17 5 蓝牙射频测试............................................................................................................. - 18 5.1 R&S 蓝牙综测仪介绍 ........................................................................................ - 18 5.2 R&S 蓝牙射频解决方案 .................................................................................... - 19 5.3 蓝牙测试模式..................................................................................................... - 20 5.4 单台仪表能完成测试的项目概述..................................................................... - 20 5.4.1 V1.2 发射机测试 ........................................................................................ - 21 5.4.1.1 TRM/CA/01/C(输出功率 5.1.3) ............................................................. - 22 5.4.1.2 TRM/CA/03/C(功率控制 5.1.5) ............................................................. - 24 5.4.1.3 TRM/CA/04/C(发射输出频谱–频率范围 5.1.6) ................................... - 25 I 唐彦波 I

相关文档
最新文档