续流二极管

续流二极管
续流二极管

什么是续流二极管

大家可能都知道二极管吧那什么是续流二极管呢?其实他还是个二极管只不过它在这起续流作用而以,例如在继电器线圈两端反向接的那个二极管或单向可控硅两端反向接的也都是为什么要反向接个二极管呢?因为继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当他吸合的时候存储大量的磁场当控制继电器的三极管由导通变为截至时线圈断电但是线圈里有磁场这时将产生反向电动势电压高达1000v以上很容易击穿推动三极管或其他电路元件,这是由于二极管的接入正好和反向电动势方向一致把反向电势通过续流二极管以电流的形式中和掉从而保护了其他电路元件,因此它一般是开关速度比较快的二极管,象可控硅电路一样因可控硅一般当成一个触点开关来用,如果控制的是大电感负载一样会产生高压反电动势原理和继电器殿禄式一样的。在显示器上也用到一般用在消磁继电器的线圈上。

一种用于驱动电感性负载的负载驱动电路,包括连接负载的回流闭合电路。在该回流闭合电路中设置续流二极管。该续流二极管并联一个MOS晶体管,用于接通/断开电流。设置一电容器并以其两端连接至MOS晶体管的栅极和漏极,设置一电阻器并以其两端连接至MOS晶体管的栅极和源极。在续流二极管的恢复操作期间,借助于该电容器和电阻器,MOS晶体管的栅极至源极的电压在一预定时间周期内被上拉而超过一阈值。上拉该栅极至源极电压致使续流二极管的恢复特性变得柔和,抑制恢复浪涌。

这个二极管的作用是续流,谁能具体解释一下?

具体的电路图解释起来就比较复杂了,所以我只给你讲讲原理,首先我们知道变频器输出的是PWM波,这种波是由逆变桥通过spwm或者svpwm调制而形成的,它的负载是电机,而电机是一种感性负载,所以它必然要向电源侧返回能量,也就是我们所说的无功功率(其实就是电感中储存的能量,呵呵)所以,我们在设计逆变系统时,必须给无功功率返回电网提供回路,这样才不至于烧毁逆变桥上的IGBT等器件,如果没有这些续流二极管,IGBT就会被反向击穿。

图中继电器加的二极管起的什么作用?

继电器是电感元件,如果线圈中的电流被切断会产生感生电动势,有可能损坏元件。

这个二极管叫续流二极管。会将这个电动势短路。

继电器旁边为什么要加一个二极管

一般是续流二极管,安装在继电器直流线圈两端,目的是为了防止自感高电压对电路的损坏。

继电器是电感元件,当继电器线圈断电以后,会产生反向电压,易损伤电路元件,加一个二极管使此电压经二极管放电,从而保护电路元件

续流和缓冲二极管

2.1 对续流和缓冲二极管的要求

现代的快速开关器件要求采用快速的二极管作为续流二极管。在每一次开关的开通过程中,续流二极管由导通切换到截止状态。这一过程要求二极管具有软恢复的特性。但是,在很长一段时期里,忽视了快速二极管的作用,使得开关器件工作频率的提高受到了限制。在过去的几年中,它又受到了高度的重视,特别是通过改善它的反向恢复特性而得到了长足的发展。

2.1.1 反向阻断电压和正向通态电压

由反向阻断电压VR的定义可以知道,二极管在该电压值时的漏电流不得大于临界值I R,如图11所示。

图11 二极管反向和正向电压的定义

生产商提供的参数表中的数值为温度等于25℃时的值。当温度变低时,反向阻断能力下降。例如,对于一个1200V的二极管来说,它的下降率为1.5V/K。如果在低于室温的情况下运行,这一点在设计线路时应引起特别的注意。

当温度高于室温时,反向阻断电压相应上升,但漏电流也同时上升。所以,通常参数表中还会给出高温(125℃或150℃)下的漏电流值。

正向通态电压V F表示了在给定电流的情况下,二极管在导通状态下的电压降应小于某给定的临界值。一般说来,这个值是在室温下测得的,但决定系统损耗的主要因素之一却是高温时的正向通态电压。所以,在所有的参数表中又给出了它对温度的依赖性。

2.1.2开通特性

在二极管进入导通状态的过程中,电压首先升至V FRM,即可重复的正向峰值电压,然后才降至正向通态电压的水平。图12给出了目前通用的有关V FRM和开通时间t fr的定义。

图12 功率二极管的开通特性

但对于用在IGBT中的续流和缓冲二极管来说,这个定义并不能说明多少问题,因为

1)开通电流的上升率d i/d t会很高,以至于象一个1700V二极管的V FRM会达到200~300V。这个数值已是V F的100倍以上。

2)实际应用过程中,二极管是由截止进入导通,由此产生的V FRM要比由零电压进入导通状态高出许多。

对于缓冲二极管来说,因为缓冲电路只有在二极管导通之后才能发挥作用,所以较低的VFRM是它最重要的指标之一。

即使对于反向阻断电压大于1200V的续流二极管来说,可重复的正向峰值电压也有着重要的作用。在IGBT关断时,线路的寄生电感会感应出一个电压尖峰,这个电压尖峰叠加于续流二极管的VFRM之上,二者之和可能导致过电压。

2.1.3 关断特性

在二极管由导通进入截止状态的过程中,它内部所存储的电量必须被释放掉。这个过程导致了二极管的电流反方向流动。这一反方向电流的波形可以用反向恢复特性来描述。

图13表示了一个最简单的测量线路,S代表一个理想开关,I L为一个电流源,V k是一个用于换流的电压源,L k是换流电路中的电感。

图13 表示了一个简单的测量线路

当合上开关S后,一个软恢复二极管的电流和电压曲线如图14所示。

图14 软恢复二极管的反向恢复过程的电流和电压特性

换流速度d i/d t是由电压和电感决定的,即

(7)

在t0时刻,电流到达零点。在t w时刻,二极管开始承受反向电压。此刻,在二极管的pn结内,所有的载流子都得到清除。在t irm时刻时,反向电流达到最大值I RRM。在t irm之后,电流逐步衰减至其漏电流值。它的轨迹完全由二极管所决定。如果衰减过程很陡,称之为刚性恢复特性;如果衰减过程很缓慢,则称之为软性恢复特性。

反向恢复时间定义为t rr,从t0开始到电流衰减至I RRM的20%时结束。如图14所示,将t rr细分为t f和t s,则可以得到一个用来定性描述二极管的反向恢复特性的系数,即软性系数

s=(8)

图15示出了一个准实用的测量线路。

图15 用于降压变换器中测量反向恢复特性的准实用斩波电路(双脉冲运行)

换流速度di/dt可由开关器件的栅极电阻来调节。Vk是直流母线电压,在电容、IGBT和二极管之间的导线上存在寄生电感。图16显示了应用双脉冲情况下IGBT的驱动信号和IGBT以及二极管的电流波形。当关断IGBT时,负载电流由IGBT切换至二极管,从而展示出二极管在该时期的恢复特性。而在开通IGBT 时,IGBT也接续续流二极管的反向恢复电流。图17用较高的时间分辩率显示了这一过程。图17(a)表示了IGBT的电流和电压波形以及开通过程中的损耗;图17(b)则显示了二极管的电流和电压波形以及损耗。

图16 双脉冲运行条件下的驱动信号以及IGBT和续流二极管的电流波形(电

路见图15)

(a)IGBT的开通过程

(b)续流二极管的关断过程

图17 图15所示电路的电流、电压和功率损耗

图18 不同开关特性的二极管的换流峰值电压与正向通态电流的关系

当IGBT接续续流二极管的反向峰值电流时,它的电压还处于直流母线电压〔在图17(a)中为1200V〕的水平上。此刻IGBT的开通损耗为最大值。二极管的反向恢复特性可以进一步细分为两个部分。

1)第一部分为电流上升至反向恢复电流的峰值阶段以及其后的按照d i/d t 速率的下降过程。对于一个软恢复二极管来说,d i r/d t和d i/d t的值大致相当,而反向恢复电流的峰值I RRM对开关器件的冲击则最大。

2)第二部分为拖尾电流部分,即反向恢复电流缓慢衰减至零的过程。在此过程中,t rr不再具有明显的意义。因为,此时二极管上已具有电压,所以二极管内损耗的主要部分产生于拖尾过程。对于一个刚性的、不含拖尾电流的二极管来说,尽管它的开关损耗很低,可在实际中还是无法被应用。对于IGBT来说,因为,它的电压在拖尾阶段已经降至很低,所以,拖尾电流对IGBT的损耗影响并不大。

在实际应用中,与IGBT的开关损耗相比,二极管的损耗要低得多〔在图17(b)中,采用了与图17(a)中IGBT损耗相同的尺度来显示二极管的损耗〕。因此,若要使IGBT和二极管的损耗之和保持较小,则应尽量减小反向恢复电流的峰值,同时,将大部分存储电荷保留至拖尾阶段再释放。这一设计理念的实现由二极管所能散发的最大开关损耗所限定。所以,就一个二极管对整体损耗的影响来说,最重要的参数就是其反向峰值恢复电流I RRM,它应当尽可能地小。

让我们来看一个典型的电力电子线路,例如,置于一个模块内的直流斩波器。它的寄生电感Lσges约在40nH左右,起着降低过电压的作用。因为,理想的开关并不存在,所以,在二极管反向恢复期间,IGBT的电压会有所降落。实际测得的电压值为

-V(t)=-V k-Lσges+V CE(t)(9)

式中:V CE(t)是加在IGBT上电压的瞬时值。

对于一个典型的软恢复二极管来说,在电流上升速率不太高(≤1500A/μs)以及寄生电感为最小的情况下,电压v(t)在任一时刻都小于V k,不存在电压尖峰。

图18显示了用这个方法来描述恢复特性的一个例子。在图18中所示的条件下,让我们来比较两种二极管的过电压。其中一种的载流子寿命是用铂扩散的工艺来调节,通过降低p发射极的效率来获得软恢复特性;另一种是CAL二极管。在额定电流(75A)时,铂扩散的二极管同CAL二极管具有相同的软特性。但在电流较小时,由于前者的开关特性过于刚性,因而产生了过电压,其最大值在10%的额定电流时可能会大于100V。在电流更小时,由于所应用的IGBT的开关更慢,过电压也再度减小。CAL二极管则在所有这些情况下均不会出现明显的过电压。

2.1.4 对续流二极管在整流和逆变运行中的要求

在采用IGBT或MOSFET的变流器中,对续流二极管的要求取决于它是工作在整流还是逆变状态下。即使在传递相同功率的情况下,两种工作状态下的损耗也不尽相同。

逆变运行的特征是能量由直流电压母线端流向交流端。也就是说,交流端和一个用户相连接并给其供电(例如,三相交流电机)。

而在整流运行状态下,能量由交流端流向直流电压母线端。在这种情况下,变流器是作为一个斩波整流器工作在电网端或发电机端。

在传递相等功率的条件下,功率半导体内不同的损耗主要由在整流和逆变运行期间交流端电压和电流基波之间的相位所决定。这一点可以用图19所示的基本电路来做进一步的说明。

(a)基本电路

(b)相关波形

图19 采用IGBT和续流二极管的逆变器的一相基本电路

我们可以看到:

1)如果V out为正和i L>0电流通过S1;

2)如果V out为负和i L>0电流通过D2;

3)如果V out为正和i L<0电流通过D1;

4)如果V out为负和i L<0电流通过S2。

所以,在给定了电流的有效值的情况下,IGBT和续流二极管中出现的导通损耗由电压和电流基波之间的功率因数以及变流器的调制度m(决定了占空比)所决定。

在逆变运行时存在着0(<=)m cosφ(<=)1的关系。如果m cosφ=1,则功率半导体的损耗到达了其极限情况。在该条件下,导通损耗以及IGBT的总损耗都达到最大值,二极管的损耗则达到最小值。

在整流运行时存在着0(>=)m cosφ(>=)-1的关系。在m cosφ=-1时,功率半导体的损耗到达了其极限情况。在该条件下,导通损耗以及IGBT的总损耗都达到最小值,二极管的损耗则达到最大值。

将此理论应用于图19,则该情况刚好出现在斩波整流器仅仅从电网吸收纯有功功率时(就电流基波而言)。此时,电网的星形中点应该与直流母线电压的中点相连。图20绘出了上述关系。

(a)通态损耗

(b)开关损耗

图20 电压型逆变器中IGBT和续流二极管的开关与通态损耗

在给定直流母线电压和交流电流有效值的情况下,器件的开关损耗只与开关频率有关,两者之间呈线性关系。

市场上大量的带有续流二极管的IGBT和MOSFET模块,就其在额定电流下可散发的损耗而言,是为逆变工作状态而设计的(例如cosφ=0.6~1)。由于在此工作状态下二极管的通态损耗以及总损耗远比IGBT要低,所以,二极管损耗的设计值也远低于IGBT〔IGBT/二极管损耗设计比约为(2~3):1〕。

因此,在设计斩波整流器时,若其功率和相应的斩波逆变器相等,则建议使用电流等级高一档的功率模块。

例如,某传动系统功率流为电网(400V/50Hz)→斩波整流器(f s=10~12kHz)→直流母线→斩波→逆变器(f s=10~12kHz)→三相交流电机(400V/50Hz/22kW),则

1)斩波整流器采用 1200V/100A(T c=80℃)的标准IGBT半桥模块;

2)斩波逆变器采用 1200V/75A(T c=80℃)的标准IGBT半桥模块。

如果功率模块本身就带有加强的二极管,则此区分便无必要。

2.2 快速功率二极管的构造

我们需要区分二极管的两种主要形式,即肖特基二极管和pin二极管。

在肖特基二极管中,金属-半导体之间的接触面构成了阻断型的pn结。与pin二极管不同,pn结没有由扩散而形成的势垒。因此,如果n-区很薄,则它的通态压降比任何一个pin二极管都小。在从导通进入截止状态的过渡过程中,理论上仅需对空间电荷区充电。所以,此类二极管适用于很高的频率(>100kHz)。但是,这一优点只限于当电压小于约100V(目前最高可以达到250V)时。因此,肖特基二极管适合被用作MOSFET的续流二极管。另一方面,当设计的耐压较高时,则

1)通态电压迅速增加,原因是基极宽度WB增加,以及仅存在一种载流子(单极型);

2)截止漏电流迅速增加,有可能造成温升失衡。

因此,当电压大于100V时,pin二极管开始显示出其优越性。对于目前生产的二极管来说,它的中间部分不再是i(本征的),而是相对于边缘区来说,其浓度要低很多的n型半导体。在采用外延生长技术的pin二极管中〔图21(b)〕,首先在一块高浓度的n+衬底上分流出一个n-区(外延生长),然后再扩散p 区。用此方法,基极的宽度W B可以被调节至极低,直至数个μm;同时硅片又具有足够的厚度,使得生产中的成品率很高。通过引入再结合中心(多采用金扩散的工艺)的方法,可以实现非常快的二极管,同时由于它的W B很小,通态电压仍然可以很低。当然,通态电压总是大于pn结的扩散势垒(0.6~0.8V)。外延生长式的二极管的主要应用范围在100~600V之间。有些制造商还实现了耐压为1200V的外延生长型二极管。

从600V开始往上,n-区已经较宽,以至于可以采用扩散工艺来生产pin二极管〔图21(c)〕。在一块n-衬底上分别扩散入p和n+区。同样,为了调整续流二极管的动态特性,需要引入再结合中心。

(a)肖特基二极管

(b)外延生长式二极管

(c)扩散式二极管

图21 二极管的结构及浓度剖面示意图

2.3 快速功率二极管的串联和并联

2.3.1 串联

串联的二极管电路如图22所示。在串联时,需要注意静态截止电压和动态截止电压的对称分布。

图22 用于快速二极管串联的RC电路

在静态时,由于串联各二极管的截止漏电流的制造偏差,导致具有最小漏电流的二极管承受了最高的电压,甚至达到擎住状态。但是,只要二极管具有足够的擎住稳定性,则无必要采用并联均压电阻。只有当截止电压>1200V的二极管串联时,才有必要外加并联均压电阻。

假设截止漏电流不随电压变化,同时忽略电阻的误差,则对于n个给定截止电压V r的二极管的串联电路,我们可以得到简化计算并联电阻的式(10)。

R<(10)

式中:V m是串联电路中电压的最大值;

ΔI r是二极管漏电流的最大偏差,条件是运行温度为最大值。

做一个充分安全的假设,即

ΔI r=0.85I rm(11)

式中:I rm是由制造商所给定的。

利用以上估计,电阻中的电流大约是二极管漏电流的6倍。

经验表明,当流经电阻的电流约为最大截止电压下二极管漏电流的3倍时,该电阻值便是足够的。但即使在此条件下,电阻中仍会出现可观的损耗。

动态的电压分布不同于静态的电压分布。如果一个二极管pn结的载流子消失得比另外一个要快,那么它也就更早地承受电压。

如果忽略电容的偏差,那么在n个给定截止电压V r的二极管相串联时,我们可以采用简化计算并联电容的式(12)。

C>(12)

式中:ΔQ RR是二极管存储电量的最大偏差。

做一个充分安全的假设,即

ΔQ RR=0.3Q RR(13)

条件是所有的二极管均出自于同一个制造批号。ΔQ RR由半导体制造商所给出。除了续流二极管关断时出现的存储电量之外,在电容中存储的电量也同样需要由正在开通的IGBT来接续。根据上述设计公式,我们发现总的存储电量值可能会达到单个二极管的存储电量的2倍。

一般来说,续流二极管的串联电路并不多见,原因在于存在下列附加的损耗源:

1)pn结的n重扩散电压;

2)并联电阻中的损耗;

3)需要由IGBT接续的附加存储电量;

4)由RC电路而导致的元件的增加。

所以,在高截止电压的二极管可以被采用时,一般不采用串联方案。

唯一的例外是当应用电路要求很短的开关时间和很低的存储电量时,这两点正好是低耐压二极管所具备的。当然,此时系统的通态损耗也会大大增加。

2.3.2 并联

并联并不需要附加的RC缓冲电路。重要的是在并联时通态电压的偏差应尽可能小。

判断二极管是否适合并联的一个重要参数是其通态电压对温度的依赖性。如果通态电压随温度的增加而下降,则它具有负的温度系数,这对于损耗来说,是一个优点。如果通态电压随温度的增加而增加,则温度系数为正,在典型的并联应用中,这是一个优点,其原因在于,较热的二极管将承受较低的电流,从而维持系统的稳定。因为,二极管总是存在一定的制造偏差,所以,在二极管并联时,一个较大的负温度系数(>2mV/K)则有可能产生温升失衡的危险。

并联的二极管会产生热耦合,通路是:

1)在多个芯片并联的模块中通过基片;

2)在多个模块并联于一块散热片时通过散热器。

不同类型二极管的通态电压对温度的依赖性如图23所示。

(a)温度系数为负时

(b)在额定电流以上温度系数为正时

图23 不同类型二极管的通态电压对温度的依赖性

一般对于较弱的负温度系数来说,这类热耦合足以避免具有最低通态电压的二极管走向温升失衡。但对于负温度系数值大于2mV/K的二极管,我们则建议降额使用,即总的额定电流应当小于各二极管额定电流的总和。

续流二极管

续流二极管的作用及选型 续流二极管通常是指反向并联在电感线圈、继电器、可控硅等储能元件两端,在电路中电压或电流出现突变时,对电路中其它元件起保护作用的二极管。 以电感线圈为例,当线圈中有电流通过时,其两端会有感应电动势产生。当电流消失时,其感应电动势会对电路中的元件产生反向电压。当反向电压高于元件的反向击穿电压时,会把元件如三极管等烧坏。如果在线圈两端反向并联一个二极管(有时候会串接一个电阻),当流过线圈中的电流消失时,线圈产生的感应电动势就会通过二极管和线圈构成的回路消耗掉,从而保证电路中的其它元件的安全。 对于继电器而言,由于继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当它吸合的时候会存储大量的磁场。当控制继电器的三极管由导通变为截至时,线圈就会断电,但此时线圈里磁场并未立即消失,该磁场将产生反向电动势,其电压可高达1000v,这样的高压很容易击穿如三极管或其它电路元件。如果我们在继电器两端反向并联一个二极管(对于继电器,通常会在续流二极管上串接一个电阻以防止回路电流过高),由于该二极管的接入正好和反向电动势方向一致,这样就可以把反向电动势以电流的形式消耗掉,从而达到保护其它电路元器件的目的。 对于可控硅电路,由于可控硅一般当成一个触点开关来用,如果控制的是大电感负载,一样会产生高压反电动势,其原理和继电器一样。在显示器上同样也会用到续流二极管,一般是用在消磁继电器的线圈上。 2、续流二极管的工作原理

上图给出了续流二极管的典型应用电路,其中电阻R视情况决定是否需要。储能元件在VT 导通时,电压为上正下负,电流方向从上向下。当VT关断时,储能元件中的电流突然中断,此时会产生感应电势,其方向是力图保持电流不变,即总想保持储能元件电流方向从上向下。这个感应电势与电源电压迭加后加在VT两端,容易使VT击穿,为此可以加上VD,这样就可以将储能元件产生的感应电势短路掉,从而达到保护VT的目的。 3、续流二极管的作用 续流二极管通常和储能元件一起使用,其作用是防止电路中电压电流的突变,为反向电动势提供耗电通路。电感线圈可以经过它给负载提供持续的电流,以免负载电流突变,起到平滑电流的作用!在开关电源中,就能见到一个由二极管和电阻串连起来构成的的续流电路。这个电路与变压器原边并联。当开关管关断时,续流电路可以释放掉变压器线圈中储存的能量,防止感应电压过高,击穿开关管。 4、续流二极管的选型

整流二极管的作用及其整流电路

整流二极管的作用及其整流电路 整流二极管的作用及其整流电路 一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。 P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。 若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。 整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 二极管整流电路 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压 Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路(单向桥式整流电路) 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

肖特基二极管有哪些作用

肖特基二极管有哪些作用 肖特基二极管介绍: 肖特基二极管是以其发明人肖特基博士(Schottky)命名的,SBD是肖特基势垒二极管(SchottkyBarrierDiode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管原理 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极(阻档层)金属材料是钼。二氧化硅(SiO2)用来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度Wo变窄。加负偏压-E时,势垒宽度就增加。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别,通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr→0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。 肖特基二极管作用

整流二极管的作用及其整流电路

整流二极管的作用及其整流电路 Rectifier diode 整流二极管一种用于将交流电转变为直流电的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。其结构如图1所示。P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P 区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性。整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造(掺杂较多时容易反向击穿)。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频半波整流电路,如需达到全波整流需连成整流桥使用。一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。 二极管整流电路 一、半波整流电路 图5-1是一种最简单整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz 组成。变压器把市电电压(多为220V)变换为所需要的交变电压E2、D 再把交流电变换为脉动直流电。下面从图5-2的波形图上看着二极管是怎样整流的。

图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。 图5-8示出了二极管串联的情况。显然在理想条件下,有几只管子串联,每只管子承受的反向电压就应等于总电压的几分之一。但因为每只二极管的反向电阻不尽相同,会造成电压分配不均:内阻大的二极管,有可能由于电压过高而被击穿,并由此引起连锁反应,逐个把二极管击穿。在二极管上并联的电阻R,可以使电压分配均匀。 整流二极管的选用 1N4001整流二极管一般为平面型硅二极管,用于各种电源整流电路中。选用整流二极管时,主要应考虑其最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数。 普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管即可。例如1N系列、2CZ系列、RLR系列等。 开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、反向恢复时间较短的整流二极管(例如RU系列、EU系列、V系列、1SR系列等)或选择快恢复二极管,还有一种肖特基整流二极管。

二极管的结构及性能特点

PN结主要的特性就是其具有单方向导电性,即在PN加上适当的正向电压(P 区接电源正极,N区接电源负极),PN结就会导通,产生正向电流。若在PN结上加反向电压,则PN结将截止(不导通),正向电流消失,仅有极微弱的反向电流。当反向电压增大至某一数值时,PN结将击穿(变为导体)损坏,使反向电流急剧增大。 (二)普通二极管 1.二极管的基本结构 二极管是由一个PN结构成的半导体器件,即将一个PN结加上两条电极引线做成管芯,并用管壳封装而成。P型区的引出线称为正极或阳极,N型区的引出线称为负极或阴极,如图所示。 普通二极管有硅管和锗管两种,它们的正向导通电压(PN结电压)差别较大,锗管为0.2~0.3V,硅管为0.6~0.7V。 2.点接触型二极管 如图所示,点接触型二极管是由一根根细的金属丝热压在半导体薄片上制成的。在热压处理过程中,半导体薄片与金属丝接触面上形成了一个PN结,金属丝为正极,半导体薄片为负极。

点接触型二极管的金属丝和半导体的金属面很小,虽难以通过较大的电流,但因其结电容较小,可以在较高的频率下工作。点接触型二极管可用于检波、变频、开关等电路及小电流的整流电路中。 3.面接触型二极管 如图所示,面接触型二极管是利用扩散、多用合金及外延等掺杂质方法,实现P型半导体和N型半导体直接接触而形成PN结的。 面接触型二极管PN结的接触面积大,可以通过较大的电流,适用于大电流整流电路或在脉冲数字电路中作开关管。因其结电容相对较大,故只能在较低的频率下工作。 二极管的分类及其主要参数 一.半导体二极管的分类

半导体二极管按其用途可分为:普通二极管和特殊二极管。普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等;特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。 二.半导体二极管的主要参数 1.反向饱和漏电流I R 指在二极管两端加入反向电压时,流过二极管的电流,该电流与半导体材料 和温度有关。在常温下,硅管的I R 为纳安(10-9A)级,锗管的I R 为微安(10-6A) 级。 2.额定整流电流I F 指二极管长期运行时,根据允许温升折算出来的平均电流值。目前大功率整 流二极管的I F 值可达1000A。 3. 最大平均整流电流I O 在半波整流电路中,流过负载电阻的平均整流电流的最大值。这是设计时非常重要的值。 4. 最大浪涌电流I FSM 允许流过的过量的正向电流。它不是正常电流,而是瞬间电流,这个值相当大。 5.最大反向峰值电压V RM 即使没有反向电流,只要不断地提高反向电压,迟早会使二极管损坏。这种能加上的反向电压,不是瞬时电压,而是反复加上的正反向电压。因给整流器 加的是交流电压,它的最大值是规定的重要因子。最大反向峰值电压V RM 指为避 免击穿所能加的最大反向电压。目前最高的V RM 值可达几千伏。 6. 最大直流反向电压V R 上述最大反向峰值电压是反复加上的峰值电压,V R 是连续加直流电压时的值。用于直流电路,最大直流反向电压对于确定允许值和上限值是很重要的. 7.最高工作频率f M

续流二极管

什么是续流二极管 大家可能都知道二极管吧那什么是续流二极管呢?其实他还是个二极管只不过它在这起续流作用而以,例如在继电器线圈两端反向接的那个二极管或单向可控硅两端反向接的也都是为什么要反向接个二极管呢?因为继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当他吸合的时候存储大量的磁场当控制继电器的三极管由导通变为截至时线圈断电但是线圈里有磁场这时将产生反向电动势电压高达1000v以上很容易击穿推动三极管或其他电路元件,这是由于二极管的接入正好和反向电动势方向一致把反向电势通过续流二极管以电流的形式中和掉从而保护了其他电路元件,因此它一般是开关速度比较快的二极管,象可控硅电路一样因可控硅一般当成一个触点开关来用,如果控制的是大电感负载一样会产生高压反电动势原理和继电器殿禄式一样的。在显示器上也用到一般用在消磁继电器的线圈上。 一种用于驱动电感性负载的负载驱动电路,包括连接负载的回流闭合电路。在该回流闭合电路中设置续流二极管。该续流二极管并联一个MOS晶体管,用于接通/断开电流。设置一电容器并以其两端连接至MOS晶体管的栅极和漏极,设置一电阻器并以其两端连接至MOS晶体管的栅极和源极。在续流二极管的恢复操作期间,借助于该电容器和电阻器,MOS晶体管的栅极至源极的电压在一预定时间周期内被上拉而超过一阈值。上拉该栅极至源极电压致使续流二极管的恢复特性变得柔和,抑制恢复浪涌。 这个二极管的作用是续流,谁能具体解释一下? 具体的电路图解释起来就比较复杂了,所以我只给你讲讲原理,首先我们知道变频器输出的是PWM波,这种波是由逆变桥通过spwm或者svpwm调制而形成的,它的负载是电机,而电机是一种感性负载,所以它必然要向电源侧返回能量,也就是我们所说的无功功率(其实就是电感中储存的能量,呵呵)所以,我们在设计逆变系统时,必须给无功功率返回电网提供回路,这样才不至于烧毁逆变桥上的IGBT等器件,如果没有这些续流二极管,IGBT就会被反向击穿。 图中继电器加的二极管起的什么作用?

详述二极管的整流原理

详述二极管的整流原理 摘要二极管作为常用的分立元件,广泛应用在检波,整流,续流等电路中,在交流电转化为直流电的过程中,二极管由于其单向导通特性在构成整流器件后能将方向变化的电流改变为单一方向的电流。本文通过对二极管理想化模型的建立,将二极管等效为开关:即正向偏置时等效为导通的开关,反向偏置时等效为断开的开关。文中利用建立的等效模型对二极管构成整流电路进行分析,详细描述了由单一二极管构成半波整流电路到四个二极管构成的桥式整流电路的过程。 关键词二极管;整流;等效模型;半波整流;桥式整流 在模拟电子技术基础的课程中,会涉及到二极管特性及应用的讲解。二极管具有检波,整流,续流等作用,是一种应用非常广泛的分立原件。日常生活里面,我们常常面临电流的转化问题,市电提供的交流电有时不能直接的提供给我们的用电设备,需要一个转化的过程:降压,整流,滤波等。二极管在这里面提供的就是整流的作用:即将方向变化的交流电通过二极管后转化为单一方向的电流,教材在这方面的内容上偏向于成形电路的经验式讲解,而忽略了整流电路的构成过程及相应二极管具体作用的讲解。针对这种情况,提出二极管的理想化模型,并利该等效模型描述用一个二极管构成半波整流电路到四个二极管构成整流桥的推导过程。 1交流电向直流电的转化 交流电是电压幅值、方向随时间成周期性变化的电流类型。而直流电是电压方向不随时间变化而改变的电流类型。在交流电向直流电的转化中,首要考虑的是将交流电方向变化的电流转化为方向不变幅值变化的脉动电流。在后续电路结构中再将脉动电流通过滤波等过程转化为平滑的直流电。具体过程如图1所示。图中a所示为低压交流电,b所示为脉动电流,c为直流电。a转化为b的过程为整流作用,b转化为c的过程为滤波作用。在整流作用中利用了二极管的单向导通特性。 2二极管的等效电路

续流二极管

续流二极管的作用: 续流二极管通常是并联在线圈的两端,线圈在通过电流时,会在其两端产生感应电动势。当电流消失时,其感应电动势会对电路中的原件产生反向电压。当反向电压高于原件的反向击穿电压时,会把原件如三极管,等造成损坏。续流二极管并联在线两端,当流过线圈中的电流消失时,线圈产生的感应电动势通过二极管和线圈构成的回路做功而消耗掉。丛而保护了电路中的其它原件的安全。 续流二极管的应用 续流二极管经常和储能元件一起使用,防止电压电流突变,提供通路。电感可以经过它给负载提供持续的电流,以免负载电流突变,起到平滑电流的作用!通常应用在开关电源,继电器电路,可控硅电路,IGBT等电路中,应用非常广泛. 在开关电源中,续流二极管通常和电阻串连起来构成的的续流电路。这个电路与变压器原边并联。当开关管关断时,续流电路可以释放掉变压器线圈中储存的能量,防止感应电压过高,击穿开关管。 继电器的线圈是一个很大的电感,它能以磁场的形式储存电能,所以当他吸合的时候存储大量的磁场当控制继电器的三极管由导通变为截至时线圈断电但是线圈里有磁场这时将产生反向电动势电压可高达1000v以上很容易击穿推动三极管或其他电路元件,这是由于二极管的接入正好和反向电动势方向一致把反向电势通过续流二极管以电流的形式中和掉从而保护了其他电路元器件,因此它一般是开关速度比较快的二极管,象可控硅电路一样因可控硅一般当成一个触点开关来用,如果控制的是大电感负载一样会产生高压反电动势原理和继电器一样的。在显示器上也用到一般用在消磁继电器的线圈上。 续流二极管应用注意事项 1、续流二极管,是防止直流线圈断电时产生自感电势形成的高电压对相关元器件造成损害的有效手段! 2、续流二极管的极性不能接错,否则将造成短路事故; 3、续流二极管对直流电压总是反接的,即二极管的负极接直流电的正极端; 4. 4、续流二极管是工作在正向导通状态,并非击穿状态或高速开关状态 续流二极管的选择: 一般选择快速恢复二极管或者肖特基二极管就可以了,用来把线圈产生的反向电势释放掉!如 FR254 R255 FR256 FR257,1N5204,1N5205,1N5206,1N5207,1N5208,1N5404,1N5405,5406,5407,5408。都可以选做续流二极管

二极管的基本特性与应用(精)

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的工作原理 晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。 当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。 当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。 当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。 二极管的类型 二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平 面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固 地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。 面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流” 电路中。 平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。 二极管的导电特性 二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。 1、正向特性 在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电 压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。 2、反向特性 在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当 二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 二极管的主要参数 用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数: 1、额定正向工作电流 是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。 2、最高反向工作电压 加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工

续流和吸收二极管

邮编:412001 TEL : ( 0733) 8498396 URL : 续流和吸收二极管 1. 对续流和吸收二极管的要求 随着电力电子技术的发展,功率器件的开关速度越来越快,因此,现代的快速开关元件要求采用快速的二极管作为续流二极管。在开关的每一次开通过程中,续流二极管有导通状态变为截止状态。而这一过程要求二极管具有软的恢复特性。然而,让我们难以相信的是在很长一段时间里,我们忽视了快速二极管的作用。因而续流二极管限制了开关元件的功能-限制了开关元件的开关速度。近些年由于对更高效率的追求,快速二极管的作用受到了高度的重视,通过不断改善它的反向恢复特性而使其性能得到了极大的改善。 图 1 二极管反向电压和正向压降的定义 2.反向阻断电压和正向峰值压降 由反向阻断电压V R 的定义我们可以知道,二极管或晶闸管在该电压下的漏电流不得大于临界值I R 。 在大多数的参数表中的器件参数都是温度等于25℃时的数值。当温度降低时反向阻断能力下降。也就是说如果当元件在低于室温的条件下运行时应引起特别的注意。 当温度高于室温时,在反向电压相应上升的同时,其漏电流也同时上升。因此我们在参数表中还会给出高温下的漏电流值(125℃)。 值得特别注意的是,对于采用了金扩散工艺的元件来说,在高温下它们的漏电流上升得特别 快。

邮编:412001 TEL : ( 0733) 8498396 URL : 因此,如果系统由于元件的功率损坏而使其工作在环境下,将有可能是系统引发温升失衡而不能正常工作。 图 2 功率二极管的开通特性 正向通态压降V F 表示了在给定电流下,二极管在导通状况下的电压降应小于某给定的临界值。一般来说,这个值是在室温下测得的。然而,系统中的元件又是工作在一定的温度下,因此我们必须对元件的高温正向通态压降进行考虑。 3.开通特性 快速二极管在进入导通状态的过程中,电压首先升至V FRM ,即可重复的正向峰值电压,然后才降至正向通态压降的水平。图 给出了有关V FRM 和开通时间t fr 的定义。 然而对于像用在GTO 和IGBT 中的续流二极管和吸收二极管来说,这个定义存在一定的问题,这是因为: ⑴.在这样的电路中,开通电流的上升率di/dt 会很高,通常会达到200V 到300V ,它将是V F 的100倍以上。这对于应用来说是一个非常棘手的事情。 ⑵.实际应用过程中,二极管是由截止进入导通状态,由此产生的V FRM 要比由零电压进入导通状态高出许多。当我们对其设计时,必须予以特别关注。 对于吸收二极管来说,因为吸收电路只有在吸收二极管导通之后才能发挥作用,所以较低的V FRM 是它的重要指标之一。

续流二极管作用及 工作原理

续流二极管作用及工作原理 续流二极管作用及工作原理续流二极管都是并联在线圈的两端线圈在通过电流时会在其两端产生感应电动势。当电流消失时其感应电动势会对电路中的原件产生反向电压。当反向电压高亍原件的反向击穿电压时会把原件如三极管等造成损坏。续流二极管并联在线两端当流过线圈中的电流消失时线圈产生的感应电动势通过二极管和线圈构成的回路做功而消耗掉。丛而保护了电路中的其它原件的安全。在电路中反向并联在继电器戒电感线圈的两端当电感线圈断电时其两端的电动势并丌立即消失此时残余电动势通过一个二极管释放起这种作用的二极管叫续流二极管。其实还是个二极管只丌过它在这起续流作用而以例如在继电器线圈两端反向接的那个二极管戒单向可控硅两端反向接的也都是为什么要反向接个二极管呢因为继电器的线圈是一个很大的电感它能以磁场的形式储存电能所以当他吸合的时候存储大量的磁场当控制继电器的三极管由导通变为截至时线圈断电但是线圈里有磁场这时将产生反向电动势电压可高达1000V以上很容易击穿推动三极管戒其他电路元件这是由亍二极管的接入正好和反向电动势方向一致把反向电势通过续流二极管以电流的形式中和掉从而保护了其他电路元器件因此它一般是开关速度比较快的二极管象可控硅电路一样因可控硅一般当成一个触点开关来用如果控制的是大电感负载一样会产生高压反电动势原理和继电器一样的。在显示器上也用到一般用在消磁继电器的线圈上。经常和储能元件一起使用防止电压电流突变提供通路。电感可以经过它给负载提供持续的电流以免负载电流突变起到平滑电流的作用在开关电源中就能见到一个由二极管和电阻串连起来构成的的续流电路。这个电路不变压器原边并联。当开关管关断时续流电路可以释放掉变压器线圈中储存的能量防止感应电压过高击穿开关管。一般选择快速恢复二极管戒者肖特基二极管就可以了用来把线圈产生的反向电势释放掉在图3中KR在VT导通时上面电压为上正下负电流方向由上向下。在VT关断时会KR中电流突然中断会产生感应电势其方向是力图保持电流丌变即总想保持KR电流方向为由下至下。这个感应电势不电源电压迭加后加在两端容易使出穿。为此加上将产生的感应电势短路掉电注是你所说的“顺时针方向在二极管和继电器所的小回路里面流动”从而保护。图中的、也是利用上电压丌能突变的原理来吸收感应电势。可见“续流二极管”并丌是一个实质的元件它只丌过在电路中起到的作用称做“续流”。续流二极管在正激开关电源的作用在正激开关电源中当MOS关断的时候变压器副边靠电感中储存的能量对外提供电流。为使电感在有负载时发挥这种作用在变压器的副边增加续流二极管。当MOS 关断时电感负载和续流二极管会产生通路将电感中的能量对外传递。只有在有外负载的情况下续流二极管中采用电流流过变流技术中续流二极管在电路里起什么作用在电子变流电路中整流部分单相桥式整流是实际应用最多的单相整流电路。而三相桥式整流是电力系统特别是发电机励磁系统应用最多的方式。这两种电路都要接入续流二极管。其作用大致是一样的以单相桥式电路为例说明当可控整流桥接入感性负载时由亍电感电流丌能突变在可控硅关断期内必须在负载两端接入续流二极管以保持电感电流的通路以防止可控硅关断时在电感负载两端产生危险的过电压和可控硅能够换相导通。然而发电机励磁系统应用较多的三相桥式整流电路有三相半控桥不三相全控桥电路之分。因此为了保证整流元件可靠换流半控桥需要在感性负载两端并联续流二极管而全控桥丌需要这样做。当导通角改变时半控桥的平均电压和线电流的变化较全控桥慢。在现如今使用较多的如变频器等设备中包含有整流和逆变等变流电路其中用到的续流二极管一般都是在变频器内部的直流母线上加续流二极管那是因为如果负载是电感元件时当母线上大容量的逆变器发生故障时直流母线上会产生巨大的反向浪涌能量此时我们需要给这些能量提供一个泻放通道否则巨大的能量将击穿戒烧毁小逆变器. 而这个通道就需要二极管来构成故应为续流二极管. 单向半波可控整流电路带大电感负载时为什么必须加续流二极管单向半波可控整流带大电感负载在负半周可控硅截止时电感负载会产生很高的反向感应电动势此反向电动势足以使可控硅击穿烧毁加续流

二极管并联电阻的作用

一:电阻与二极管并联的作用是什么?这两个并联后,再与一个电容 串联,起到什么作用呢? 作用 一般是降低二极管等效电阻,并上电阻后二极管两端压降没有减小,但是通过去的电流小了,被并联 的电阻分流了,这也是保护二极管的一种办法。 但你这里后面接了电容就有别的作用了,因为二极管是正向电阻小,反向电阻很大,电容放电就不可能走二极管这里走,除非二极管的漏电流很大。加个电阻就可以提供电容放电的途径,当然这样你这个电阻就要比较大,正向通路,二极管电阻小,电流大都走二极管过去,反向时候二极管电阻大,电 流走电阻回来。 看具体使用的场合 这样可以使电容的充电时间和放电时间不同,就是快速充电缓慢放电或缓慢充电快速放电,具体作用就要看使用的场合了,比如MCU的复位电路,上电时电容通过电阻充电,获得一个一定宽度的复位脉 冲,掉电的时候电容通过二极管快速放电. 改变充放电时间 这样可以让电容的充电和放电时间不一样,锯齿波发生器中就这样做的,正向充电时电流通过二极管走快速给电容充电形成一个跳变,翻转之后电流通过电阻放电比较慢,这样波形缓慢变化 二极管主要有下列应用 1、整流二极管 利用二极管单向导电性,可以把方向交替变化的交流电变换成单一方向的脉动直流电。 2、开关元件 二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。利用二极管的开关特性,可以组成各种逻辑电路。 3、限幅元件 二极管正向导通后,它的正向压降基本保持不变(硅管为0.7V,锗管为0.3V)。利用这一特性,在电路中作为限幅元件,可以把信号幅度限制在一定范围内。 4、继流二极管 在开关电源的电感中和继电器等感性负载中起继流作用。

整流二极管作用

整流二极管的作用 一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个 端子。 P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。 若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。 整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用 于各种低频整流电路。 二极管整流电路 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可kfq以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B、整流二极管D和负载电阻R fz,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D再把交流电变换 为脉动直流电。: 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,R fz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场 合,而在一般无线电装置中很少采用。 二、全波整流电路(单向桥式整流电路) 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a e2a Rfz与e2b、D2、Rfz,两个通电回路。、D1、、e2b,构成 全波整流电路的工作原理,可用图所示的波形图说明。 ★在0~π间内,e2a D1 导通,在Rfz上得到上正下负的电压;e2b对D2为反向电压, D2 不导通 ★在π-2π时间内,e2b对D2为正向电压,D2导通,在Rfz上得到的仍然是上正下负的电压;e2a D1为反向电压,D1 不导通对对Dl为正向电压,

二极管判断方法

检测二极管好环的简易方法 (一)普通二极管的检测 (包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 1.极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 2.单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。 3.反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V”键,测试表即可指示出二极管的反向击穿电压值。也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。 (二)稳压二极管的检测 1.正、负电极的判别从外形上看,金属封装稳压二极管管体的正极一端为平面形,负极一端为半圆面形。塑封稳压二极管管体上印有彩色标记的一端为负极,另一端为正极。对标志不清楚的稳压二极管,也可以用万用表判别其极性,测量的方法与普通二极管相同,即用万用表R×1k档,将两表笔分别接稳压二极管的两个电极,测出一个结果后,再对调两表笔进行测量。在两次测量结果中,阻值较小那一次,黑表笔接的是稳压二极管的正极,红表笔接的是稳压二极管的负极。若测得稳压二极管的正、反向电阻均很小或均为无穷大,则说明该二极管已击穿或开路损坏。 2.稳压值的测量用0~30V连续可调直流电源,对于13V以下的稳压二极管,可将稳压电源的输出电压调至15V,将电源正极串接1只1.5kΩ限流电阻后与被测稳压二极管的负极相连接,电源负极与稳压二极管的正极相接,再用万用表测量稳压二极管两端的电压值,所测的读数即为稳压二极管的稳压值。若稳压二极管的稳压值高于15V,则应将稳压电源调至20V以上。也可用低于1000V的兆欧表为稳压二极管提供测试电源。其方法是:将兆欧表正端与稳压二极管的负极相接,兆欧表的负端与稳压二极管的正极相接后,按规定匀速摇动兆欧表手柄,同时用万用表监测稳压二极管两端电压值(万用表的电压档应视稳定电压值的大小而定),待万用表的指示电压指示稳定时,此电压值便是稳压二极管的稳定电压值。若测量稳压二极管的稳定电压值忽高忽低,则说明该二极管的性不稳定。

二极管特征及运用

常用的IN4001-4007型锗二极管的额定正向工作电流为1A IN4001二极管反向耐压为50V,IN4007反向耐压为1000V 第一部分,用2表示为二极管(A锗N型,B锗P型,C硅N型,D硅P型,P普通管, W稳压管,Z整流管,L整流堆,N阻尼管,U光电管) 应用 1、整流 2、开关 3、限幅 4、续流 5、检波 6、变容 7、显示

8、稳压 稳压二极管实质上是一个面结型硅二极管,稳压二极管工作在反向击穿状态。在二极管 限流电阻,使稳压管击穿后电流不超过允许值,因此击穿状态可以长期持续并不会损坏。 9、触发 触发二极管又称双向触发二极管(DIAC)属三层结构,具有对称性的二端半导体器件。 常用来触发双向可控硅,在电路中作过压保护等用途。部分常用二极管参数 05Z6.2Y 硅稳压二极管Vz=6~6.35V,Pzm=500mW, 05Z7.5Y 硅稳压二极管Vz=7.34~7.70V,Pzm=500mW, 05Z13X 硅稳压二极管Vz=12.4~13.1V,Pzm=500mW, 05Z15Y 硅稳压二极管Vz=14.4~15.15V,Pzm=500mW, 05Z18Y 硅稳压二极管Vz=17.55~18.45V,Pzm=500mW, 1N4001 硅整流二极管50V,1A,(Ir=5uA,Vf=1V,Ifs=50A) 1N4002 硅整流二极管100V,1A, 1N4003 硅整流二极管200V,1A, 1N4004 硅整流二极管400V,1A, 1N4005 硅整流二极管600V,1A, 1N4006 硅整流二极管800V,1A, 1N4007 硅整流二极管1000V,1A, 1N4148 二极管75V,4PF,Ir=25nA,Vf=1V,

肖特基二极管的作用是什么

肖特基二极管的作用是什么? 一、肖特基二极管原理 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的多属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B 表面电子浓度表面逐渐降轻工业部,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极(阻档层)金属材料是钼。二氧化硅(SiO2)用来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型

基片B分别接电源的正、负极,此时势垒宽度Wo变窄。加负 偏压-E时,势垒宽度就增加。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别,通常将PN结整流管称作结整流管,而把金属-半导管 整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题(Qrr →0),使开关特性获得时显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用其低压降这特点,能提高低压、大电流整流(或续流)电路的效率。 二、肖特基二极管作用 肖特基(Schottky)二极管,又称肖特基势垒二极管(简称SBD),它属一种低功耗、超高速半导体器件。最显着的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。

相关文档
最新文档