数学用Matlab学习线性代数线性方程组与矩阵代数

数学用Matlab学习线性代数线性方程组与矩阵代数
数学用Matlab学习线性代数线性方程组与矩阵代数

用Matlab学习线性代数

线性方程组与矩阵代数

实验目的:熟悉线性方程组的解法和矩阵的基本运算及性质验证。

Matlab命令:

本练习中用到的Matlab命令有:inv,floor,rand,tic,toc,rref,abs,max,round,sum,eye,triu,ones,zeros。

本练习引入的运算有:+,-,*,’,,\。其中+和-表示通常标量及矩阵的加法和减法运算;*表示标量或矩阵的乘法;对所有元素为实数的矩阵,’运算对应于转置运算。若A为一个n n

?非奇异矩阵(det!=0)且B为一个n r?矩阵,则运算\A B等价于1

-。

A B

实验内容:

1.用Matlab随机生成44?的矩阵A和B。求下列指定的,,,

C D G H,并确定

那些矩阵是相等的。你可以利用Matlab计算两个矩阵的差来测试两个矩阵是否相等。

(1)C=A*B,D=B*A,G=(A’*B’)’,H=(B’*A’)’C=H;D=G;

(2)C=A’*B’,D=(A*B)’,G=B’*A’,H=(B*A)’C=H;D=G;

(3)C=inv(A*B),D=inv(A)*inv(B),G=inv(B*A),H=inv(B)*inv(A)

(4)C=inv((A*B)’),D=inv(A’*B’),G=inv(A’)*inv(B’),H=(inv(A)*inv(B))’(3)(4)中无相等的

2.令n=200,并使用命令

A=floor(10*rand(n));

b=sum(A ’)’

z=ones(n,1); 注释:(n 行一列全为1的矩阵)

生成一个n n ?矩阵和两个n R 中的向量,它们的元素均为整数。(因为矩阵和向量都很大,我们添加分号来控制输出。

(1) 方程组 Ax b =的真解应为z 。为什么? 【A 中的每一行的元素之和

正好等于对应b 的每一列,故z 为其一解,又det 不等于0,RA=RAb=n ,故z 为其解】试说明,可在Matlab 中利用”\”运算或计算1A -,然后用计算1A b -来求解。比较这两种计算方法的速度和精度。我们将使用Matlab 命令tic 和toc 来测量每一个计算过程消耗的时间。只需要用下面的命令:

tic,x=A\b ;toc tic,y=inv(A)*b; toc

哪一种方法更快? tic,x=A\b ;更快!

为了比较这两种方法的精度,可以测量求得的解x 和y 与真解z 接近的程度。利用下面的命令:

max(abs(x-z)) max(abs(y-z))

哪种方法的到的解更精确?

>> max(abs(x-z))= 4.0168e-013 更精确!

>> max(abs(y-z)) = 6.1107e-013 (2) 用n=500和n=1000替换(1)中的n 。 如(1)结果一样!

3.令A=floor(10*rand(6))。根据构造,矩阵A将有整数元。将矩阵A的第六列更改,使得矩阵A为奇异的。令

B=A’,A(:,6)=-sum(B(1:5,:))’

(1)设x=ones(6,1),并利用Matlab计算Ax。为什么我们知道A必为奇异的?【因化简列,————>列成比例】试说明。通过化为行最简

形来判断A是奇异的。

(2)令B=x*[1:6],乘积AB应为零矩阵。为什么?【因A的每一行的前五个元素之和等于第六个元素的相反数,且在A上的每一行的元素同

乘以相同的数,则仍等于0】试说明。用Matlab的*运算计算AB进

行验证。

(3)令C=floor(10*rand(6))和D=B+C,尽管C D

,但乘积AC和AD是相等的。为什么?试说明。计算A*C和A*D,并验证它们确实相等。

【此处B为令B=x*[1:6];A为A(:,6)=-sum(B(1:5,:))’】

由于A*B=0;故AC=AD;A(B+C)=AB+AC;

4.采用如下方式构造一个矩阵。令

B=eye(10)-triu(ones(10),1),参见最后附表二:为什么我们知道B必为非奇异的?

【上三角矩阵的行列式的值等于对角线上的元素相乘】

令C=inv(B)且x=C(:,10),

现在用B(10,1)=-1/256将B进行微小改变。利用Matlab计算乘积Bx。

由这个计算结果,你可以得出关于新矩阵B的什么结论?【化简此时B,得行最简式,RB=9<10,可以得出B的第10列(从1—9行)与x互为相反数,且都是2的指数幂数,且第十行为0,】它是否为奇异的?

【是】试说明。用Matlab计算它的行最简形。

5.生成一个矩阵A:

A=floor(20*rand(6))

并生成一个向量b:

B=floor(20*rand(6,1))-10

(1)因为A是随机生成的,我们可以认为它是非奇异的。那么方程组Ax b

=应有唯一解。用运算“\”求解。用Matlab计算[A b]的行最简形U。比较U的最后一列和解x,结果是什么?【相等】在

精确算术运算时,它们应当是相等的。为什么?【行最简式中可写

出对应元素的实际含义,对应处的未知元就等于最后的数】试说明。

为比较他们两个,计算差U(:,7)-x或用format long考虑它们。

(2)现在改变A,试它成为奇异的。令A(:,3)=A(:,1:2)*[4 3]’【第一列乘以4加上第二列乘以3替换到第三列上】,利用Matlab计算

rref([A b])。方程组Ax b

=有多少组解?【无解】试说明。

【RA

(3)令y=floor(20*rand(6,1))-10 且c=A*y,为什么我们知道方程组Ax=c必为相容?的?【x此时必有一解y,故为相容的】试说明。

计算[A c]的行最简形U。方程组Ax b

=有多少组解?【无穷多解】试说明。【RA=RA c<6】

(4) 由行最简形确定的自由变量应为3x 。通过考察矩阵U 对应的方程

组,可以求得30x =时所对应的解。将这个解作为列向量w 输入Matlab 中。为检验Aw c =,计算剩余向量c Aw -。

(5) 令(:,7)(6,1)U zeros =。矩阵U 应对应于[]|0A 的行最简形。用U 求

自变量31x =时齐次线性方程组的解(手工计算),并将你的结果输入为向量Z 。用A*Z 检验你的结论。

(6) 令3*v w z =+。向量v 应为方程组Ax c =的解。为什么?试说明。

用Matlab 计算剩余向量来验证v 为方程组的解。在这个解中,自由变量3x 的取值是什么? 【3x =3】 如何使用向量w 和z 来求所有可能的方程组的解?【v=w+n*z,其中n 为任意实数】试说明。

6. 考虑下图:

(1) 确定图的邻接矩阵A ,将其输入Matlab ;

(2) 计算A 2并确定长度为2的路的条数【72】,其起止点分别为:【A^2+A

中的数值之和,数字表示有几种路径,具体看程序】

(3) 计算A 4、A 6、A 8并回答(2)中各种情况长度为4、【368】6、【2362】

8、【15800】的路的条数。试推测什么时候从顶点V i 到V j 没有长度为偶数 【即为0】 的路。 【i=1,j=6; i=2,j=5; i=3,j=6或8; i=4,j=7; i=5,j=8;i=6,j=1或3; i=7,j=4; i=8,j=3或6;】

(4) 计算A 3、A 5、A 7并回答(2)中各情况长度为3、【154】5、【922】

7【6098】的路的条数。你由(3)得到的推测对长度为奇数的路是否成立?【不成立】,试说明【见程序】。推测根据i+j+k 的奇偶性,

是否存在长度为k 的路。【若i+j+k 为偶数,不存在;相反,则存在】 【路径见程序】

(5) 如果我们在图中增加边{V3,V6},{V5,V8},新图的邻接矩阵B 可首先

令B=A ,然后令B(3,6)=1, B(6,3)=1, B(5,8)=1, B(8,5)=1,对k=2,3,4,5计算B k 。(4)中的推测在新的图形中是否还是成立的?【不成立】见程序】

(6) 在图中增加{V 6,V 8},并构造得到的图的邻接矩阵C ,计算C 的幂次,

并验证你在(4)中的推测对这个新图是否仍然成立。【不成立】【见程序】

V V 43

7.令A=magic(8),然后计算其行最简形。使得首1对应于前三个变量123,,x x x ,且其余的五个变量均为自由的。

(1)令c=[1:8]’,通过计算矩阵[A c]的行最简形确定方程组Ax=c 是否相容。方程组是相容的吗? 【不相容】 试说明。 【RA

并考虑方程组Ax=b 。该方程组应为相容的。通过U=rref([A b])验证。对五个自由变量的任一组取值,我们都应可以得到一组解。事实上,令

x 2=floor(10*rand(5,1)),若x 2表示方程组解的最后5个坐标,则我们由x 2求得x 1=(x1,x2,x3)’。要这样做,只需要令U=rref([A b])。U 的非零行对应于分块形式的线性方程组

[]12x E U c x ??

=????

为解此方程组,令V=U(1:3,4:8),c=U(1:3,9)

并利用Matlab ,根据x 2,c 和V 计算x 1。令x=[x 1;x 2],验证x 是方程组的解。

8.令 B=[-1,-1;1,1]和A=[zeros(2),eye(2);eye(2),B] 验证B 2=0。

(1)用Matlab 计算A 2,A 4,A 6,A 8。猜想用子矩阵E ,O 和B 如何表示分块形式的A 2k 。用数学归纳法证明你的猜想对任何正整数k 都是成立的。 (2)用Matlab 计算A 3,A 5,A 7和A 9。猜想用子矩阵E ,O 和B 如何表示分块形式的A 2k-1。用数学归纳法证明你的猜想对任何正整数k 都是成立的。 9.(1) Matlab 命令

A=floor(10*rand(6)),B=A ’*A

将得到元素为整数的对称矩阵。为什么?试说明。【第i 行第j 列的数等于第i 列的数分别乘以第j 列的数之和;第j 行第i 列的数等于第j 列的数分别乘以第i 列的数之和,故为对称矩阵】

用这种方法计算B 来验证结论,然后将B 划分成四个3x3的子矩阵。在Matlab 中求子矩阵,令

B11=B(1:3,1:3),B12=B(1:3,4:6)

并用B 的第四行到第6行类似定义B21和B22。

(2)令 C=inv(B11)。应有C T =C 和B21T =B12。为什么?【对称阵的逆矩阵

与该逆矩阵的转置是相等的,B12的第i 行的数等于B21的第i 列的数】 试说明。用Matlab 运算符’计算转置,并验证结论。然后,令

G=B21*C 和 H=B22-B21*C*B21’

利用Matlab 函数eye 和zeros 构造

0110,0

E B L D G E H ????

==?

??????? 计算W=L*D*L ’,并通过计算W-B 与B 进行比较。证明:若用算术运算精确计算LDL T ,它应准确等于B 。 附表: 第一题: (1)

>> A=rand(4); >> B=rand(4); >> C=A*B; >> D=B*A; >> G=(A'*B')'; >> H=(B'*A')'; >> C-D

ans =

2.2376e-001 4.7289e-001 1.3979e+000 1.3204e+000 -6.3633e-001 -

3.0354e-001 2.2485e-002 -1.5056e-001 -1.7227e-001 -1.1938e-001 2.9484e-001 2.3624e-001 -8.7955e-001 -6.5016e-001 8.0370e-002 -2.1506e-001

>> C-G

ans =

2.2376e-001 4.7289e-001 1.3979e+000 1.3204e+000 -6.3633e-001 -

3.0354e-001 2.2485e-002 -1.5056e-001 -1.7227e-001 -1.1938e-001 2.9484e-001 2.3624e-001 -8.7955e-001 -6.5016e-001 8.0370e-002 -2.1506e-001

>> C-H

ans =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

>> D-G

ans =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

>> D-H

ans =

-2.2376e-001 -4.7289e-001 -1.3979e+000 -1.3204e+000 6.3633e-001 3.0354e-001 -2.2485e-002 1.5056e-001 1.7227e-001 1.1938e-001 -2.9484e-001 -2.3624e-001 8.7955e-001 6.5016e-001 -8.0370e-002 2.1506e-001

>> G-H

ans =

-2.2376e-001 -4.7289e-001 -1.3979e+000 -1.3204e+000 6.3633e-001 3.0354e-001 -2.2485e-002 1.5056e-001

1.7227e-001 1.1938e-001 -

2.9484e-001 -2.3624e-001 8.7955e-001 6.5016e-001 -8.0370e-002 2.1506e-001 >>

(2)

>> C=A'*B';

>> D=(A*B)';

>> G=B'*A';

>> H=(B*A)';

>> C-D

ans =

-2.2376e-001 6.3633e-001 1.7227e-001 8.7955e-001 -4.7289e-001 3.0354e-001 1.1938e-001 6.5016e-001 -1.3979e+000 -2.2485e-002 -2.9484e-001 -8.0370e-002 -1.3204e+000 1.5056e-001 -2.3624e-001 2.1506e-001

>> C-G

ans =

-2.2376e-001 6.3633e-001 1.7227e-001 8.7955e-001 -4.7289e-001 3.0354e-001 1.1938e-001 6.5016e-001 -1.3979e+000 -2.2485e-002 -2.9484e-001 -8.0370e-002

-1.3204e+000 1.5056e-001 -2.3624e-001 2.1506e-001

>> C-H

ans =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

>> D-G

ans =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

>> D-H

ans =

2.2376e-001 -6.3633e-001 -1.7227e-001 -8.7955e-001

4.7289e-001 -3.0354e-001 -1.1938e-001 -6.5016e-001 1.3979e+000 2.2485e-002 2.9484e-001 8.0370e-002 1.3204e+000 -1.5056e-001 2.3624e-001 -2.1506e-001

>> G-H

ans =

2.2376e-001 -6.3633e-001 -1.7227e-001 -8.7955e-001 4.7289e-001 -

3.0354e-001 -1.1938e-001 -6.5016e-001 1.3979e+000 2.2485e-002 2.9484e-001 8.0370e-002 1.3204e+000 -1.5056e-001 2.3624e-001 -2.1506e-001 >>

(3)

>> C=inv(A*B);

>> D=inv(A)*inv(B);

>> G=inv(B*A);

>> H=inv(B)*inv(A);

>> C-D

ans =

-3.9602e+001 -1.4016e+001 1.4537e+001 2.2261e+001 1.5266e+001 1.5778e+001 -1.9398e+001 -3.9304e+001

1.0821e+001 1.4313e+000 -

2.7296e+001 -4.8956e+001 1.3845e+001 -5.5182e-001 2.6289e+001 5.1120e+001

>> C-G

ans =

-3.9602e+001 -1.4016e+001 1.4537e+001 2.2261e+001 1.5266e+001 1.5778e+001 -1.9398e+001 -3.9304e+001 1.0821e+001 1.4313e+000 -2.7296e+001 -4.8956e+001 1.3845e+001 -5.5182e-001 2.6289e+001 5.1120e+001

>> C-H

ans =

-5.6843e-014 -1.2879e-014 3.0198e-014 7.1054e-014 -6.5370e-013 -1.4744e-013 3.3396e-013 8.2423e-013 -1.5774e-012 -3.5527e-013 7.8870e-013 1.9895e-012 1.8758e-012 4.2988e-013 -9.4502e-013 -2.4016e-012

>> D-G

ans =

4.9738e-013 1.1013e-013 -8.3489e-014 -3.1264e-013 1.7053e-013 3.7303e-014 -2.4869e-014 -1.0747e-013

5.8265e-013 1.3145e-013 -9.4147e-014 -3.8369e-013 -1.0516e-012 -2.3448e-013 1.7053e-013

6.6791e-013

>> D-H

ans =

3.9602e+001 1.4016e+001 -1.4537e+001 -2.2261e+001 -1.5266e+001 -1.5778e+001 1.9398e+001 3.9304e+001 -1.0821e+001 -1.4313e+000 2.7296e+001

4.8956e+001 -1.3845e+001

5.5182e-001 -2.6289e+001 -5.1120e+001

>> G-H

ans =

3.9602e+001 1.4016e+001 -1.4537e+001 -2.2261e+001 -1.5266e+001 -1.5778e+001 1.9398e+001 3.9304e+001 -1.0821e+001 -1.4313e+000 2.7296e+001

4.8956e+001 -1.3845e+001

5.5182e-001 -2.6289e+001 -5.1120e+001 >>

(4)

>> c=inv((A*B)');

>> d=inv(A'*B');

>> g=inv(A')*inv(B');

>> h=(inv(A)*inv(B))';

>> c-d

ans =

-3.9602e+001 1.5266e+001 1.0821e+001 1.3845e+001 -1.4016e+001 1.5778e+001 1.4313e+000 -5.5182e-001

1.4537e+001 -1.9398e+001 -

2.7296e+001 2.6289e+001

2.2261e+001 -

3.9304e+001 -

4.8956e+001

5.1120e+001

>> c-g

ans =

-1.6875e-014 -5.4712e-013 -1.3216e-012 1.5774e-012

-2.8866e-015 -1.3145e-013 -3.1264e-013 3.7659e-013 8.8818e-015 2.6290e-013 6.3949e-013 -7.6028e-013 2.5757e-014 7.1765e-013 1.7195e-012 -2.0606e-012

>> c-h

ans =

-3.9602e+001 1.5266e+001 1.0821e+001 1.3845e+001 -1.4016e+001 1.5778e+001 1.4313e+000 -5.5182e-001

1.4537e+001 -1.9398e+001 -

2.7296e+001 2.6289e+001

2.2261e+001 -

3.9304e+001 -

4.8956e+001

5.1120e+001

>> d-g

ans =

3.9602e+001 -1.5266e+001 -1.0821e+001 -1.3845e+001 1.4016e+001 -1.5778e+001 -1.4313e+000 5.5182e-001 -1.4537e+001 1.9398e+001 2.7296e+001 -2.6289e+001 -2.2261e+001 3.9304e+001

4.8956e+001 -

5.1120e+001

>> d-h

ans =

-2.4158e-013 -1.1724e-013 -2.7711e-013 5.2580e-013

-5.6843e-014 -1.8652e-014 -5.3291e-014 1.0658e-013

4.2633e-014 1.7764e-014 4.7962e-014 -8.8818e-014 1.5987e-013 6.7502e-014 1.8474e-013 -3.3396e-013

>> g-h

ans =

-3.9602e+001 1.5266e+001 1.0821e+001 1.3845e+001 -1.4016e+001 1.5778e+001 1.4313e+000 -5.5182e-001

1.4537e+001 -1.9398e+001 -

2.7296e+001 2.6289e+001

2.2261e+001 -

3.9304e+001 -

4.8956e+001

5.1120e+001

>>

第二题:

(1)

>> n=200;

>> A=floor(10*rand(n));

>> b=sum(A')';

>> z=ones(n,1);

>> c=linsolve(A,b);

>> d=c-z;精度为1e-14-----1e-13;

tic,x=A\b,toc = Elapsed time is 0.016000 seconds.

tic,inv(A)*b,toc = Elapsed time is 0.031000 seconds.

(2)

n=500;

>> tic,x=A\b;toc

Elapsed time is 0.187000 seconds. 更快!

>> tic,y=inv(A)*b;toc

Elapsed time is 0.343000 seconds.

>> max(abs(x-z))=4.3987e-013 更精确!

>> max(abs(y-z)) = 2.2524e-012

>>

>> n=1000;

>> tic,x=A\b;toc

Elapsed time is 0.920000 seconds. 更快!

>> tic,y=inv(A)*b;toc

Elapsed time is 1.404000 seconds.

>> max(abs(x-z)) =1.8221e-012 更精确!

>> max(abs(y-z)) =2.0862e-011

>>

(3)

>> A=floor(10*rand(6));

>>B=A’;

>> A(:,6)=-sum(B(1:5,:))'

A =

0 6 7 7 0 -20

5 8 4 7 0 -24

6 7 4 3 3 -23

8 5 8 3 3 -27

1 8 3 9 4 -25

7 3 2 8 8 -28

>> x=ones(6,1);

>> b=A*x

b =

>> det(A)= 0

>> rref(A)

用MATLAB解决线性代数问题实验报告

实验三使用MATLAB解决线性代数问题学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144 实验目的: 学习MATLAB有关线性代数运算的指令,主要学习运用MATLAB解决矩阵除法,线性方程组的通解,矩阵相似 对角化问题,以及解决投入产出分析等应用问题。 实验内容: 矩阵转置:A=[1 2;3 4];B=[4 3;2 1]; >> A',B' ans = 1 3 2 4 ans = 4 3 3 1 矩阵加减:A-B ans= -3 -1 1 3 矩阵乘法:A*B,A.*B(数组乘法)||比较矩阵乘法与数组乘法的区别ans= 8 5 20 13 ans= 4 6 6 4 矩阵除法:A\B,B./A ans=

-6 -5 5 4 ans= 4 1.5 0.6667 0.25 特殊矩阵生成:zeros(m,n)||生成m行n列的矩阵 ones(m,n)||生成m行n列的元素全为一的矩阵 eye(n)||生成n阶单位矩阵 rand(m,n)||生成m行n列[0 ,1]上均匀分布随 机数矩阵 zeros(2,3) ans = 0 0 0 0 0 0 >> ones(3,3) ans = 1 1 1 1 1 1 1 1 1 >> eye(3)

ans = 1 0 0 0 1 0 0 0 1 >> rand(2,4) ans = Columns 1 through 3 0.9501 0.6068 0.8913 0.2311 0.4860 0.7621 Column 4 0.4565 0.0185 矩阵处理:trace(A)||返回矩阵的迹 diag(A)||返回矩阵对角线元素构成的向量 tril(A)||提取矩阵的下三角部分 triu(A)||提取矩阵的上三角部分 flipud(A)||矩阵上下翻转 fliplr(A)||矩阵左右翻转 reshape(A,m,n)||将矩阵的元素重排成m行n列矩阵A=[1 2 3;4 5 6;7 8 9]; >> t=trace(A),d=diag(A),u=triu(A)

2012矩阵论复习题

2012矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)( 1)确定T 在基},{j i 下的矩阵; 2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

第6章 求解线性代数方程组和计算矩阵特征值的迭代法

数值计算与MATLAB 1

《数值计算与MATLAB 》 第6章求解线性代数方程组和计算矩阵特征值的迭代法§1 求解线性代数方程组的迭代法 §2 方阵特征值和特征向量的计算 §3 矩阵一些特征参数的MATLAB计算

《数值计算与MATLAB 》 6.1 求解线性代数方程组的迭代法 1、迭代法的基本原理 如果线性方程组Ax=b的系数矩阵A非奇异,则方程组有唯一解。把这种方程中的方阵A分解成两个矩阵之差:A=C-D 若方阵C是非奇异的,把A它代入方程Ax=b中,得出 (C-D)x=b,两边左乘C-1,并令 M=C-1D,g= C-1b,移项可将方程Ax=b变换成: x=Mx+g 据此便可构造出迭代公式: x k+1 =Mx k+g, M=C-1D称为迭代矩阵。

《数值计算与MATLAB 》2. 雅可比(Jacobi)迭代法 如果方程组Ax=b的系数矩阵A非奇异,a ii ≠0,若可以把A 分解成: A=D-L-U=D+(-L)+(-U), D=diag(a11,a22,…,a nn); -L是严格下三角阵; -U是严格上三角矩阵; x= D-1((L+U)x +b)=D-1(L+U)x+ D-1b x k+1=D-1((L+U)x k+b)= D-1(L+U)x k + D-1b M M=D-1(L+U)称为雅可比迭代矩阵

《数值计算与MATLAB 》 ? ? ? ? ? ? ? ? ? ? ? ? = 6 7- 4 1 2 1- 2 6- 3- 1 1 5- 1 2 A ? ? ? ? ? ? ? ? ? ? ? ? = 6 1- 3- 2 D ? ? ? ? ? ? ? ? ? ? ? ? = 7 4- 1- 2- 1- L ? ? ? ? ? ? ? ? ? ? ? ? = 2- 6 1- 5 1- U M=D-1(L+U)= ? ? ? ? ? ? ? ? ? ? ? ? 7/6 2/3 - 1/6 - 2 2 2- 1/3 1/2 - 5/2 1/2 -

线性代数习题[第三章]-矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆 (2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ?? ??=--?? ??-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ?? ?? ??=???? ?? 01,2,,i i a b i n ≠?? ??=?? 2.设12312323k A k k -? ? ??=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3) ()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

Matlab 使用之线性代数综合实例讲解

一、上机目的 1、培养学生运用线性代数的知识解决实际问题的意识、兴趣和能力; 2、掌握常用计算方法和处理问题的方法; 二、上机内容 1、求向量组的最大无关组; 2、解线性方程组; 三、上机作业 1、设A=[2 1 2 4; 1 2 0 2; 4 5 2 0; 0 1 1 7]; 求矩阵A列向量组的一个最大无关组. >> A=[2 1 2 4;1 2 0 2;4 5 2 0;0 1 1 7] A = 2 1 2 4 1 2 0 2 4 5 2 0 0 1 1 7 >> rref(A) ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 所以矩阵A的列向量组的一个最大无关组就是它本身; 2、用Matlab解线性方程组 (1) >> A=[2 4 -6;1 5 3;1 3 2] A = 2 4 -6 1 5 3 1 3 2 >> b=[-4;10;5]

b = -4 10 5 >> x=inv(A)*b x = -3.0000 2.0000 1.0000 >> B=[3 41 -62;4 50 3;11 38 25] B = 3 41 -62 4 50 3 11 38 25 >> c=[-41;100;50] c = -41 100 50 >> x=inv(B)*c x = -8.8221 2.5890 1.9465 3、(选作)减肥配方的实现 设三种食物每100克中蛋白质、碳水化合物和脂肪的含量如下表,表中还给出了20世纪80年代美国流行的剑桥大学医学院的简捷营养处方。现在的问题是:如果用这三种食物作为每天的主要食物,那么它们的用量应各取多少才能全面准确地实现这个营养要求? 四、上机心得体会

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

Matlab线性代数实验指导书

Matlab线性代数实验指导书 理学院线性代数课程组 二零零七年十月

目录 一、基础知识 (1) 1.1、常见数学函数 (1) 1.2、系统在线帮助 (1) 1.3、常量与变量 (2) 1.4、数组(矩阵)的点运算 (3) 1.5、矩阵的运算 (3) 二、编程 (4) 2.1、无条件循环 (4) 2.2、条件循环 (5) 2.3、分支结构 (5) 2.4、建立M文件 (6) 2.5、建立函数文件 (6) 三、矩阵及其运算 (7) 3.1、矩阵的创建 (7) 3.2、符号矩阵的运算 (11) 四、秩与线性相关性 (14) 4.1、矩阵和向量组的秩以及向量组的线性相关性 (14) 4.2、向量组的最大无关组 (14) 五、线性方程的组的求解 (16) 5.1、求线性方程组的唯一解或特解(第一类问题) (16) 5.2、求线性齐次方程组的通解 (18) 5.3、求非齐次线性方程组的通解 (19) 六、特征值与二次型 (22) 6.1、方阵的特征值特征向量 (22) 6.2、正交矩阵及二次型 (23)

一、基础知识 1.1常见数学函数 函数数学计算功能函数数学计算功能 abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整acos(x) 反余弦arcsinx gcd(m,n) 求正整数m和n的最大公约数acosh(x) 反双曲余弦arccoshx imag(x) 求复数x的虚部angle(x) 在四象限内求复数x的相角lcm(m,n)求正整数m和n的最小公倍 自然对数(以e为底数) asin(x) 反正弦arcsinx log(x) 常用对数(以 10 为底数) asinh(x) 反双曲正弦arcsinhx log10(x) atan(x) 反正切arctanx real(x) 求复数 x 的实部atan2(x,y) 在四象限内求反正切rem(m,n) 求正整数m和n的m/n之余数atanh(x) 反双曲正切arctanhx round(x) 对x四舍五入到最接近的整数 符号函数:求出 x 的符号ceil(x) 对x朝+∞方向取整 sign(x) conj(x) 求复数x的共轭复数 sin(x) 正弦sinx 反双曲正弦sinhx cos(x) 余弦cosx sinh(x) cosh(x) 双曲余弦coshx sqrt(x) 求实数x的平方根exp(x) 指数函数e x tan(x) 正切tanx fix(x) 对 x 朝原点方向取整 tanh(x) 双曲正切tanhx 如:输入 x=[-4.85 -2.3 -0.2 1.3 4.56 6.75],则: ceil(x)= -4 -2 0 2 5 7 fix(x) = -4 -2 0 1 4 6 floor(x) =-5 -3 -1 1 4 6 round(x) = -5 -2 0 1 5 7 1.2 系统的在线帮助 1.2.1 help 命令: 1.当不知系统有何帮助内容时,可直接输入 help以寻求帮助: >> help(回车) 2.当想了解某一主题的内容时,如输入: >> help syntax (了解Matlab的语法规定) 3.当想了解某一具体的函数或命令的帮助信息时,如输入: >> help sqrt (了解函数sqrt的相关信息) 1.2.2 lookfor 命令 现需要完成某一具体操作,不知有何命令或函数可以完成,如输入: >> lookfor line (查找与直线、线性问题有关的函数) 1.3 常量与变量

matlab实验二

实验2 MATLAB数值计算、符号运算功能 一、实验目的 1、掌握建立矩阵、矩阵分析与处理的方法。 2、掌握线性方程组的求解方法。 3、掌握数据统计和分析方法、多项式的常用运算。 4、掌握求数值导数和数值积分、常微分方程数值求解、非线性代数方程数值求解的方法。 5、掌握定义符号对象的方法、符号表达式的运算法则及符号矩阵运算、符号函数极限及导数、符号函数定积分和不定积分的方法。 二、预习要求 (1)复习4、5、6章所讲内容; (2)熟悉MATLAB中的数值计算和符号运算的实现方法和主要函数。 三、实验内容 1、已知 29618 20512 885 A -?? ?? =?? ?? - ?? ,求A的特征值及特征向量,并分析其数学意义。 >> A=[-29,6,18;20,5,12;-8,8,5]; >> [V,D]=eig(A) V = 0.7130 0.2803 0.2733 -0.6084 -0.7867 0.8725 0.3487 0.5501 0.4050 D = -25.3169 0 0 0 -10.5182 0 0 0 16.8351 V为A的特征向量,D为A的特征值,3个特征值是-25.3169、10.5182和16.8351。 >> A*V ans = -18.0503 -2.9487 4.6007 15.4017 8.2743 14.6886 -8.8273 -5.7857 6.8190 >> V*D

ans = -18.0503 -2.9487 4.6007 15.4017 8.2743 14.6886 -8.8273 -5.7857 6.8190 经过计算,A*V=V*D 。 2、 不用rot90函数,实现方阵左旋90°或右旋90°的功能。例如,原矩阵为A ,A 左旋后得到B ,右旋后得到C 。 147102581136912A ????=??????,101112789456123B ??????=??????,321654987121110B ??????=?????? 提示:先将A 转置,再作上下翻转,则完成左旋90°;如将A 转置后作左右翻转,则完成右旋转90°,可用flipud 、fliplr 函数。 >> a=[1 4 7 10;2 5 8 11;3 6 9 12] a= 1 4 7 10 2 5 8 11 3 6 9 12 >> B=rot90(a) B = 10 11 12 7 8 9 4 5 6 1 2 3 >>C= rot90(s,3) C= 3 2 1 6 5 4 9 8 7 12 11 10

Hilbert矩阵病态线性代数方程组的求解

实验一病态线性代数方程组的求解 1.估计Hilbert矩阵2-条件数与阶数的关系 运行tiaojianshu.m 输入m=10 可以得到如下表的结果 2.选择不同维数,分别用Guass消去(LU分解),Jacobi迭代,GS 迭代,SOR迭代求解,比较结果。 说明:Hx=b,H矩阵可以由matlab直接给出,为了设定参考解,我们先设x为分量全1的向量,求出b,然后将H和b作为已知量,求x,与设定的参考解对比。 对于Jacobi迭代,GS迭代,SOR迭代,取迭代初值x0为0向量,迭代精度eps=1.0e-6,迭代次数<100000, SOR迭代中w=1.2和0.8分别计算。 a. n=5 b. n=8

c. n=10 d. n=15

取不同的n值,得到如下结果: 对于Guass法,可以看出来,随着n的增大,求解结果误差变大,这是因为随着n增大,系数矩阵的条件数变大,微小的扰动就容易造成很大的误差。最后得不到精确解。 对于Jacobi迭代,计算结果为Inf,说明是发散的。 对于GS迭代和SOR迭代,结果是收敛的,但是可以看出迭代次数比较多,并且对于不同维数GS和SOR收敛速度不一样,有时候GS快,有时SOR快。对SOR取不同的w迭代速度也不一样,存在一个最优的松弛因子w。并且可以知道,迭代次数多少跟初值x0也有关系。 3.讨论病态问题求解的算法。 通过上面的实验分析,可以看出,求解病态矩阵的时候要小心,否则可能得不到所要求的精确度。可以采用高精度运算,用双倍多倍字长,使得由于误差放大而损失若干有效数字位之后,还能保留一些有效位。 另外可以通过对原方程作某些预处理,降低系数矩阵的条件数,因为cond(aA)=cond(A),所以不能通过将每一个方程乘上相同的常数来达到这个目标,可考虑将矩阵的每一行和每一列分别乘上不同的常数,亦即找到可逆的对角阵D1和D2将方程组化为 D1AD2y=D1b,x=D2y 这称为矩阵的平衡问题,但是这样计算量比原问题本身要多。 或者通过变分原理将求解线性方程组的问题转化为等价的求解无约束函数最优化问题的极小值等等,可以参考 [1]郑洲顺,黄光辉,杨晓辉求解病态线性方程组的混合算法

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

南邮MATLAB数学实验答案(全)

第一次练习 教学要求:熟练掌握Matlab 软件的基本命令和操作,会作二维、三维几何图形,能够用Matlab 软件解决微积分、线性代数与解析几何中的计算问题。 补充命令 vpa(x,n) 显示x 的n 位有效数字,教材102页 fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形 在下面的题目中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin lim x mx mx x →-与3 sin lim x mx mx x →∞- syms x limit((902*x-sin(902*x))/x^3) ans = 366935404/3 limit((902*x-sin(902*x))/x^3,inf) ans = 0 1.2 cos 1000 x mx y e =,求''y syms x diff(exp(x)*cos(902*x/1000),2) ans = (46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算 22 11 00 x y e dxdy +?? dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1) ans = 2.1394 1.4 计算4 2 2 4x dx m x +? syms x int(x^4/(902^2+4*x^2)) ans = (91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求 syms x diff(exp(x)*cos(902*x),10) ans = -356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x) 1.6 0x =的泰勒展式(最高次幂为4).

用Matlab学习线性代数_行列式

用Matlab学习线性代数__行列式 实验目的理解行列式的概念、行列式的性质与计算 Matlab函数det 实验内容 前面的四个练习使用整数矩阵,并演示一些本章讨论的行列式的性质。最后两个练习演示我们使用浮点运算计算行列式时出现的不同。 理论上将,行列式的值应告诉我们矩阵是否是奇异的。然而,如果矩阵是奇异的,且计算其行列式采用有限位精度运算,那么由于舍入误差,计算出的行列式的值也许不是零。一个计算得到的行列式的值很接近零,并不能说明矩阵是奇异的甚至是接近奇异的。此外,一个接近奇异的矩阵,它的行列式值也可能不接近零。 1.用如下方法随机生成整数元素的5阶方阵: A=round(10*rand(5)) 和B=round(20*rand(5))-10 用Matlab计算下列每对数。在每种情况下比较第一个是否等于第二个。(1)det(A) ==det(A T) (2)det(A+B) ;det(A)+det(B) (3)det(AB)==det(A)det(B) (4)det(A T B T) ==det(A T)det(B T) (5)det(A-1)==1/det(A) (6)det(AB-1)==det(A)/det(B) > A=round(10*rand(5)); >> B=round(20*rand(5))-10; >> det(A) ans = 5972 >> det(A') ans 5972 >> det(A+B) ans =

36495 >> det(A)+det(B) ans = 26384 >> det(A*B) ans = 4 >> det(A)*det(B) ans = 4 >> det(A'*B') ans = 4 >> det(A')*det(B') ans = 4 >> det(inv(A)) ans = 0.00016745 >> 1/det(A) ans = 0.00016745 >> det(A*inv(B)) ans = 0.29257 >> det(A)/det(B) ans = 0.29257 >> 2.n阶的幻方阵是否奇异?用Matlab计算n=3、4、5、…、10时的det(magic(n))。看起来发生了什么?验证当n=24和25时,结论是否仍然成立。【当n为奇数时,det(magic(n))不为0;当n为偶数时,det(magic(n))为0;】>> det(magic(3)) ans = -360 >> det(magic(4)) ans = >> det(magic(5)) ans = 5070000

线性代数MATLAB仿真实验报告

合肥学院 2018—2019学年第2学期 线性代数及应用 (模块) 实验报告 实验名称:线性代数MATLAB实验 实验类别:综合性 设计性□验证性 专业班级: 17通信工程(2)班 实验时间: 9-12周 组别:第组人数 3人 指导教师:牛欣成绩: 完成时间: 2019年 5 月9日

一. 小组成员 姓名学号具体分工 汪蔚蔚(组长) 1705022025 A报告最后的整合,编写,案例四的计算与应用 以及案例一的计算与证明 陶乐 1 1705022009 C案例二,化学方程式配平问题 程赢妹1505022036 A案例三,应用题灰度值的计算问题 二. 实验目的 1、案例一利用MATLAB进行线性代数计算,求出矩阵B 2、案例二利用MATLAB计算出每一个网格数据的值,然后每一个网格数据的值乘以256以后进行归一化处理,根据每个网格中的灰度值,绘制出灰度图像。 3、案例三利用MATLAB完成对化学方程式进行配平的应用 4、案例四利用MATLAB求极大线性无关组,并表示出其余向量 三. 实验内容 1、案例一: 0,1,0 ,=1,0,0, 0,0,0 A B AB BA A B ?? ?? =?? ?? ?? 已知矩阵和矩阵满足乘法交换律,即且求矩阵。 2、案例二 配平下列化学方程式: 3、案例三: 3*32 0.81.21.70.20.3 0.6021.61.20.6. 1MATLAB 2256MATLAB 给定一个图像的个方向上的灰度叠加值:沿左上方到右 下方的灰度叠加值依次为,,,,;沿右上方到左下 方的灰度叠加值依次为,。,,, )建立可以确定网络数据的线性方程组,并用求解 )将网络数据乘以,再取整,用绘制该灰度图像

研究生矩阵论课后习题答案全习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

实验汇总

《MATLAB语言与应用》实验课报告 学院:信息学院 班级:测控0902 姓名:陈白杨 学号:20092352

《MATLAB 语言与应用》实验课程任务书 一、 实验教学目标与基本要求 上机实验是本课程重要的实践教学环节;实验的目的不仅仅是验证理论知识,更重要的是通过上机实验,加强学生的实验手段与实践技能,掌握应用MATLAB 语言求解问题的方法,培养学生分析问题、解决问题、应用知识的能力和创新精神,全面提高学生的综合素质。 上机实验共8学时。主要实验内容是基于理论课所学知识对课后典型习题进行MATLAB 求解,基本掌握常见数学问题的求解方法与命令调用,更深入地认识和了解MATLAB 语言强大的计算功能。 上机实验最终以书面报告的形式提交,并作为期末成绩考核内容的一部分。 二、 实验内容(8学时) 第一部分MATLAB 语言编程、科学绘图与基本数学问题求解(4学时) 主要内容:掌握MATLAB 语言编程基础、科学绘图方法、微积分问题、线性代数问题等基本数学问题的求解与应用。 练习题: 1、 安装MATLAB 软件,应用demo 命令了解主要功能,熟悉基本功能,会用help 命令。 2、 用MATLAB 语句输入矩阵A 和B ? ? ??? ???? ???=1423 143212344321 A , ? ? ??? ?? ?? ???++++++++++++++++=4j 11j 43j 22j 34j 11j 42j 33j 24j 13j 22j 31j 41j 42j 33j 24j 1B 前面给出的是44?矩阵,如果给出5)6,5(=A 命令将得出什么结果? >> A=[1 2 3 4;4 3 2 1;2 3 4 1;3 2 4 1] A = 1 2 3 4 4 3 2 1 2 3 4 1 3 2 4 1 >> B=[1+4j,2+3j,3+2j,4+1j;4+1j,3+2j,2+3j,1+4j;2+3j,3+2j,4+1j,1+4j;3+2j,2+3j,4+1j,1+4j] B =

matlab线性代数实验

线性代数MATLAB 实验指导书 MATLAB 是Matrix Laboratory 的缩写,是一个集数值计算、图形处理、符号运算、文字处理、数学建模、实时控制、动态仿真和信号处理等功能为一体的数学应用软件,而且该系统的基本数据结构是矩阵,又具有数量巨大的内部函数和多个工具箱,使得该系统迅速普及到各个领域,尤其在大学校园里,许多学生借助它来学习大学数学和计算方法等课程,并用它做数值计算和图形处理等工作。我们在这里介绍它的基本功能,并用它做与线性代数相关的数学实验。 在正确完成安装MATLAB 软件之后,直接双击系统桌面上的MATLAB 图标,启动MATLAB ,进入MATLAB 默认的用户主界面,界面有三个主要的窗口:命令窗口(Commend Window ), 当前目录窗口(Current Directory ),工作间管理窗口(Workspace )。 命令窗口是和Matlab 编译器连接的主要窗口,“>>”为运算提示符,表示Matlab 处于准备状态,当在提示符后输入一段正确的运算式时,只需按Enter 键,命令窗口中就会直接显示运算结果。 实验1 矩阵的运算,行列式 实验名称:矩阵的运算,行列式 实验目的:学习在matlab 中矩阵的输入方法以及矩阵的相关运算,行列式。 实验原理:介绍相关的实验命令和原理 (1)一般矩阵的输入 (2)特殊矩阵的生成 (3)矩阵的代数运算 (4)矩阵的特征参数运算 (5)数字行列式和符号行列式的计算 实验命令 1 矩阵的输入 Matlab 是以矩阵为基本变量单元的,因此矩阵的输入非常方便。输入时,矩阵的元素用方括号括起来,行内元素用逗号分隔或空格分隔,各行之间用分号分隔或直接回车。 例1 输入矩阵 ???? ? ??--=654301211A ,可以在命令窗口中输入 >>A=[1 1 2;-1 0 3;4 -5 6] A = 1 1 2 -1 0 3 4 - 5 6 2 特殊矩阵的生成 某些特殊矩阵可以直接调用相应的函数得到,例如: zeros(m,n) 生成一个m 行n 列的零矩阵

线性代数方程组数值解法及MATLAB实现综述

线性代数方程组数值解法及MATLAB 实现综述 廖淑芳 20122090 数计学院 12计算机科学与技术1班(职教本科) 一、分析课题 随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。 直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。 迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。迭代法包括Jacobi 法SOR 法、SSOR 法等多种方法。 二、研究课题-线性代数方程组数值解法 一、 直接法 1、 Gauss 消元法 通过一系列的加减消元运算,也就是代数中的加减消去法,以使A 对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。 1.1消元过程 1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。 11121121222212n n n n nn n a a a b a a a b a a a b ?? ? ? ? ???L L M M O M M L (1)(1)(1)(1)(1)11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()000000n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ???L L L M M M O M M L 步骤如下:

matlab数学实验

《管理数学实验》实验报告 班级姓名 实验1:MATLAB的数值运算 【实验目的】 (1)掌握MATLAB变量的使用 (2)掌握MATLAB数组的创建, (3)掌握MA TLAB数组和矩阵的运算。 (4)熟悉MATLAB多项式的运用 【实验原理】 矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。 【实验步骤】 (1)使用冒号生成法和定数线性采样法生成一维数组。 (2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。 (3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。 (4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。 【实验内容】 (1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。 0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50) (2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。 reshape(A,2,9) ans = Columns 1 through 7 1 3 5 7 9 11 13 2 4 6 8 10 12 14 Columns 8 through 9 15 17 16 18 reshape(A,2,3,3) ans(:,:,1) = 1 3 5 2 4 6 ans(:,:,2) = 7 9 11 8 10 12 ans(:,:,3) = 13 15 17 14 16 18

矩阵论华中科技大学课后习题答案

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()| 0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3 ,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 解: (1)、(2)为R 上线性空间 (3)不是,由线性空间定义,对0α?≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 解:一组基 100 010 10 101010000000100............ ......0010010?? ???? ?????? ???? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ?? ? ? ?? ?? ? ? ? ?????? dim W =n ( n +1)/2 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 证明:因为dim U 1=dim U 2,故设 {}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基 2U γ?∈,有 ()12 r X γγβββ= 而 ()()12 12r r C αααβββ=,C 为过渡矩阵,且可逆 于是 ()()()112 12121r r r X C X Y U γγγγβββαααααα-===∈ 由此,得 21 U U ?

线性代数及matlab英汉对照

Matlab部分函数名的义源 rand(m,n) random 随机 inv(a) inverse 逆矩阵 root 平方根sqrt(a) squared abs(a) absolute value 绝对值 det(a) determinant 行列式 rank(a) rank 秩 trace(a) trace 迹 rref(a) reduced row echelon form 最简行阶梯形 space 零核空间null(a) null sym(a) symbol 符号 orth(a) orthogonal 正交 norm norm 模 poly(a) polynomial 多项式 roots(p) root 根 eig(a) eigen- 特征的eigensys(a) eigen- system 特征的 线性代数部分词汇英汉对照 adjoint matrix 伴随矩阵 algebraic cofactor 代数余子式 augmented matrix 增广矩阵 block matrix 分块矩阵 basic solution set 基础解系 characteristic equation 特征方程 characteristic polynomial 特征多项式 coefficient matrix 系数矩阵 cofactor 余子式 column vector 列向量 canonical form [二次型的]标准形 cramer’s rule 克莱姆法则 determinant of order n n阶行列式 diagonal matrix 对角矩阵 dimension 维数 echelon form 阶梯形 eigenvalue 特征值 eigenvector 特征向量 elementary matrix 初等矩阵 elementary row operation 行初等变换 full rank 满秩 general solution 通解 gram-schmidt process 施密特正交化过程 identity matrix 单位矩阵 index of inertia 惯性指数

相关文档
最新文档