蓄电池室资料

蓄电池室资料
蓄电池室资料

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

常用开关电源芯片大全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 DC-DC 电源转换器 1. 低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2. 低功耗开关型DC-DC电源转换器ADP3000 3. 高效3A开关稳压器AP1501 4. 高效率无电感DC-DC电源转换器FAN5660 5. 小功率极性反转电源转换器ICL7660 6. 高效率DC-DC电源转换控制器IRU3037 7. 高性能降压式DC-DC电源转换器ISL6420 8. 单片降压式开关稳压器L4960 9. 大功率开关稳压器L4970A 高效率单片开关稳压器L4978 高效率升压/降压式DC-DC电源转换器L5970 14. 高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 降压单片开关 稳压器LM2576/LM2576HV 16. 可调升压开关稳压器LM2577 降压开关稳压器LM2596 18. 高效率5A 开关稳压器LM2678 19. 升压式DC-DC电源转换器LM2703/LM2704 20. 电流模式升压式电源转换器LM2733 21. 低噪声升压式电源转换器LM2750 22. 小型75V降压式稳压器LM5007 23. 低功耗升/降压式DC-DC电源转换器LT1073 24. 升压式DC-DC电源转换器LT1615 25. 隔离式开关稳压器LT1725 26. 低功耗升压电荷泵LT1751 27. 大电流高频降压式DC-DC电源转换器 LT176 5 28. 大电流升压转换器LT1935 29. 高效升压式电荷泵LT1937 30. 高压输入降压式电源转换器LT1956 32. 高压升/ 降压式电源转换器LT3433

开关电源题库

开关电源题库(中级) 一、填空题 1、通信用智能高频开关电源一般包含交流配电、直流配电_整流模块以及监控单元 等四个组成部分。 2、高频开关电源的滤波电路一般由输入滤波、工频滤波、输出滤波以及防辐射干 扰等四个基本电路组成。 3、高频开关电源具有可靠、稳定、智能化、效率高以及动态性能好等 特点。 4、整流模块限流的目的是保护整流器和保护蓄电池。 5、通信电源检测直流负载电流常见的有分流器与霍尔器件两种方式。 6、维护规程中电源设备故障的基本定义是:1、电源设备无法供给通信设备所要求 的标称电源,2、电源设备所供给的电源指标达不到通信设备的要求。 7、通信设备的直流供电系统中,蓄电池组和开关电源并联运行时起到荷电备 用和平滑滤波的作用 8、通信电源系统中使用的防雷器件一般常见的是压敏电阻与__气体放电管_。 9、某通信电源配置4个50A整流模块分别输出电流为21A,22A,19A,18A。该电 源的不均流度为___4%_______。 10、通信局(站)的基础电源分为交流基础电源和直流基础电源两大类。 11、电源系统输入功率因数是输入有功功率与输入视在功率 之比。 12、直流供电方式在有交流电源时,整流器、蓄电池组 并联浮充工作。当交流电停电时,由蓄电池组、供电。当交流 电恢复时,实行恒压限流供电方式。 13、电源系统的可靠性指标用不可用度表征,不可用度表示为:电源系统故障时间 与电源系统故障时间与正常供电时间之和的比。 14、开关电源系统的输出杂音衡量指标分:电话衡重杂音、峰峰值杂音,宽带杂音, 离散频率杂音。 15、组合式电源系统,直流配电屏内直流压降不能超过500 mV. 16、通信电源维护主要要求是保证供电的可靠性。因此要根据负载的重要程度来决 定通信电源是否需要__电池______保护与负载下电功能。 17、联合接地是指:保护地、防雷地、工作地三地合一。 18、电源设备的电磁干扰性主要分为传导干扰、谐波干扰两个方面。 19、联合接地系统由:接地体、接地引入线、接地汇集线、接地线 四部分所组成。 20、脉冲频率调制(PFM)是指:导通脉冲宽度恒定,通过改变开关频率来 改变占空比的方式。 21、通信电源系统的整流器若采用单相供电,则一般采用有源功率校正技术。 22、系统温度补偿值的设置依据是当系统工作在浮充状态时﹐当电池温度偏 离25℃时﹐对电池充电电压所做的微小调整。简单来说﹐当电池温度上升时﹐ 电池充电电压下降﹔当电池温度下降时﹐电池充电电压上升。 23、电源应急故障处理的核心是保障直流供电不间断。 24、在市电正常时,整流器一方面给通信设备供电,一方面给蓄电池充电,此种供

(整理)蓄电池性能检测装置详细资料

蓄电池性能检测系统锂电池充放电柜SBCT-3030TS 一、概述 蓄电池使用寿命一般为5-6年,在这么长的使用过程中往往会出现:电池端电压不均匀、电池壳变形、电解液渗漏、容量不足等现象,为供电带来安全隐患。蓄电池容量,是蓄电池充足电后放出电能大小的数值,因此蓄电池的容量反映了蓄电池的健康状况。 蓄电池长期浮充,容易造成活性物质钝化,电解液固化;蓄电池均充频繁,造成电解液干涸、极板栅格腐蚀; 大电流充电或过放电,造成极板变形、硫化。以上原因,导致电池容量降低甚至失效,给系统启动、通讯造成安全隐患; 蓄电池由于长期频繁使用,电解液比重不断增加,浮充电流加大,因此电极腐蚀更为迅速,电极腐蚀也会消耗氧气从而使电解液变干,这是蓄电池特有的故障。 当电池的实际容量下降到其标称容量的90%以下时,电池便进入衰退期。 当电池容量下降到标称容量的80%以下时,便进入急剧的衰退状态,这时电池已存在安全隐患,当电池容量下降到标称的70%以下时,电池已达到报废状态。 《电源维护规程》要求: 1)新安装的蓄电池验收应做100%容量实验; 2)蓄电池每年做一次放电深度为30%-40%实验; 3)超过三年后每年做一次放电深度为100%的容量试验; 4)蓄电池放电期间应每小时测量一次端电压和放电电流。 一、蓄电池检测方案 2.1.电池安装前检测、定期维护——电池容量寿命检测 充满电的蓄电池放置不用,逐渐失去电量的现象,称之自行放电。自行放电是不可避免的,在正常情况下,每天放电率不应超过0.35%~0.5%。自行放电的主要原因: 1)极板或电解液中含有杂质,杂质与极板间或不同杂质间产生了电位差,变成一个局部电池, 通过电解液构成回路,产生局部放电电流,使蓄电池放电。 2)隔板破裂,导致正负极板短路。 3)蓄电池壳表面上有电解液或水,在极桩间成为导体,导致蓄电池放电。 4)活性物质脱落过多,并沉积在电池底部,使极板短路造成放电。 因此安装备用蓄电池前,需要采用“电池容量寿命检测柜”进行100%的核对性实验,先对蓄电池进行补充电,再进行放电、放电完毕后再充电经检测确认蓄电池达到核定容量后,方可投入使用。

2014年电动车电池排行榜

电动车电池排名是根据市场多年的反馈,消费者的认知度,以及未来的发展状态等各种因素来排定的!我们将从质量、销量、广告、发展潜力、发展速度等方面客观、公正的评估出目前行业的名牌。 NO.1 天能电池天能动力为中国最大的动力电池生产商,主要从事铅酸、镍氢及锂离子等动力电池、电动车用电子电器及风能及太阳能储能电池的研发、制造和销售。“天能”牌动力电池被评为国家免检产品、国家重点新产品、浙江省名牌产品及全国电动自行车里程大赛唯一指定产品。 天能动力先后通过了一系列CE和UL国际认证,并且天能动力于2007年6月11日在香港联交所主板成功上市,正式进军国际的资本市场。天能电池自然也是目前国内十大电动车电池排名的第一名 NO.2 超威电池与天能电池相似,超威电池也是名牌电池之一。中国超威电源有限公司创立于1998年,为国家重点高新技术企业、产品质量国家免检企业、湖州市重点工业企业、市制造业龙头企业,及《福布斯》2005年度“中国潜力100”榜、2005年至2007年蝉联三届“中国成长企业百强。 超威主导产品为电动助力车用铅酸(胶体)蓄电池、磷酸铁锂动力型电池等。超威电池自2003年以来,电动助力车用蓄电池产销量,连续保持同类产品全国行业第二位的记录。 NO.3 昌盛电池 短短5年时间,“昌盛”蓄电池从仅百万销售额迅速翻了数百倍,成为中国蓄电池行业一颗耀眼的“新星”,其发展的迅猛之速谱写了中国蓄电池行业的一个奇迹,打造了蓄电池行业又一个全新的品牌。 NO.4 新诺力电池 浙江诺力电源有限公司,位于浙江省长兴雉城开发区,占地300多亩,专业生产电动车用系列蓄电池。公司成立以来,依托控股公司雄厚的资金和品牌优势,传承诺力“坚毅诚信、登高创新”的企业精神,走“人本为怀、精益不高精”的管理之路,采用国际最选进的生产设备,云集国内蓄电池行业最优秀的技术人才,经过三年奋力打拼,在国内同行业中迅速崛起,生产的“新诺力”品牌蓄电池因电池质量上乘、服务迅捷成为消费者追捧的热点。目前,公司阀控式动力铅酸蓄电池年生产能力已达170万KVAh(以12V12Ah为代表的产品1200万只)。 NO.5 振龙电池振龙公司在重点推行自主创新的基础上,坚定不移地走规范发展的道路。在产品和服务迅速拓展市场的同时,公司先后通过了ISO9001、ISO14001、CE、UL、ROHS、国家计量检测等体系认证。目前,公司是中国电池工业协会会员、浙江省自行车协会副理事长单位和浙江省蓄电池行业协会常务理事单位。 振龙公司是长兴县明星企业,湖州市重点骨干企业;“振龙”品牌被认定为中国驰名商标,铅酸电动车电池被认定为国家免检产品;振龙公司是全国碱性电池、全国铅酸电池和电

开关电源论文资料(DOC)

目录 1 前言 (2) 2.总体方案设计 (3) 2.1 方案一 (3) 2.2 方案二 (4) 2.3方案选择 (4) 3.单元模块设计 (5) 3.1单元模块功能介绍 (5) 3.1.1辅助电源部分设计 (5) 3.1.2主要电源部分设计 (6) 3.1.3保护电路部分设计 (7) 3.1.4继电器驱动部分设计 (8) 3.1.5输出电压比较部分设计 (8) 3.1.6编码译码部分设计 (9) 3.2电路设计及参数计算 (10) 3.3特殊器件介绍: (11) 3.4各单元模块连接 (16) 4.系统调试及结果分析 (17) 5.设计总结 (17) 【参考文献】 (18) 6 系统原理图 (19)

1、前言 可以说,有电器的地方就有电源。所有的电子设备都离不开可靠的电源为其供电。现代电子设备中的电路使用了大量的半导体器件,这些半导体需要几伏到几十伏的直流供电,以便得到正常工作所必需的能源。这些直流电源有的属于化学电源,如采用干电池和蓄电池,但这些不能持久性的供电。大多数电子设备的直流供电方法都是将交流电源经过变压、整流、滤波、稳压等变换为所需的直流电压。完成这种变换任务的电源成为直流稳压电源。 现代电子设备中使用的直流稳压电源有两大类:线性稳压电源和开关性稳压电源。所谓线性稳压电源就是其调整管工作在线性放大区,这种稳压电源的最主要的缺点是变换效率低,一般只有35%~60%左右。开关稳压电源的开关管工作在开关状态,其主要的优越性就是变换效率高,可高达70%~95%。目前,计算机、通信设备、雷达、电视及家用电器等现代电子设备中的稳压电源已基本采用了开关稳压电源,因此,下面将介绍开关稳压电源的设计。

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: 充满电后的磷酸铁锂蓄电池静置15分钟后回落到,电池开口电压。 单体工作电压为~。 在以下可以充电性能稳定。 单体电池放电时,以下电压下降很快。

综合以上信息,建议48V直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。 基站可分为如下两种: (1)宏基站和室内分布信源站 GSM宏基站的功率可按载频计算,分为乡镇(4/4/4)46A、市区(12/12/12)130A、特大密集市区(15/15/15)160A。 TD宏基站的功率分为单频段站(含1个BBU和3个RRU)1200W 25A、双频段站(1个BBU和6个RRU)2100W 44A,其中1个BBU300W,1个RRU300W。 室内分布信源站的功率分为单频段站(含1个BBU和5个RRU)1000W 21A、双频段站(1个BBU和10个RRU)1400W 29A、三频段站(1个BBU和15个RRU)2100W 44A,其中1个BBU600W,1个RRU80W。 宏基站和室内分布信源站的蓄电池后备时间为:市区3h,乡镇5h,山区7h。 (2)室内分布的RRU 室内分布的RRU,可包括1个或多个RRU,单个RRU耗电量80W ,需电池后备时间4小时。 根据计算,采用铅酸蓄电池的配置如下:

双登蓄电池培训资料

双登蓄电池培训资料 2007-2-15

一、蓄电池的工作原理及构成 1. 工作原理 2V 胶体电池、12V 胶体电池、2V AGM 电池、12V AGM 电池及12V 狭长型电池均属于阀控式铅酸密封蓄电池。阀控式铅酸蓄电池的英文名称为Valve Regulated Lead Acid(简称VRLA 电池),其基本特点是使用期间不用加酸加水维护,电池为密封结构,不会漏酸,也不会排酸雾,电池盖子上设有单向排气阀(也叫安全阀),该阀的作用是当电池内部气体量超过一定值(通常用气压值表示),即当电池内部气压升高到一定值时,排气阀自动打开,排出气体,然后自动关阀,防止空气进入电池内部。AGM 采用吸附式玻璃纤维棉(Absorbed Glass Mat)作隔膜,电解液吸附在极板和隔膜中,贫电液设计,电池内无游离的电解液;胶体(GEL )采用SiO 2作凝固剂,电解液吸附在极板和SiO 2胶体微孔内。 阀控式铅酸蓄电池的电化学反应原理:阀控式铅酸蓄电池的电化学反应原理就是充电时将电能转化为化学能在电池内储存起来,放电时将化学能转化为电能供给外系统。其充电和放电过程是通过电化学反应完成的,电化学反应式如下: 放电 Pb ﹢PbO 2﹢2H 2SO4 2Pb SO4﹢2H 2O 充电 副反应 正极 H 2O 1/2O 2+2H + +2e 负极 2H + +2e H 2 从上面反应式可看出,充电过程中存在水分解反应,当正极充电到70%时,开始析出氧气,负极充电到90%时开始析出氢气,阀控式铅酸蓄电池能在电池内部对氧气再复合利用,同时抑制氢气的析出。 阀控式铅酸蓄电池采用负极活性物质过量设计,AGM 或GEL 电解液吸附系统,正极在充电后期产生的氧气通过AGM 或GEL 空隙扩散到负极,与负极海绵状铅发生反应变成水,使负极处于去极化状态或充电不足状态,达不到析氢过电位,所以负极不会由于过充电而析出氢气,电池失水量很小,故使用期间不需加酸加水维护。阀控式铅酸蓄电池氧循环反应步骤如下: 第一步:充电后期或过充电情况下,水在正极分解,并析出氧气:

史上最全的开关电源设计经验资料

三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。 则代入k 后,dB =μ0×I ×dl ×R/4πR 3 对其积分可得B = 3 40R C R Idl ?? π μ

蓄电池的主要性能指标

蓄电池的主要性能指标 The Standardization Office was revised on the afternoon of December 13, 2020

1. 铅酸蓄电池的主要性能指标 (1)安全性能安全性能指标不合格的蓄电池是不可接受的,其中影响最大的是爆炸和漏液。爆炸和漏液的发生主要与蓄电池的内压、结构、工艺设计(比如安全阀失效)及应当禁止的不正确操作有关。 (2)额定容量为了蓄电池的容量,定义了蓄电池的额定容量。额定容量是蓄电池制造的时候,规定蓄电池在一定的放电条件下应该放出的最低限度的电量,其单位为Ah。使用条件不同,蓄电池能够放出的容量也不同。规定的蓄电池放电条件为:①蓄电池放电电流。一般所说的就是放电率,针对蓄电池放电电流的大小分别有时间率和电流率。放电时间率是指在一定的放电条件下放电到终止电压的时间长短。依据IEC标准,放电率分别为20小时率、10小时率、5小时率、3小时率、2小时率、1小时率、小时率等。蓄电池的额定容量用C来表示,以不同的放电率得到的蓄电池的容量会不同。 ②放电终止电压。放电电流不同,终止放电电压也不相同。随着放电的进行,蓄电池的端电压会逐步下降。在25℃条件下放电到能够再次反复充电使用的最低电压称为放电终止电压。放电率不同,放电终止电压也不相同。一般为10小时率放电的终止电压多数为单格,以2小时率方电的终止电压一般为单格。低于这个电压时,虽然可以放出稍微多一点的电量,但是容易形成再次充电的容量下降,所以除非特殊情况,不要放电到终止电压。 ③放电温度。需电池在低温时的放电容量小,高温时的容量大,为了统一放电容量就规定了放电温度。④蓄电池的实际容量。蓄电池的实际容量反应蓄电池实际存储电量的多少,单位用安时表示(Ah)表示。同样安时数越大,则蓄电池的容量就越大,电动自行车的续行里程就越远。在使

Power Management-电源管理IC

Yuming电子知识系列 Power Management Power Management 电源管理 IC Yuming Sun Jul, 2011 Jul2011 yuming924@https://www.360docs.net/doc/214709994.html,

CONTENTS 础知识 ?基础知识 ?LDO Regulator ?Switching Regulator (DC-DC) ?Charge Pump(电荷泵) Ch P ?W-LED Driver ?Voltage Reference (电压参考/基准源) Voltage Reference( ?Reset IC (Voltage Detector) ?MOSFET Driver ?PWM Controller

基础知识

Portable Device

便携电子产品常用电源

电力资源-电源管理IC-用电设备 IC :5、3.3、2.5、1.8、1.2、0.9V 等;电力用电电 源管马达:3、6、12V ;LED 灯背光;资源 设备理 IC LCD 屏:12、-5V ;AC Rectifier/PWM IC )AC :110、220V DC C t 升降压DC DC Ch P 等整流:PWM IC (3843或VIPER12)、开关电源DC 或电池 DC Converter :LDO 、升降压DC-DC 、Charge Pump 等。Reset IC 或电压检测:如808、809。电池管理:保护IC 、充电管理(4054Fuel Gauge 等。电池管理保护、充电管理)、g 等DC 或电池AC Inverter/逆变:for CCFL …… (比喻:电荷-水、电流-水流、电容-水桶、电压-水压。)

开关电源试题(有答案)

开关整流器的基本原理 一、填空 1、功率变换器的作用是()。 将高压直流电压转换为频率大于20KHZ的高频脉冲电压 2、整流滤波器电路的作用是()。 将高频的脉冲电压转换为稳定的直流输出电压 3、开关电源控制器的作用是将输出()取样,来控制功率开关器件的驱动脉冲的(),从而调整()以使输出电压可调且稳定。 直流电压、宽度、开通时间。 4、开关整流器的特点有()、()、()、()、()、()及()。 重量轻、体积小、功率因数同、可闻噪声低、效率高、冲击电流小、模块式结构。 5、采用高频技术,去掉了(),与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的(),重量已接近()。 工频变压器、1/10、1/10。 6、相控整流器的功率随可控硅()的变化而变化,一般在全导通时,可接近()以上,而小负载时,仅为0.3左右,经过校正的开关电源功率因数一般在(),以上,并且基本不受()变化的影响。 导通角、0.7、0.93。 7、在相控整流设备件,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于(),而开关电源在无风扇的情况下,可闻噪声仅为()左右。 60db、45db。

8、开关电源采用的功率器件一般(比较)较小,带功率因数补偿的开关电源其整流器效率可达()以上,较好的可做到()以上。 88%、91%。 9、目前开关整流器的分类主要有两种,一类是采用()设计的整流器,一般称之为(),二是采用()设计的整流器,主要指()开关整流器。 硬开关技术、SMR、软开关技术、谐振型 10、谐振型技术主要是使各开关器件实现()或()导通或截止,从而减少开关损耗,提高开关频率。 零电压、零电流。 11、按有源开关的过零开关方式分类,将谐振型开关技术分为()—ZCS、()—ZVS两大类。 12、单端正激变换电路广泛应用于()变换电路中,被认为是目前可靠性较高,制造不复杂的主要电路之一。 13、单端反激变换电路一般用在()输出的场合。 14、全桥式功率变换电路主要应用于()变换电路中。 15、半桥式功率变换电路得到了较广泛的应用,特别是在()和()的场合,其应用越来越普遍。 16、开关电源模块的寿命是由模块内部工作()所决定,温升高低主要是由模块的()高低所决定,现在市场上大量使用的开关电源技术,主要采用的是()技术。 17、功率密度就是功率的(),比值越大说明单位体积的功率越大。 18、计算功率有两种方法,一种是(),另一种是模块允许的,在交流和直流变化的全电压范围内所能提供的()。

汽车蓄电池概述介绍资料

2 蓄电池 2.1 蓄电池的功用 2.2 蓄电池的结构 2.3 蓄电池的型号 2.4 蓄电池的工作原理 2.5蓄电池的工作特性 2.6 蓄电池的容量及其影响因素 2.7蓄电池的充电 2.8 蓄电池的使用与维护 2.9蓄电池技术状况的检查 2.10 蓄电池的常见故障及排除方法 2.1 蓄电池的功用 蓄电池是一种将化学能转变为电能的装置,属于可逆的直流电源。它的功用是: 1.起动发动机时,向起动机和点火系供电; 2.发电机不发电或电压较低时向用电设备供电; 3.发电机超载时,协助供电; 4.发电机端电压高于蓄电池电压时,将发电机的电能转变为化学能储存起来; 5.大电容器作用,能够吸收发电机和电路中形成的过电压。2.2 蓄电池的结构 汽车用蓄电池必须满足发动机起动的需要,即在短时间内向起动机提供大电流(汽油机为200~600A,柴油机可达1000A)。汽车上采用蓄电池通常称为起动型蓄电池。根据电解液的不同,起动型蓄电池分为酸性和碱性蓄电池。 铅酸蓄电池结构简单,价格低廉、内阻小、起动性能好,能在短时间内提供起动机所需的大电流,因此得到了广泛而长期的应用。

图1-1 蓄电池的基本结构 铅酸蓄电池是在盛有稀硫酸的容器内插入两组极板而构成的电能存储器,它由正极板、负极板、隔板、电池盖、电解液、加液孔盖和电池外壳组成。(图1-1) 容器分为3格或6格,每格装有电解液,正负极板浸入电解液中成为单格电池。每个单格电池的标称电压为2V,因此,3个串联起来成为6V蓄电池,6格串联起来成为12V蓄电池。 1.极板 1)构成 极板是电池的基本部件,它的作用是接受充入的电能和向外释放电能。 极板由栅架和活性物质组成。分为正极板和负极板,正极板上的活性物质是棕红色的二氧化铅(PbO2),负极板上的活性物质是青灰色的海绵状纯铅(Pb),如图1-2所示。

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

开关电源主要参数名词解释与设定标准

开关电源主要参数名词解释与参数设定标准 以某基站配置-48V开关电源,配2组500AH蓄电池组(单体电池电压U=2V、额定容量C10=500AH,那么以下参数设置要求如下: 开关电源的参数设置主要参考配套蓄电池维护参数要求设定,有时运营商会根据实际使用环境对设定参数作适当的调整,以保障蓄电池使用寿命最大化。 1.设置高频开关电源充电限流 ?充电限流就是系统根据蓄电池的容量(事先必须在监控参数中正确设定蓄电池容量)、负载所需电流的大小来自动计算整流器的限流点。 ?充电限流设置范围:0.1-0.25C10,推荐值为0.15C10,即150A; ?单体整流模块输出电压=(0.15 C10+负载电流)/单体个数 2.设置高频开关电源蓄电池容量 ?开关电源蓄电池容量:后备蓄电池组总标称容量设置为1000AH(U=-48V)。 ?蓄电池串联时,每组电池组总电压为每节电池端电压之和,而电池组容量不变;多组电池组并联时,电池组总电压每组电压值,而容量为每组 容量之和; 3.设置温度补偿系数 ?温度补偿系数:是开关电源监控模块对蓄电池浮充电压进行补偿时,温度每偏离温补中心点1℃的补偿值。 ?在同一浮充电压下,浮充电流随温度的升高而增大,一般设定温度补偿中心点为25℃,补偿系统一般为3—4mV。 ?推荐补偿系数为3 mV。 4.设置浮充电压 ?浮充电压:是在市电正常时,由整流器向负载供电,并同时给蓄电池微小的补充电流,此时的工作电压即浮充电压。 ?浮充电压设置范围:53.5V—55.2V(单体电池浮充电压为2.23V—2.3V),

一般设为54V或54.5V。 ?目前浙江移动基本采用单体电压为2.27V的标准,即开关电源浮充电压为54.5V。 5.设置均充电压 ?均充电压:是为了使蓄电池保持足够的容量,则需要提高浮充电压,使流入电池电流增加,此时的整流器工作电压即均衡电压,它是基础电压 的上限。 ?均充电压设置范围:55.2V—56.4V(单体电池浮充电压为2.3V—2.35V),一般设为56.4V。 ?目前浙江移动均充电压标准为2.35V/节,即开关电源均充电压为56.4V。 6.脱离电压 ?脱离电压即低压脱离电压(LVDS),为了保护重要负载工作时间和蓄电池过放电设定的蓄电池放电所允许的最低值。 ?脱离电压分为一次下电和二次下电电压; 一次下电是为发保障重要负载更长时间工作而设定的允许最低值, 一般一次脱离电压设为44.5V以上(用户也可根据实际情况自行设 定); 二次下电是为了保护蓄电池组,而设定的蓄电池放电所允许的最低 值,一次脱离电压不得低于43.2V(单体电池电压为1.8V); 7.复位电压 ?复位电压是开关电源直流脱离接触器的主触点重接的电压预设值(复位电压>脱离电压)。 ?复位电压一般设定范围:47V—51V(用户可自行设定) 8.过压告警电压 ?过压告警电压就是开关电源出现过压告警的电压值,一般根据设定为

最新开关电源安规要求内容

开关电源安规主要内容 森树强电子 一. 安全距离规范 (针对初, 次级及高压, 大电流区域PCB布板) 1. 交流输入L - N, N- GND, L- GND间距必须大于 3.5毫米. 2. 初级整流滤波电容正, 负级间距须大于4毫米. 3. 初, 次级间距须大于6毫米(光耦处间距最小). 4. 次级电路电压小于48V的区域布板时一般不作安全间距要求. 注: 电气间隙与爬电距离应符合相关要求. 二. 耐压测试规范 测试内容及标准: 1. 输入–输出耐压测试及标准 l 交流3000V, 1分钟打耐压, 漏电流设为10mA

l 耐压仪指示漏电流<10mA, 且无飞弧现象为合格. 2. 输入–大地耐压测试 l 交流1500V, 1分钟打耐压, 漏电流设为10mA l 耐压仪指示漏电流<10mA, 且无飞弧现象为合格. 3. 输出–大地耐压测试 l 直流500V, 1分钟打耐压, 漏电流设为10mA l 耐压仪指示漏电流<10mA, 且无飞弧现象为合格. 注:大地为外壳地.测试仪器为耐压测试仪. 三. 绝缘测试规范 测试内容及标准: 1. 输入 - 大地>500Mohm为合格 2. 输出 - 大地 >500Mohm为合格 3. 输入 - 输出 >500Mohm为合格 四. 温度测试规范

1. 测试内容: 开关电源长时间稳定工作后, 测试开关 MOSFET, 开关变压器, 初级整流滤波电容, 次级整流管, 滤波电感的温度值并记录. 2. 判定标准: 将所测温度数值和相关标准安全值对比, 以 上器件的温度值必须小于安全值. 五. 过载测试规范 测试内容: 对每路输出均单独作过载试验(多路输出不同 时作过载试验). 测试方法及判定标准 (1) 在该路输出开关变压器次级交流输出端加负载并使其带满载, 长时间通电工作. (2) 监测开关变压器(磁芯, 漆包线包)的恒定温度值并记录, 不能超过允许值(厂商提供), 且应有15%左右裕量. 同时, 应无过温度保护动作. (3) 若出现过温度保护, 记录此时温度值.

蓄电池主要参数

2.2铅酸蓄电池的主要参数 2.2.1蓄电池的电压 (1)电动势 电动势是指电池在开路时,正极平衡电极电势与负极平衡电极电势之差,其大小取决于电池中的化学反应,与电池的形状、尺寸无关。 根据铅酸蓄电池的成流反应,按热力学原则,电池的电动势为 其中E为电池电动势;Eθ为所有反应物的活度或压力等于1时的电动势,称为标准电动势(V);R为摩尔气体常数,为8.31J/(K·mol);T为绝对温度(K);F为法拉第常数(96500C/mol);n为电化学反应中的电子得失数目。电动势是电池在理论上输出能量大小的量度之一,如果其它条件相同,电动势越高的电池,理论上能输出的能量就越大。 (2)开路电压 开路电压是电池在开路状态下的端电压,也是两极的电极电势之差,但不是平衡电势,而是稳定电势或混合电势之差。理论上,电池的开路电压并不等于电动势,但数值上可能很接近。蓄电池组在线检测系统的设计及研究铅酸蓄电池的开路电压也是硫酸浓度的函数,其与电解液密度的关系可用如下的经验公式表示: 开路电压=d+0.85(2.5)其中d为电解液的密度。 (3)工作电压 工作电压是指有电流流过外线路时,电池两极之间的电位差。放电工作电压总是低于开路电压。 2.2.2蓄电池的温度 蓄电池内部温度对其性能影响很大,对铅酸蓄电池而言,更是如此,因为在充放电过程中其内部存在“氧循环”,产生的额外热量会使温度上升,因而影响更大,因此在判断蓄电池的性能时,要充分考虑温度的影响。当温度上升时,电解液的运动速度增大,获得动能增加,因此渗透力加强,电解液电阻减小,电化学反应增强,这些都使蓄电池容量增大。当温度降低时,电解液的粘度增大,使离子运动受到较大阻力,扩散能力降低,渗入极板内部困难,活性物质深处由于酸的缺乏而得不到充分利用,导致容量下降。其次是电解液电阻随温度下降而增加,结果电池内阻增加,电压降增大,从而容量下降。温度变化1℃时蓄电池容量的变化量称为容量的温度系数。在一般情况下,容量与温度的关系如下式所示: 其中Ct1为温度在t1℃时的容量(A·h),Ct2为温度在t2℃时的容量(A·h),K为容量的温度系数,t1、t2为电解液的温度(℃)。 2.2.3蓄电池的内阻 电池的内阻是指电流通过电池时所受到的阻力。蓄电池等效模型如图2.2所示。其中RΩ表征电池欧姆电阻,Rp表征电池极化电阻,Cd表征电池正极和负极间双电层电容。 宏观上测出的电池内阻即稳态内阻是由欧姆电阻RΩ和极化电阻Rp组成,其中

太阳能蓄电池厂家

太阳能蓄电池生产厂家实录 光伏辅料网,是一个光伏B2B电子商务平台,它里面内含多种光伏组件产品及光伏组件厂商,今天我们来介绍一下有关太阳能蓄电池的厂家。 1、佛山市南海赛能自动化系统开发有限公司 2、中国圣豹电源有限公司 3、浙江昌盛电气有限公司 4、佛山市欧亚玛电器实业有限公司 5、中山市易佰特照明设备有限公司 6、巨易新能源科技有限公司 7、深圳科士达科技股份有限公司 8、荆门东光新能源科技有限公司 9、深圳市瑞达电源有限公司 10、苏州易伏电能科技有限公司 11、超威电池有限公司 12、泉州市圣能电源科技有限公司 13、无锡市汇众电源有限公司

14、武汉长光电源有限公司 15、宝星(佛山)科技发展有限公司 16、欧雷玛电源有限公司 17、盛禄能源科技(深圳)有限公司 18、深圳市多氟多新能源科技有限公司 19、风帆股份有限公司工业电池分公司 20、泉州赛特电源科技有限公司 21、重庆力扬工业有限公司 22、广州利波特电子有限公司 23、广州市恒达电池有限公司 24、中山能特电源科技有限公司 25、广州市耐普电源有限公司 26、中商国通(北京)电子技术有限公司 27、河北奥冠电源有限责任公司 28、河北金星电源有限公司 29、新乡市太行电源设备有限公司 30、中节能绿洲(北京)太阳能科技有限公司 31、寰寶能源(中国)有限公司 32、浙江天地之光电池制造有限公司

33、浙江恒基电源有限公司 34、扬州重电太阳能科技发展有限公司 35、新乡市新太电池科技有限公司 36、江苏华富能源股份有限公司 37、江苏九华能源科技有限公司 38、武汉长光电源有限公司 39、江苏双登集团有限公司 40、广州市金悦诚蓄电池有限公司 41、无锡乃尔风电技术开发有限公司 42、劲博电源科技有限公司 43、天津蓝天电源公司 44、晋江华威电源有限公司 45、乐清市三迪电气有限公司 46、秦皇岛市芯驰光电科技有限公司 47、山东润峰集团新能源科技有限公司 48、山东圣阳电源股份有限公司 49、上海爱乐汇众电源有限公司 50、上海鸿贝电源系统有限公司 光伏辅料网里面含有大量的太阳能生产厂家信息,了解更多请进入 https://www.360docs.net/doc/214709994.html,。

相关文档
最新文档