嵌入式微处理器未来市场趋势

嵌入式微处理器未来市场趋势
嵌入式微处理器未来市场趋势

嵌入式微處理器未來市場趨勢

CPU的架構大致上可分為CISC CPU & RISC CPU。

CISC CPU適用於大量資料運算的應用(INTEL、AMD、VIA的x86 CPU)。

RISC CPU所強調的是執行的效率與省電的要求(ARM、MIPS、ARC …)。

不論是CISC或是RISC CPU,都可以依據CPU內部處理資料匯流排的寬度,可區分成8位元、16位元、32位元與64位元等四種。根據In-Stat的統計,成長最快的是64位元嵌入式CPU,主要應用在STB、DTV與電視遊戲機等需要大量資料處理的產品。

8至64位元主要產品中所使用嵌入式CPU種類

全球的嵌入式CPU供應商第一大廠商是ARM,排名第二是MIPS。但兩家的產品定位並不完全相同。

ARM的CPU會強調省電應用;MIPS則主打高效能的產品。

因此在過去強調省電訴求的行動電話是嵌入式產品最大應用產品情況下,ARM 的營收皆優於MIPS。MIPS已逐漸淡出16位元CPU的市場,而專注於32位元以上的CPU。ARM與其最大競爭對手MIPS的差異處在於,以交易機制來分析,一般而言,ARM的授權金比重較高,而MIPS則收取比例較高的權利金。

早期台灣廠商CPU或MCU相關技術可區分成三類,8051架構、6502架構與自行研發等三種。INTEL的8051與Motorola的6502都是8位元的架構,初期都是由工研院所授權獲得,並推廣至國內業者。另外自行研發的也不在少數,例如凌陽、盛群、金麗或十速等公司,但都是32位元以下的架構。

嵌入式微處理(CPU)器與微控制器(MCU)

微處理器強調運算效能,而微控制器著重控制功能。

在SoC整合趨勢下,嵌入式微處理器加上記憶體、邏輯與I/O等IP將構成強大效能的微控制器;而增強位元數後的微控制器亦具有MPU的強大處理功能。

微處理器若以應用產品的軟體平台來區分,可分成特定應用型與泛用型兩種。特定應用型:

操作軟體大致是依據終端產品所需的功能加以設計,其最大特色是封閉的操作環境,終端產品的使用者大致上不需了解軟體的構造,也不能修改其操作功能,應用產品有印表機、數位相機、車用設備與遊戲機等,這類型產品通常較簡單其穩定性也要求較高。

泛用型:

如簡易的電腦一樣,有著相似而共通的作業系統,主要應用在PDA、Smart Phone、STB(視訊轉換器)、Thin Client等。此類產品因具有資訊交換的功能,其作業系統較複雜,相容性的要求也較高。

微控制器主要是負責系統產品中控制功能的IC元件。目前電子產品朝向輕薄短小、功能強大、價格低廉等目標發展,加上開發時程日益縮短,微控制器具有整合諸多功能於一身的特性,不但節省開發時間,在降低體積與成本上也有相當大的助益。

微控制器因有下列優點:

1.低價

2.較小的程式碼

3.可使用C語言編譯,開發更容易

4.耗電量較低

5.最高的效能與價格比

16位元以上的微控制器主要應用在通訊(如ISDN、USB等)、車用與工業等項目;由於需要符合工業規格,必須認證後才能出貨,技術層次較高。

隨著系統產品功能的多樣化,人機介面必須具有親和力…等,微控制器的效能亦不斷要求提升,近年來32/64位元微控制器成長率有越來越高的趨勢。

SoC產品分類

在目前的技術架構下,系統單晶片市場可說是由兩種IC元件所組成,分別為

特殊用途積體電路(Application-Specific Integrated Circuit; ASIC)

特殊應用標準產品(Application-Specific Standard Product; ASSP)

不論是哪一種元件,都是為某一種特殊用途而設計。一般而言,每一個應用市場多半是由ASIC產品開始研發,業者嘗試發展其架構,慢慢的產業裡有一些標準出來,才逐步往標準化的ASSP方向發展。也可以說,ASIC是為了單一客戶的某個應用產品而設計,但ASSP因為有部分的標準架構,因此可同時提供給多個客戶應用在某一產品當中。

不論是ASIC或ASSP,基本上每顆IC都包含了三大部分

運算處理器(On-chip Engine)

記憶體(Memory)

邏輯控制器(Logic)

絕大多數的應用產品都有記憶體及邏輯控制元件,因此SoC中最關鍵的部分為運算處理器;而運算處理器中還包括有

核心微處理器(Microprocessor,如ARM或MIPS的產品)

核心數位訊號處理器(Digital Signal Processor; DSP)

核心繪圖處理器(Graphics Engine)

核心數位化影音壓縮處理器(Motion Picture Experts Group; MPEG)

……

其中核心數位訊號處理器為最熱門的運算處理器,同時也最被廣泛運用。

SoC設計平台—ARM

為了實現SoC的目的,因而產生了許多的發展模式,因為眾多廠商所具備的實力皆不同,所使用的策略亦不相同。除了TI這種IDM廠外,另一種是像ARM這樣的純SIP廠商,依靠授權的費用來支撐營運,這類廠商會興起的原因在於,並非所有的廠商都擁有TI或是Intel般的實力,因此常常缺乏一些關鍵的SoC元件,例如MPU或是DSP等。因此一些擁有不錯設計實力,又不想負擔庫存壓力的小型設計公司,便衍生出這種交易技術的商業模式。

ARM簡介

ARM(Advanced RISC Machines)的前身為英國Acorn Computer Group,在1980年代主要生產RISC CPU與一般PC,後來經營狀況不良,公司陷入困境,因此晶片研發團隊於1990年由蘋果電腦(Apple Computer Inc.)出資美金290萬、偉矽(VLSI Technology Inc.)出資美金48.5萬獨立出來成立公司。

ARM的產品主要是以低功耗(low power consumption)、低成本為訴求,ARM在RISC嵌入式微處理器市場中其CPU Core接受度日益提高,目前已躍為全球最大的IP授權公司。在智慧產產權部份,ARM擁有180種以上的專利系列,在其產品中含括了650個各項專利。

ARM創新採行將IP開發後再授權的作法,把開發出來的核心(Core)授權給半導體公司,讓這些公司去設計、生產ARM架構的晶片,本身並不製造販賣晶片。

由於ARM本身並不製造販賣晶片,為了提昇其競爭力則必須提供給客戶便於系統整合的IP,因此與IP週邊廠商建立緊密的夥伴關係變成關鍵要務。ARM合作夥伴可依不同類別區分為應用軟體廠商、開發工具廠商、半導體廠商、晶圓代工廠商、作業系統廠商與設計服務公司。

ARM主要的客戶包括半導體廠商、OEM/ODM廠商、IC設計公司與設計服務公司,目前全球已有超過百家公司獲得其授權。

在經營模式方面,ARM採行IP授權的作法,也就是將開發出來的核心授權給半導體公司,讓這些公司去設計、生產ARM架構的晶片,本身並不製造販賣晶片。ARM與這些半導體公司結成伙伴,形成一個網路組織,以促成架構的標準化及推廣。採取公司本身並不做生產與行銷的部分,而藉由與市場中的大型半導體公司合作,將IP授權給這些公司生產與製造,以抽取授權費及權利金做為收入的來源,本身並不與這些被授權的廠商作直接的競爭,一方面可能是因為當時ARM 本身由於是新創公司並不具備生產能力,同時也希望藉由與這些大公司合作來與市場中其他的電腦架構勢力如IBM、Intel做競爭,因此選擇了這樣的合作方式。過去ARM是採取將IP授權給大型半導體公司,由這些半導體廠商負責生產銷售ARM的晶片,到了2000年左右的時候,ARM開始採取新的授權策略,將整個產品授權劃分成好幾個部分,IP授權、設計服務授權與製造授權。新的授權方式為ARM與客戶之間合作的方式增加了更多的彈性,IC設計公司或系統公司可以選

擇與ARM以及設計服務公司之間的關係。

製造授權(也就是與晶圓廠之間的合作)則是一方面可替中小型的設計公司更快的爭取到上線生產時機,另一方面則是可做ARM保護其重要核心知識的方式。因為在目前IP的交易過程中,對於IP知識的保護一直是IP提供者相當顧慮的一個議題,除了不希望被客戶得知Know-how之外,也希望能夠持續保持技術的高價值,所以對於IP技術的揭露,廠商多採謹慎且保留的態度。

ARM產品簡介

ARM目前主要的產品包括ARM7TM 系列、ARM9TM 系列、ARM10TM 系列、ARM11TM 系列、SecurCoreTM、Intel Xscale Micro-Architecture以及專門用在安全控管上的SecurCore可合成的RTL code。

ARM核心的產品應用可分為以下幾類:

汽車用途(Automotive)

消費娛樂產品(Consumer Entertainment)

影像產品(Imaging)

網路產品(Networking)

安檢產品(Secure)

儲存產品(Storage)

無線通訊(Wireless)

ARM的嵌入式微處理器產品主要的優點為低功耗,而行動電話以及PDA等掌上型行動裝置,為了延長使用者的電池使用時間,紛紛採用ARM的嵌入式微處理器,全球行動電話近七成都是使用ARM的RISC處理器核心技術,此架構也成為業界的標準,這使得ARM成為市場的領導者,無線通訊為ARM目前最大的營收來源。

ARM的主要營收來源:

產品收入主要包括授權費、權利金和開發系統(Development systems)等三項。服務收入則包含支援服務與顧問服務。

授權費指的是將產品授權給客戶所賺取的收入,而權利金的收費方式則可依照單一晶片的銷售額百分比或以每個晶片收取固定金額的方式來收費,因此客戶的出貨數量越高,所能賺取的權利金也就越高。

由於授權費是依照簽訂的合約價格收費,與景氣波動、廠商出貨情況無直接關聯,但權利金卻會依照出貨情況按一定比例收費,因此一般IP廠商在初期都會以授權費為主,隨著出貨量逐年增加,權利金才會上升。以ARM的營收項目來看,授權費與權利金皆約四成比重,表示一方面有新案產生,而另一方面,舊案的出貨量也十分正常,但支援服務費用的比例若能更加降低,表示後續支援客戶的項目與所花的Effort都能大幅降低,更能將公司資源集中在產品的開發上。

SoC設計平台—TI OMAP (Open Multimedia Application Platform)

隨著IC微縮製程技術的快速發展,單一晶片上所能整合的電晶體數目愈來愈多,至今設計複雜度進一步提升到百萬邏輯閘(Gates),若仍然採用傳統利用Standard Cell或是重新設計的方式來設計晶片,一次必須設計百萬個甚至更多的Gates,以目前IC產業的環境,勢必無法提供足夠的人力與符合開發產品即時上市的要求。在這種情況下,較可行且有效的方式是善用SIP,在廠商無法迅速掌控一切關鍵技術的情況下,藉助不同廠商所提供之SIP,才能在最短時間內推出產品,以搶食市場大餅。

SoC設計平台的概念

IC設計平台化需求殷切的原因,乃由於IC單位面積集積度增加以及新一代產品功能設計日益複雜,為了讓IC設計更有效率,IC設計方式的演變從過去的TDD(Timing Driven Design)階段,演變至BBD(Block-Based Design)階段,最後進入設計複雜度更高的PBD(Platform-Based Design)階段。

PBD的設計概念乃因應先進製程,適用於高複雜度設計及縮短開發時程的最佳方法。PBD結合了SIP的功能組塊,藉由統一的匯流排架構,以及嵌入式即時作業系統(Real-time Operating System;RTOS)等韌體系統,以達到架構重複運用(Portable Architecture)的特性。

目前許多IC設計大廠及IC設計服務業者紛紛提出PBD的設計理念與解決方案,然不可諱言的是,這些PBD大多是專為特定類型應用領域而開發,而且大都未能達到隨意更換SIP而不需變動軟、韌體的地步。但是這樣的產品,基本上已事先整合了許多特定功能SIP,也解決了不同來源SIP的共同驗證問題,而且相關的系統架構及開發環境也都已完成規劃,客戶只需在SoC設計平台上整合進自己的特殊邏輯即可,與傳統的設計方法相較,將更具有效率。

就如同各家IC設計公司大都專注某特定領域來持續發展;受限於個別廠商必須在有限的資源下作最佳配置,因此不可能擁有全面性的核心技術。每家IC設計服務業者必須針對特定領域產品平台持續補強,發展其特色。對廠商而言,如何有效利用SIP模組、標準匯流排、軟韌體的整合,一方面解決晶片開發的時效性問題,同時又兼顧產品差異化的優勢。

OMAP簡介

OMAP (Open Multimedia Application Platform) 是多核心處理器平台,結合了TI自有的數位訊號處理器(Digital Signal Processor; C55x)和ARM公司的(ARM 9)微處理器。OMAP是針對目前各種資訊產品的應用所設計,特別是PDA和第三代行動通訊裝置(3G),可以完成多媒體影音資料處理、網際網路通訊和無線通訊等功能。利用TI OMAP雙核心平台,基於雙核心及平行處理平台特色,不同特性的工作交給對應的核心,才能發揮最佳效能。如何適當地分配任務是提高整體運作效能的重要指標。ARM是一顆適合處理OS控制、程式流程控制及週邊存取的MPU,DSP則適合處理高複雜算術運算。

在通訊半導體市場中,德州儀器(TI)不論在無線或有線領域皆具有領導廠商的地位。TI得以持續在市場中稱霸的主要原因,在於該公司成功的掌握了Nokia、Sony Ericsson、NEC等手機大廠客戶。目前是2G、2.5G、3G 全球最大的手機晶片供應商,前十大手機品牌有七家廠商採用。

TI OMAP方塊圖

在產品策略方面,TI以OMAP為基礎推出了整合數位基頻與應用處理器的產品OMAP73X系列,採用130奈米製程,並以執行速率達200MHz的ARM926TEJ為應用處理器核心。

此外,TI在2004年推出整合射/基頻IC的手機系統單晶片原型產品,以朝向手機完整系統解決方案的領導地位邁進。

TI Product Roadmap

TI已可量產採用90奈米製程技術的1GHz DSP,元件為-TMS320C6414T、

TMS320C6415T和TMS320C6416T DSP,擁有強大的效能與低成本。這些新元件讓傳統上由TMS320 C64x DSP主導的通訊基礎設施市場及視訊基礎設施市場得以實現更高的通道密度。讓許多創新應用變為可能,如自動導航應用,全自動化車輛、複雜的人工智慧視覺系統及高品質的醫療影像。

在產品發展的佈局上,TI的DSP,大致分為三大類:

1.C2000系列:主要應用於工業控制方面,如馬達控制。

2.C5000系列:此系列強調省電功能,是針對手機市場開發。

3.C6000系列:強調其高效能,適用於高階應用,如無線基地台等。

行銷上,TI鎖定了無線、寬頻、電機電子及泛用市場四大領域,並且透過SoC

的整合及軟體的發展,提供Total Solution;WANDA (Wireless Any Network Digital Assistant),無線PDA概念設計,即是一個典型的例子。WANDA是由OMAP處理器、多種TI的無線技術和微軟的Windows Mobile所推動,整合了WLAN、藍芽和GSM/GPRS技術,可支援語音電話、Web Browser、行動商務、藍芽功能,和一些多媒體應用。

在策略聯盟上,TI與IP大廠ARM聯手推出了OMAP平台,進軍無線終端、PDA 等市場。同時也持續的與協力廠(3’nd Party)及加值型代理商(VAR)合作,提供DSP 相關的工具與解決方案。

TI在SoC產品上提出兩大平台,主要有行動電話與數位視訊產品:

1.行動電話

OMAP為TI的雙核心處理器,採用TI C55X及ARM9的雙結合,廠商可做出效能最高、電力消耗卻只有原來1/4的2.5G與3G無線裝置,並讓軟體工程師輕易運用即時DSP功能。並可執行資料量龐大的多媒體應用系統,例如分流視訊、視訊會議和高傳真度音訊,同時延長電池的使用時間以滿足消費者要求。已成為3G無線裝置的處理核心,也是目前SOC發展系統的最佳平台。

TI也將Cortex-A8處理器用於超低功耗的新世代3G數據機、採用65奈米製程和TI SmartReflex電源和效能管理技術的OMAP應用處理器,以及M-Shield 安全解決方案。

Cortex-A8處理器是首款採用新世代ARMv7架構和Thumb-2技術的應用處理器,可提供更高效能、更低耗電量和更精簡的程式。Cortex-A8處理器還率先實現了NEON多媒體延伸功能以加快H.264和MP3等媒體編碼解碼器的執行速度。

2.數位視訊

TI所推出的DaVinci平台是一項完整的技術,能夠適用於開發出各種的視訊產品,它最大的突破在於,除了晶片之外TI還將各種的軟體、開發工具結合在一起,甚至建構包含技術支援的完整生態系統。透過一個共通平台,設計人員將能夠大幅減少為應付不同應用,而耗費在整合各種軟體、工具方案所需要的時間。

就如同OMAP平台的豐富選項和彈性,DaVinci技術也帶給數位視訊設計人員同樣的優點,除了訊號處理器之外,DaVinci平台還提供了各式能夠立即用於實際產品的軟體程式,讓設計人員能在更短時間內推出功能更創新的產品。

而TI也持續針對不同的應用推出專用的晶片與軟體方案,以滿足包括視訊保

全、視訊會議、車用娛樂電子、可攜式媒體、數位相機和醫療影像等各種需求。

就處理器來看,DaVinci處理器是以TMS320C6000 DSP平台為基礎,其處理核心是採用C64x + DSP核心。DaVinci處理器包含多種可延展和可程式DSP為基礎的系統單晶片,將DSP、ARM核心、視訊加速器和週邊整合在一起,採用90奈米製程技術生產。

這顆晶片上也採用共同的匯流排,以連接到TI的其他晶片產品,諸如寬頻、藍芽、連接性等,以便業者利用這樣的一個平台,打造出多樣化的視訊產品。

在軟體方面,則包括各種編碼解碼器、作業系統、應用程式界面(API)和架構(Framework)。TI亦提供標準的視訊、影像、音訊和語音編碼解碼器,像是

H.264、MPEG4、WMA、AAC+等多種編解碼器。至於作業系統,DaVinci技術

首先會支援Linux作業系統,預期未來還將支援WinCE等其它常見作業系統。

完全客製化SoC的NRE成本驚人,而且設計流程曠日費時,因此在市場成熟之前,不應該過於躁進,去尋求完全SoC化的解決方案。比較穩健務實的辦法是,利用市面上已進行部份整合的現有標準產品,發揮Time to Market的優勢快速推出產品。

浅谈几种常见的嵌入式处理器比较分析

浅谈几种常见的嵌入式处理器比较分析 前言 随着电子科学的不断发展,人们开始逐渐对数码产品有了更高的需求,这就促使了信息技术的不断发展。嵌入式系统的核心就是嵌入式处理器,它是控制、辅助嵌入式系统运行的硬件单元,其应用范围非常的广阔,它也具有很好的发展前景。那么,面对纷繁复杂的嵌入式处理器市场,我们该如何做出适合自己的选择呢?下面小编就对市场上常见的几种嵌入式处理器进行比较分析,希望可以对大家有所帮助(嵌入式处理器类型)。 (1)嵌入式ARM微处理器(嵌入式微处理器结构) ARM微处理器的由来与发展 ARM(Advanced RISC Machines),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。目前,采用ARM技术知识产权(IP)核的微处理器,即我们通常所说的ARM微处理器。它是一种高性能、低功耗的32位微处器,它被广泛应用于嵌入式系统中。基于ARM技术的微处理器应用约占据了32位RISC微处理器75%以上的市场份额,ARM技术正在逐步渗入到我们生活的各个方面。ARM9代表了ARM公司主流的处理器,已经在手持电话、机顶盒、数码像机、GPS、个人数字助理以及因特网设备等方面有了广泛的应用。 ARM微处理器的应用领域 ARM微处理器是目前应用领域非常广的处理器,到目前为止,ARM微处理器及技术的应用几乎已经遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,深入到各个领域。 1、工业控制领域:作为32的RISC架构,基于ARM核的微控制器芯片不但占据了高端微控制器市场的大部分市场份额,同时也逐渐向低端微控制器应用领域扩展,ARM微控制器的低功耗、高性价比,向传统的8位/16位微控制器提出了挑战。 2、无线通讯领域:目前已有超过85%的无线通讯设备采用了ARM技术,ARM以其高性能和低成本,在该领域的地位日益巩固。 3、网络应用:随着宽带技术的推广,采用ARM技术的ADSL芯片正逐步获得竞争优势。此外,ARM在语音及视频处理上行了优化,并获得广泛支持,也对DSP的应用领域提出了挑战。 4、消费类电子产品:ARM技术在目前流行的数字音频播放器、数字机顶盒和游戏机中得到广泛采用。 5、成像和安全产品:现在流行的数码相机和打印机中绝大部分采用ARM技术。手机中的32位SIM智能卡也采用了ARM技术。 基于RISC架构的ARM微处理器的特点 1、体积小、低功耗、低成本、高性能; 2、支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件; 3、大量使用寄存器,指令执行速度更快;

嵌入式微处理器系统读书报告

《嵌入式微处理器系统》专题读书报告 姓名:全妤

1、引言 随着医疗电子、智能家居、物流管理和电力控制等方面的不断风靡,嵌入式系统利用自身积累的底蕴经验,重视和把握这个机会,想办法在已经成熟的平台和产品基础上与应用传感单元的结合,扩展物联和感知的支持能力,发掘某种领域物联网应用。作为物联网重要技术组成的嵌入式系统,嵌入式系统的视角有助于深刻地、全面地理解物联网的本质。 2、嵌入式系统的概念 嵌入式系统被定义为以应用为中心、计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积功耗严格要求的专用计算机系统。 2.1嵌入式系统的组成 一个嵌入式系统装置一般都由嵌入式计算机系统和执行装置组成。嵌入式计算机系统是整个嵌入式系统的核心,由硬件层、中间层、系统软件层和应用软件层组成。执行装置也称为被控对象,它可以接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。 2.1.1 硬件层 硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。

在一片嵌入式处理器基础上添加电源电路、时钟电路和存储器电路,就构成了一个嵌入式核心控制模块。其中操作系统和应用程序都可以固化在ROM中。 1)嵌入式微处理器 嵌入式系统硬件层的核心是嵌入式微处理器,嵌入式微处理器与通用CPU最大的不同在于嵌入式微处理器大多工作在为特定用户群所专用设计的系统中,它将通用CPU许多由板卡完成的任务集成在芯片内部,从而有利于嵌入式系统在设计时趋于小型化,同时还具有很高的效率和可靠性。 2)存储器 嵌入式系统需要存储器来存放和执行代码。嵌入式系统的存储器包含Cache、主存和辅助存储器。 3)通用设备接口和I/O接口 嵌入式系统和外界交互需要一定形式的通用设备接口,如A/D、D/A、I/O等,外设通过和片外其他设备的或传感器的连接来实现微处理器的输入/输出功能。每个外设通常都只有单一的功能,它可以在芯片外也可以内置芯片中。外设的种类很多,可从一个简单的串行通信设备到非常复杂的802.11无线设备。

微处理器系统与嵌入式系统1—7章最全答案合集

“微处理器系统原理与嵌入式系统设计”第一章习题解答 1.1 什么是程序存储式计算机? 程序存储式计算机指采用存储程序原理工作的计算机。 存储程序原理又称“·诺依曼原理”,其核心思想包括: ●程序由指令组成,并和数据一起存放在存储器中; ●计算机启动后,能自动地按照程序指令的逻辑顺序逐条把指令从存储器中 读出来,自动完成由程序所描述的处理工作。 1.2 通用计算机的几个主要部件是什么? ●主机(CPU、主板、存); ●外设(硬盘/光驱、显示器/显卡、键盘/鼠标、声卡/音箱); 1.3 以集成电路级别而言,计算机系统的三个主要组成部分是什么? 中央处理器、存储器芯片、总线接口芯片 1.4 阐述摩尔定律。 每18个月,芯片的晶体管密度提高一倍,运算性能提高一倍,而价格下降一半。 1.5 讨论:摩尔定律有什么限制,可以使用哪些方式克服这些限制?摩尔定律还会持续多久?在摩尔定律之后电路将如何演化? 摩尔定律不能逾越的四个鸿沟:基本大小的限制、散热、电流泄露、热噪。具体问题如:晶体管体积继续缩小的物理极限,高主频导致的高温…… 解决办法:采用纳米材料、变相材料等取代硅、光学互联、3D、加速器技术、多核…… (为了降低功耗与制造成本,深度集成仍是目前半导体行业努力的方向,但这不可能永无止,因为工艺再先进也不可能将半导体做的比原子更小。用作绝缘材料的二氧化硅,已逼近极限,如继续缩小将导致漏电、散热等物理瓶颈,数量集成趋势终有终结的一天。一旦芯片上线条宽度达到纳米数量级时,相当于只有几个分子的大小,这种情况下材料的物理、化学性能将发生质的变化,致使采用现行工艺的半导体器件不能正常工作,摩尔定律也就要走到它的尽头了。业界专家预计,芯片性能的增长速度将在今后几年趋缓,一般认为摩尔定律能再适用10年左右,其制约的因素一是技术,二是经济。)

嵌入式微处理器结构与应用

《嵌入式微处理器结构与应用》 实训报告 专业:电子信息工程 学生姓名: 学号 指导教师:

交通灯控制系统 1 整体设计 1.1 设计要求 利用arm9实验箱扩展口控制各个路口红绿灯及时间显示,设计一个交通灯控制系统。 1.1.1设计任务 设计一个十字路口的交通灯,它的红灯,绿灯,黄灯的闪烁必须符合交通规则,再用一个数码管来显示倒计时的时间,此时,灯的闪烁必须与数码管上的时间相对应。 1.1.2性能指标要求 (1) 按照题目要求独立设计系统所需电路,并完成电路的实际制作。 (2) 在十字交叉路口,东南西北各方向都设置红、黄、绿色信号灯,红灯亮表示禁止通行,绿灯亮表示可以通行,红灯灭之前3秒钟黄灯开始闪烁直到绿灯亮起后黄灯熄灭。其中东西方向为主干道,南北方向为次干道,设置一位数码管,用来显示红灯和绿灯倒计时间,东西方向时间一致,南北方向时间一致。 (3)开机时主干道为9秒倒计时,次干道为6秒倒计时。 (4)单独设计人行道指示灯标志,当禁止行走时为红灯,当可以横穿马路时,绿灯亮起,在通行之前3秒钟黄灯开始闪烁(以警示行人),最终红灯亮起绿灯熄灭。 (5)使用51单片机完成与arm9实验箱的连接,单片机模块只是完成通信与显示功能。所以的控制只能在arm 中实现(既断开接口连接,显示相关功能无效)。 1.2 整机实现的基本原理及框图 1.2.1 基本原理 主体电路:其分为两部分,一是由ARM9发送控制信号模块,二是由单片机完成通信与显示模块。ARM9发送控制信号模块主要由S3C2410A 的UART 专用寄存器完成串口通南 北 西 东 数码管 数码管

信,已达到发送控制信号的目的,指示单片机的交通状态是东西方向亮绿灯还是南北方向和数码管的显示。单片机完成通信与显示模块主要由AT89S52单片机的I/O 端口、定时计数器、外部中断扩展等组成,负责解读arm9试验箱发送来的数据,并把根据解读的数据控制交通灯的亮灭和数码管的显示。 1.2.2 总体框图 2 各功能电路实现原理及电路设计 2.1 交通灯显示部分 此模块是应用的16盏LED 灯,连接到51单片机的P1口,通过给P1口的管教赋值0/1,来实现16盏LED 灯的亮灭。 ARM 实验箱 发送 控制 指令 单片机系统 LED 灯显示交通状态 数码管显示倒计时时间

嵌入式微处理器未来市场趋势

嵌入式微處理器未來市場趨勢 CPU的架構大致上可分為CISC CPU & RISC CPU。 CISC CPU適用於大量資料運算的應用(INTEL、AMD、VIA的x86 CPU)。 RISC CPU所強調的是執行的效率與省電的要求(ARM、MIPS、ARC …)。 不論是CISC或是RISC CPU,都可以依據CPU內部處理資料匯流排的寬度,可區分成8位元、16位元、32位元與64位元等四種。根據In-Stat的統計,成長最快的是64位元嵌入式CPU,主要應用在STB、DTV與電視遊戲機等需要大量資料處理的產品。 8至64位元主要產品中所使用嵌入式CPU種類 全球的嵌入式CPU供應商第一大廠商是ARM,排名第二是MIPS。但兩家的產品定位並不完全相同。 ARM的CPU會強調省電應用;MIPS則主打高效能的產品。 因此在過去強調省電訴求的行動電話是嵌入式產品最大應用產品情況下,ARM 的營收皆優於MIPS。MIPS已逐漸淡出16位元CPU的市場,而專注於32位元以上的CPU。ARM與其最大競爭對手MIPS的差異處在於,以交易機制來分析,一般而言,ARM的授權金比重較高,而MIPS則收取比例較高的權利金。 早期台灣廠商CPU或MCU相關技術可區分成三類,8051架構、6502架構與自行研發等三種。INTEL的8051與Motorola的6502都是8位元的架構,初期都是由工研院所授權獲得,並推廣至國內業者。另外自行研發的也不在少數,例如凌陽、盛群、金麗或十速等公司,但都是32位元以下的架構。

嵌入式微處理(CPU)器與微控制器(MCU) 微處理器強調運算效能,而微控制器著重控制功能。 在SoC整合趨勢下,嵌入式微處理器加上記憶體、邏輯與I/O等IP將構成強大效能的微控制器;而增強位元數後的微控制器亦具有MPU的強大處理功能。 微處理器若以應用產品的軟體平台來區分,可分成特定應用型與泛用型兩種。特定應用型: 操作軟體大致是依據終端產品所需的功能加以設計,其最大特色是封閉的操作環境,終端產品的使用者大致上不需了解軟體的構造,也不能修改其操作功能,應用產品有印表機、數位相機、車用設備與遊戲機等,這類型產品通常較簡單其穩定性也要求較高。 泛用型: 如簡易的電腦一樣,有著相似而共通的作業系統,主要應用在PDA、Smart Phone、STB(視訊轉換器)、Thin Client等。此類產品因具有資訊交換的功能,其作業系統較複雜,相容性的要求也較高。 微控制器主要是負責系統產品中控制功能的IC元件。目前電子產品朝向輕薄短小、功能強大、價格低廉等目標發展,加上開發時程日益縮短,微控制器具有整合諸多功能於一身的特性,不但節省開發時間,在降低體積與成本上也有相當大的助益。 微控制器因有下列優點: 1.低價 2.較小的程式碼 3.可使用C語言編譯,開發更容易 4.耗電量較低 5.最高的效能與價格比 16位元以上的微控制器主要應用在通訊(如ISDN、USB等)、車用與工業等項目;由於需要符合工業規格,必須認證後才能出貨,技術層次較高。 隨著系統產品功能的多樣化,人機介面必須具有親和力…等,微控制器的效能亦不斷要求提升,近年來32/64位元微控制器成長率有越來越高的趨勢。

Intel XScale(TM) 嵌入式微处理器简介

Intel XScale?嵌入式微处理器简介 Intel Xscale内核是和ARM? Architecture V5TE结构兼容的微处理器。Intel? XScale?core内核集成了多种微结构的特点,从而能够完成更过的性能要求。这样用户可以根据自己的需求进行配置,实现自己特定的功能。Intel? XScale?的这些微结构很多应用在存储器当中,主要包括: ?当数据缓冲从外部存储器获取数据是,仍然能够执行指令; ?写缓冲; ?写回数据缓冲(Write-back data cache) ?缓冲锁定(Cache locking) ?可配置的缓冲方式(X Bit, C Bit for Cacheable, B Bit for Bufferable) Intel Xscale内核的上述特点,使它能够有效的处理语音信号,乘法累加操作还可以完成多种语音和多媒体CODEC算法。 特点改进的性能 Intel? 超级流水线技术 7-stage integer/8-stage存储器超级流水线内核获得更高的速度 和较低的功耗  Intel?动态电压管理 动态电压和频率允许应用系统对性能和功耗进行合理的折衷  Intel? Media处理技术 多累加协处理器同时完成两个16-bit SIMD 乘法(带40-bit累 加),有效的媒体处理;  电源管理单元 通过idle、 sleep、和快速wake-up模式,降低功耗  128-entry Branch Target Buffer  使流水线载有分支支零时仍能够保持正确  32 KB Instruction Cache 保持重要指令,提高系统性能,降低系统功耗  32 KB Data Cache 保持重要数据,提高系统性能,降低系统功耗  2 KB Mini-Data Cache 在频繁改变数据流时,避免"thrashing" of the D-Cache 32-entry 程序存储器管理 单元  使能逻辑到物理地址变换、访问允许和I-Cache attributes 32-entry数据存储器管理 单元  使能逻辑到物理地址变换、访问允许和D-Cache attributes  4-entry Fill and Pend Buffers 通过允许数据缓冲的non-blocking和"hit-under-miss"操作,提高内和效率。  性能监测单元 完成两个32-bit event counters和一个32-bit cycle counter for analysis of hit rates, etc.  Debug调试单元 采用硬件断点和256-entry跟踪缓冲调试程序  32-bit Coprocessor Interface 在内核和协处理器间提供高性能的接口  64-bit内和存储器总线,同时32-bit输入和32-bit输出 Gives up to 4.8 GBytes/sec. @ 600 MHz bandwidth for internal accesses 8-entry Write Buffer 当数据写入到存储器是,允许内和继续执行。  ARM兼容性 1

嵌入式微处理器与操作系统_华中师范大学20年春季考试题库及答案

[试题分类]:嵌入式微处理器与操作系统Z_82411005 [题型]:单选 [大题名称]:单项选择题 [题目数量]:60 [分数]:2 1.Makefile文件预定定义变量$^表示()。 A.目标文件的完整名称 B.所有不重复的依赖文件,以空格隔开 C.第一个依赖文件的名称 D.第二个依赖文件的名称 [答案]:B [一级属性]: [二级属性]: [难度]: [公开度]: 2.如果生成通用计算机上(系统是Linux操作系统)能够执行的程序,则使用的C编译是()。 A.TC B.VC C.GCC D.arm-linux-gcc [答案]:C [一级属性]: [二级属性]: [难度]: [公开度]: 3.创建根文件系统映像文件使用的工具是()。 A.BusyBox B.cramfs C.make D.vi [答案]:A [一级属性]: [二级属性]: [难度]: [公开度]: 4.S3C2410X系统的存储空间分成()组(bank)。 A.2 B.4 C.8 D.16 [答案]:C

[一级属性]: [二级属性]: [难度]: [公开度]: 5.GDB软件是()。 A.调试器 B.编译器 C.文本编译器 D.连接器 [答案]:A [一级属性]: [二级属性]: [难度]: [公开度]: 6.嵌入式系统和通用计算机相比,描述不正确的是()? A.专用性强 B.实时性好 C.可裁剪性好 D.功耗高 [答案]:D [一级属性]: [二级属性]: [难度]: [公开度]: 7.ARM9使用几级流水线。 A.2 B.3 C.5 D.7 [答案]:C [一级属性]: [二级属性]: [难度]: [公开度]: 8.ARM公司主要依靠()获得利润。 A.生产芯片 B.销售芯片 C.制定标准 D.出售芯片技术授权 [答案]:D

嵌入式微处理器的分类与特点

1.2.1 嵌入式处理器的分类与特点 1.嵌入式微处理器的分类 嵌入式系统的核心部件是嵌入式处理器,一般把嵌入式处理器分成4类,即嵌入式微控制器、嵌入式微处理器、嵌入式DSP处理器和嵌入式片上系统。 (1)嵌入式微控制器(MicroController(微控制器) Unit MCU的典型代表是单片机,它将整个计算机系统集成到一块芯片中。MCU一般以某种微处理器内核为核心,根据某些典型的应用,在芯片内部集成了ROM/EPROM、RAM、总线、总线逻辑、定时/计数器、看门狗、I/O、串行口、脉宽调制输出、A/D、D/A、FLASH RAM、EEPROM等各种必要功能部件和外设。为适应不同的应用需求,对功能的设置和外设的配置进行必要的修改和裁减定制,使得一个系列的单片机具有多种衍生产品,每种衍生产品的处理器内核都相同,不同的是存储器和外设的配置及功能的设置。这样可以使单片机最大限度地和应用需求相匹配,从而减少整个系统的功耗和成本。和嵌入式微处理器相比,微控制器的单片化使应用系统的体积大大减小,从而使功耗和成本大幅度下降、可靠性提高。由于MCU目前在产品的品种和数量上是所有种类嵌入式处理器中最多的,而且上述诸多优点决定了微控制器是嵌入式系统应用的主流。微控制器的片上外设资源一般比较丰富,适合于控制,因此称为微控制器。 通常,MCU可分为通用和半通用两类,比较有代表性的通用系列包括8051、P51XA、MCS-251、MCS-96/196/296、C166/167、68300等。而比较有代表性的半通用系列,如支持USB 接口的MCU 8XC930/931、C540、C541;支持I2C、CAN总线、LCD等的众多专用MCU 和兼容系列。 (2)嵌入式微处理器(MicroProcessor Unit,MPU) MPU是由通用计算机中的CPU演变而来的。MPU采用增强型通用微处理器。由于嵌入式系统通常应用于环境比较恶劣的环境中,因而MPU在工作温度、电磁兼容性以及可靠性方面的要求较通用的标准微处理器高。但是,MPU在功能方面与标准的微处理器基本上是一样的。根据实际嵌入式应用要求,将MPU装配在专门设计的主板上,只保留和嵌入式应用有关的主板功能,这样可以大幅度减小系统的体积和功耗。 和工业控制计算机相比,MPU组成的系统具有体积小、重量轻、成本低、可靠性高的优点,但在其电路板上必须包括ROM、RAM、总线接口、各种外设等器件,从而降低了系统的可靠性,技术保密性也较差。由MPU及其存储器、总线、外设等安装在一块电路主板上构成一个通常所说的单板机系统。嵌入式处理器目前主要有AM186/88、386EX、SC-400、Power PC、68000、MPIS、ARM系列等。 (3)嵌入式数字信号处理器(Digital Signal Processor,DSP) DSP是专门用于信号处理方面的处理器,其在系统结构和指令算法方面进行了特殊设计,具有很高的编译效率和指令执行速度。 在数字信号处理应用中,各种数字信号处理算法很复杂,这些算法的复杂度可能是o (nm)的,甚至是NP的,一般结构的处理器无法实时的完成这些运算。由于DSP对系统结构和指令进行了特殊设计,使其适合于实时地进行数字信号处理。在数字滤波、fft、谱分析等方面,DSP算法正大量进入嵌入式领域,DSP应用正从在通用单片机中以普通指令实现DSP 功能,过渡到采用嵌入式DSP。 嵌入式DSP处理器有两类:(1)DSP处理器经过单片化、EMC改造、增加片上外设成为嵌入式DSP处理器,TI 的TMS320C2000/C5000 等属于此范畴。(2)在通用单片机或SOC 中增加DSP协处理器,例如Intel的MCS-296和infineon(siemens)的tricore。另外,在有关智

嵌入式微处理器特点

嵌入式微处理器特点: 嵌入式微处理器一般就具备以下4个特点: (1)对实时多任务有很强的支持能力,能完成多任务并且有较短的中 断响应时间,从而使部的代码和实时核心的执行时间减少到最低限度。 (2)具有功能很强的存储区保护功能。这是由于嵌入式系统的软件结 构已模块化,而为了避免在软件模块之间出现错误的交叉作用,需要设计强 大的存储区保护功能,同时也有利于软件诊断。 (3)可扩展的处理器结构,以能最迅速地开展出满足应用的最高性能 的嵌入式微处理器。 (4)嵌入式微处理器必须功耗很低,尤其是用于便携式的无线及移动 的计算和通信设备中靠电池供电的嵌入式系统更是如此,如需要功耗只有 mW甚至μW级。 嵌入式系统概念: 一般来说,嵌入式系统是“执行专用功能并被部计算机控制的设备或者系统。嵌入式系统不能使用通用型计算机,而且运行的是固化的软件,用术语表示就是固件(firmware),终端用户很难或者不可能改变固件。” 嵌入式系统是以应用为中心,以计算机技术为基础,并且软硬件可裁剪,适用于应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序等四个部分组成,用于实现对其他设备的控制、监视或管理等功能。嵌入式系统一般指非PC系统,它包括硬件和软件两部分。硬件包括处理器/微处理器、存储器及外设器件和I/O端口、图形控制器等。软件部分包括操作系统软件(OS)(要时和多任务操作)和应用程序编程。有时设计人员把这两种软件组合在一起。应用程序控制着系统的运作和行为;而操作系统控制着应用程序编程与硬件的交互作用。嵌入式系统的核心是嵌入式微处理器。

DSP 、单片机以及嵌入式微处理器区别

DSP 、单片机以及嵌入式微处理器都是嵌入式家族的一员。最大区别是DSP能够高速、实时地进行数字信号处理运算。数字信号处理运算的特点是乘/加及反复相乘 求和(乘积累加)。为了能快速地进行数字信号处理的运算,(1)DSP设置了硬件乘法/累加器,(2)能在单个指令周期内完成乘/加运算。(3)为满足FFT、卷积等数字信号处理的特殊要求,目前DSP大多在指令系统中设置了“循环寻址”及“位倒序”寻址指令和其他特殊指令,使得寻址、排序的速度大大提高。DSP完成1024复点FFT的运算,所需时间仅为微秒量级。 高速数据的传输能力是DSP高速实时处理的关键之一。新型的DSP设置了单独的DMA总线及其控制器,在不影响或基本不影响DSP处理速度的情况下,作并行的数据传送,传送速率可达每秒百兆字节。DSP内部有流水线,它在指令并行、功能单元并行、多总线、时钟频率提高等方面不断创新和改进。因此,DSP与单片机、嵌入式微处理器相比,在内部功能单元并行、多DSP核并行、速度快、功耗小、完成各种DSP算法方面尤为突出。 单片机也称微控制器或嵌入式控制器,它是为中、低成本控制领域而设计和开发的。单片机的位控能力强,I/O接口种类繁多,片内外设和控制功能丰富、价格低、使用方便,但与DSP相比,处理速度较慢。DSP具有的高速并行结构及指令、多总线,单片机却没有。DSP处理的算法的复杂度和大的数据处理流量更是单片机不可企及的。嵌入式微处理器的基础是通用计算机中的CPU(微处理器)。是嵌入式系统的核心。为满足嵌入式应用的特殊要求,嵌入式微处理器虽然在功能上和标准微处理器基本是一样的,但在工作温度、抗电磁干扰、可靠性等方面一般都做了各种增强。与工业控制计算机相比,嵌入式微处理器具有体积小、质量轻、成本低、可靠性高的优点,但是在电路板上必须包括ROM、RAM、总线接口、各种外设等器件,从而降低了系统的可靠性,技术保密性也较差。在应用设计中,嵌入式微处理器及其存储器、总线、外设等安装在专门设计的一块电路板上,只保留和嵌入式应用有关的母板功能,可大幅度减小系统的体积和功耗。目前,较流行的是基于ARM7、ARM9系列内核的嵌入式微处理器。 嵌入式微处理器与DSP的一个很大区别,就是嵌入式处理器的地址线要比DSP 的数目多,所能扩展的存储器空间要比DSP的存储器空间大的多,所以可配置实时多任务操作系统(RTOS)。RTOS是针对不同处理器优化设计的高效率、可靠性和可信性很高的实时多任务内核,它将CPU时间、中断、I/O、定时器等资源都包装起来,留给用户一个标准的应用程序接口(API),并根据各个任务的优先级,合理地在不同任务之间分配CPU时间。RTOS是嵌入式应用软件的基础和开发平台。常用的RTOS:Linux(为几百KB)和VxWorks(几MB)。 由于嵌入式实时多任务操作系统具有的高度灵活性,可很容易地对它进行定制或作适当开发,来满足实际应用需要。例如,移动计算平台、信息家电(机顶盒、数字电视)、媒体手机、工业控制和商业领域(例如,智能工控设备、ATM机等)、电子商务平台,甚至军事应用,吸引力巨大。所以,目前嵌入式微处理器的应用是继单片机、DSP之后的又一大应用热门。但是,由于嵌入式微处理器通常不能高效地完成许多基本的数字处理运算,例如,乘法累加、矢量旋转、三角函数等。它的 体系结构对特殊类型的数据结构只能提供通用的寻址操作,而DSP则有专门的简捷寻址机构和辅助硬件来快速完成。所以嵌入式微处理器不适合高速、实时的数字信号处理运算。而更适合“嵌入”到系统中,完成高速的“通用”计算与复杂

浅谈几种常见的嵌入式处理器比较分析

浅谈几种常见的嵌入式处理器比较分析 The manuscript was revised on the evening of 2021

浅谈几种常见的分析 前言 随着电子科学的不断发展,人们开始逐渐对数码产品有了更高的需求,这就促使了信息技术的不断发展。嵌入式系统的核心就是嵌入式处理器,它是控制、辅助嵌入式系统运行的硬件单元,其应用范围非常的广阔,它也具有很好的发展前景。那么,面对纷繁复杂的嵌入式处理器市场,我们该如何做出适合自己的选择呢下面小编就对市场上常见的几种嵌入式处理器进行比较分析,希望可以对大家有所帮助(嵌入式处理器类型)。 (1)嵌入式ARM微处理器(嵌入式微处理器结构) ARM微处理器的由来与发展 ARM(Advanced RISC Machines),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。目前,采用ARM技术知识产权(IP)核的微处理器,即我们通常所说的ARM微处理器。它是一种高性能、低功耗的32位微处器,它被广泛应用于嵌入式系统中。基于ARM技术的微处理器应用约占据了32位RISC微处理器75%以上的市场份额,ARM技术正在逐步渗入到我们生活的各个方面。ARM9代表了ARM公司主流的处理器,已经在手持电话、机顶盒、数码像机、GPS、个人数字助理以及因特网设备等方面有了广泛的应用。 ARM微处理器的应用领域 ARM微处理器是目前应用领域非常广的处理器,到目前为止,ARM微处理器及技术的应用几乎已经遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,深入到各个领域。 1、工业控制领域:作为32的RISC架构,基于ARM核的微控制器芯片不但占据了高端微控制器市场的大部分市场份额,同时也逐渐向低端微控制器应用领域扩展,ARM微控制器的低功耗、高性价比,向传统的8位/16位微控制器提出了挑战。 2、无线通讯领域:目前已有超过85%的无线通讯设备采用了ARM技术,ARM以其高性能和低成本,在该领域的地位日益巩固。 3、网络应用:随着宽带技术的推广,采用ARM技术的ADSL芯片正逐步获得竞争优势。此外,ARM在语音及视频处理上行了优化,并获得广泛支持,也对DSP的应用领域提出了挑战。 4、消费类电子产品:ARM技术在目前流行的数字音频播放器、数字机顶盒和游戏机中得到广泛采用。 5、成像和安全产品:现在流行的数码相机和打印机中绝大部分采用ARM技术。手机中的32位SIM智能卡也采用了ARM技术。 基于RISC架构的ARM微处理器的特点 1、体积小、低功耗、低成本、高性能; 2、支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件;

嵌入式ARM微处理器选型指南

嵌入式ARM微处理器选型指南 要选好一款处理器,要考虑的因素很多,不单单是纯粹的硬件接口,还需要考虑相关的操作系统、配套的开发工具、仿真器,以及工程师微处理器的经验和软件支持情况等。微处理器选型是否得当,将决定项目成败。当然,并不是说选好微处理器,就意味着成功,因为项目的成败取决于许多因素;但可以肯定的一点是,微处理器选型不当,将会给项目带来无限的烦恼,甚至导致项目的流产。 1 嵌入式微处理器选型的考虑因素 在产品开发中,作为核心芯片的微处理器,其自身的功能、性能、可靠性被寄予厚望,因为它的资源越丰富、自带功能越强大,产品开发周期就越短,项目成功率就越高。但是,任何一款微处理器都不可能尽善尽美,满足每个用户的需要,所以这就涉及选型的问题。 (1)应用领域 一个产品的功能、性能一旦定制下来,其所在的应用领域也随之确定。应用领域的确定将缩小选型的范围,例如:工业控制领域产品的工作条件通常比较苛刻,因此对芯片的工作温度通常是宽温的,这样就得选择工业级的芯片,民用级的就被排除在外。目前,比较常见的应用领域分类有航天航空、通信、计算机、工业控制、医疗系统、消费电子、汽车电子等。 (2)自带资源 经常会看到或听到这样的问题:主频是多少?有无内置的以太网MAC?有多少个I/O口?自带哪些接口?支持在线仿真吗?是否支持OS,能支持哪些OS?是否有外部存储接口?……以上都涉及芯片资源的问题,微处理器自带什么样的资源是选型的一个重要考虑因素。芯片自带资源越接近产品的需求,产品开发相对就越简单。 (3)可扩展资源 硬件平台要支持OS、RAM和ROM,对资源的要求就比较高。芯片一般都有内置RAM和ROM,但其容量一般都很小,内置512 KB就算很大了,但是运行OS一般都是兆级以上。这就要求芯片可扩展存储器。 (4)功耗 单看“功耗”是一个较为抽象的名词。这里举几个形象的例子: ①夏天使用空调时,家里的电费会猛增。这是因为空调是高功耗的家用电器,这时人们会想,“要是空调能像日光灯那样省电就好了”。 ②随身的MP3、MP4都使用电池。正当听音乐看视频时,系统因为没电自动关机,谁都会抱怨“又没电了!” ③目前手机一般使用锂电池,手机的待机和通话时间成了人们选择手机的重要指标。待机及通话时间越长,电池的使用寿命就可以提高,手机的寿命也相对提高了。 以上体现了人们对低功耗的渴求。低功耗的产品即节能又节财,甚至可以减少环境污染,它有如此多的优点,因此低功耗也成了芯片选型时的一个重要指标。 (5)封装 常见的微处理器芯片封装主要有QFP、BGA两大类型。BGA类型的封装焊接比较麻烦,一般的小公司都不会焊,但BGA封装的芯片体积会小很多。如果产品对芯片体积要求不严格,选型时最好选择QFP封装。 (6)芯片的可延续性及技术的可继承性 目前,产品更新换代的速度很快,所以在选型时要考虑芯片的可升级性。如果是同一厂家同一内核系列的芯片,其技术可继承性就较好。应该考虑知名半导体公司,然后查询其相关产品,再作出判断。 (7)价格及供货保证 芯片的价格和供货也是必须考虑的因素。许多芯片目前处于试用阶段(sampling),其价格和供货就会处于不稳定状态,所以选型时尽量选择有量产的芯片。 (8)仿真器 仿真器是硬件和底层软件调试时要用到的工具,开发初期如果没有它基本上会寸步难行。选择配套适合的仿真器,将会给开发带来许多便利。对于已经有仿真器的人们,在选型过程中要考虑它是否支持所选的芯片。 (9)OS及开发工具

嵌入式微处理器结构与应用课程设计报告

《嵌入式微处理器结构与应用》 课程设计报告 题目:电子菜单 一、课程设计的目的和主要内容: 目的:《嵌入式微处理器结构与应用》课程设计是软件工程本科专业的专业实践课程,结合在课程中学到的嵌入式系统的开发和调试方法,对学生在嵌入式系统设计和应用开发的基本技能方面进行综合的检验和实践。是学生在学习完《嵌入式微处理器结构与应用》课程之后的一个重要的实践环节。要求学生在教师的指导下,综合运用已学过的嵌入式微处理器相关的各种知识和技能,以小组协作的方式完成一项较为完整、并具有一定难度的课程设计任务。使学生总结本课程的主要知识点,提高学生的实际动手能力,为学生今后进一步学习和从事嵌入式系统相关的研究与开发打下坚实的基础。 内容:基于实时操作系统,学会复杂应用程序的基本开发方法,结合课程实验学到的知识,编写一个能综合应用液晶屏、触摸屏、键盘并结合简单文件系统API函数的界面应用。要求具备基本的三个界面:初始界面、点菜界面、结束界面,基本实现点菜的全过程。 二、基本的设计思路或程序流程图描述: 基于MVC勺设计模式,将程序分成三大独立的部分:模型(逻辑)部分、视图部分、控制部分。这三大部分的关系如下:

程序总流程图:

百度文库-让每个人平等地提升自我 初始化程序, 打开启动画面线程 关闭线程 点菜结束按钮 判断消息 类型 判断操 作类型 判断单 击内容 判断控 件类型 判断该菜单条目 的 状态,进行相应的逻 辑和视图更新 本人负责: 打开线程 界面控件 翻页按钮 加载菜单数据 显示启动动 画 键盘消息 显示点菜结束 画面和总价 程序 菜单条目 进行菜单的上下 滚动 关闭按钮 单击 拉动 重置逻辑数 据,显示最初 的点菜界面 关闭启动画面线程, 显示点菜画面 显示程序结束画 面 进行菜单的翻页 等待系统消息 触摸屏消息 、视图部分:

《嵌入式微处理器结构与应用》实训报告

桂林电子科技大学信息科技学院 《嵌入式微处理器结构与应用》实训报告 学号1152100135 姓名殷浩 指导教师:韩桂明,张锟,赵志鹏 2014 年6 月20 日

实训题目:倒计时秒表 1系统设计 1.1 设计要求 1.1.1 设计任务 使用串口连接51单片机与arm9实验箱实现99秒倒计时,并通过数码管显示。当倒计时为0时,点亮LED灯,蜂鸣器报警。 1.1.2 性能指标要求 (1) 实现99秒倒计时,并通过数码管显示; (2) 四个按键:一个“运行/暂停”按键,一个“加计时”按键,一个“减计时”按键,一个“复位”按键; (3) 四个指示灯:倒计时为0时,指示灯闪烁。 (4) 扩展多位数码管,实现多位显示(动态扫描) (5) 加入蜂鸣器,可作声音报警使用。 注意:(数码管、按键和指示灯均连接到单片机I/O口) 1.2 设计思路及设计框图 1.2.1设计思路 单片机通过按键扫描,发送不同指令并通过串口发送到arm9实验箱上,arm9程序响应接收到的指令,实现相应的计算和控制功能,并向单片机传回数据,单片机接收arm9反馈回来的数据并输出显示。 1.2.2总体设计框图 串口发送 2各个模块程序的设计 2.1单片机最小系统

单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统。对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路。 复位电路:由电容串联电阻构成,结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定。典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般C 取10u,R取8.2K。原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平。 晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作) 2.2数码管显示 这次实训我们使用的是四位一体共阴数码管,经过测量,分别找到了它的段选和位选。用它来显示秒表的秒值,数码管的使能端接到P2.0、P2.1、P2.2和P2.3上,其余8个引脚分别单片机P0口相连,根据单片机引脚与数码管的连接关系,可以列出显示不同数字的段选码。从而准确的输出秒表的正确秒值。

嵌入式系统开发基础——基于ARM9微处理器C语言程序设计各章习题答案

第一章习题 1。嵌入某种微处理器或单片机的测试和控制系统称为嵌入式控制系统(Embedded Control System)。 在应用上大致分为两个层次,以MCS-51为代表的8位单片机和以ARM技术为基础的32位精减指令系统单片机 2。目标机上安装某种嵌入式操作系统和不安装嵌入式操作系统, 以MCS-51为代表的8位单片机不安装嵌入式操作系统。 3。32位、16位和8位 5。32位、16位 6。在大端格式中,字数据的高字节存储在低字节单元中,而字数据的低字节则存放在高地址单元中。 在小端存储格式中,低地址单元存放的是字数据的低字节,高地址单元中,存放的是数据的高字节。 第二章习题 (略) 第三章习题 1。 (1)寄存器大约有17类,每个的定义都是寄存器名字前面加一个小写”r” (2)在56个中断源中,有32个中断源提供中断控制器,其中,外部中断EINT4~EINT7通过“或”的形式提供一个中断源送至中断控制器,EINT8~EINT23也通过“或”的形式提供一个中断源送至中断控制器。 第四章习题 1,56个中断源,有32个中断源提供中断控制器 2,两种中断模式,即FIQ模式(快速模式)和IRQ模式(通用模式)。通过中断模式控制寄存器设置。 3,常用的有5个,它们是中断模式控制寄存器,控制中断模式;中断屏蔽寄存器,控制中断允许和禁止;中断源挂起寄存器,反映哪个中断源向CPU申请了中断;中断挂起寄存器,反映CPU正在响应的中断是哪个中断源申请的;中断优先级寄存器,它和中断仲裁

器配合,决定中断优先级。 4,中断源挂起寄存器,反映哪个中断源向CPU申请了中断;中断挂起寄存器,反映CPU正在响应的中断是哪个中断源申请的。中断源向CPU申请了中断如果该中断源没被屏蔽并且没有和它同级或高级的中断源申请中断,才能被响应。系统中可以有多个中断源向CPU申请中断,但同一时刻CPU只能响应一个最高级的中断源中断请求。中断源挂起寄存器和中断挂起寄存器反映了中断系统不同时段的状态。 5,进入中断服务程序先清中断源挂起寄存器和中断挂起寄存器;中断结束,将该中断源屏蔽。 6,将该中断源屏蔽取消;将该中断源屏蔽。 第五章习题 1,S3C2410芯片上共有117个多功能的输人/输出引脚,它们是。 ?1个23位的输出端口(端口A); 。1个11位的输入/输出端口(端口B); 。1个16位输入/输出端口(端口C); ? 1个16位输入/输出端口(端口D); ? 1个16位输入/输出端口(端口E); ?1个8位输人/输出端口(端口F); ? 1个16位输入/输出端口(端口G); 。1个11位的输入/输出端口(端口H)。 2,S3C2410 I/O口的控制寄存器、数据寄存器、上拉电阻允许寄存器的作用? 端口控制寄存器定义了每个引脚的功能;与I/O口进行数据操作,不管是输入还是输出,都是通过该口的数据寄存器进行的,如果该端口定义为输出端口,那么可以向GPnDAT的相应位写数据。如果该端口定义为输人端端口,那么可以从GPnDAT的相应位读出数据。 端口上拉寄存器控制每个端口组上拉电阻的使能/禁止。如果上拉寄存器某一位为0,则相应的端口上拉电阻被使能,该位做基本输入/输出使用,即第1功能;如果上拉寄存器某一位是1,则相应的端口上拉电阻被禁止,该位做第2功能使用。 5, rGPBCON=rGPBCON& 0xFFFFFC∣1; //蜂鸣器配置,PB1口接蜂鸣器,输出delay(1000); rGPBDAT & = 0xFFFFFE; //蜂鸣器响,低电平有效 rGPBDAT∣=1; // 蜂鸣器停

DSP 单片机以及嵌入式微处理器区别

DSP 、单片机以及嵌入式微处理器都就是嵌入式家族的一员。最大区别就是DSP 能够高速、实时地进行数字信号处理运算。数字信号处理运算的特点就是乘/加及反复相乘 求与(乘积累加)。为了能快速地进行数字信号处理的运算,(1)DSP设置了硬件乘法/累加器,(2)能在单个指令周期内完成乘/加运算。(3)为满足FFT、卷积等数字信号处理的特殊要求,目前DSP大多在指令系统中设置了“循环寻址”及“位倒序”寻址指令与其她特殊指令,使得寻址、排序的速度大大提高。DSP完成1024复点FFT的运算,所需时间仅为微秒量级。 高速数据的传输能力就是DSP高速实时处理的关键之一。新型的DSP设置了单独的DMA总线及其控制器,在不影响或基本不影响DSP处理速度的情况下,作并行的数据传送,传送速率可达每秒百兆字节。DSP内部有流水线,它在指令并行、功能单元并行、多总线、时钟频率提高等方面不断创新与改进。因此,DSP与单片机、嵌入式微处理器相比,在内部功能单元并行、多DSP核并行、速度快、功耗小、完成各种DSP算法方面尤为突出。 单片机也称微控制器或嵌入式控制器,它就是为中、低成本控制领域而设计与开发的。单片机的位控能力强,I/O接口种类繁多,片内外设与控制功能丰富、价格低、使用方便,但与DSP相比,处理速度较慢。DSP具有的高速并行结构及指令、多总线,单片机却没有。DSP处理的算法的复杂度与大的数据处理流量更就是单片机不可企及的。嵌入式微处理器的基础就是通用计算机中的CPU(微处理器)。就是嵌入式系统的核心。为满足嵌入式应用的特殊要求,嵌入式微处理器虽然在功能上与标准微处理器基本就是一样的,但在工作温度、抗电磁干扰、可靠性等方面一般都做了各种增强。与工业控制计算机相比,嵌入式微处理器具有体积小、质量轻、成本低、可靠性高的优点,但就是在电路板上必须包括ROM、RAM、总线接口、各种外设等器件,从而降低了系统的可靠性,技术保密性也较差。在应用设计中,嵌入式微处理器及其存储器、总线、外设等安装在专门设计的一块电路板上,只保留与嵌入式应用有关的母板功能,可大幅度减小系统的体积与功耗。目前,较流行的就是基于ARM7、ARM9系列内核的嵌入式微处理器。 嵌入式微处理器与DSP的一个很大区别,就就是嵌入式处理器的地址线要比DSP 的数目多,所能扩展的存储器空间要比DSP的存储器空间大的多,所以可配置实时多任务操作系统(RTOS)。RTOS就是针对不同处理器优化设计的高效率、可靠性与可信性很高的实时多任务内核,它将CPU时间、中断、I/O、定时器等资源都包装起来,留给用户一个标准的应用程序接口(API),并根据各个任务的优先级,合理地在不同任务之间分配CPU时间。RTOS就是嵌入式应用软件的基础与开发平台。常用的RTOS:Linux(为几百KB)与VxWorks(几MB)。 由于嵌入式实时多任务操作系统具有的高度灵活性,可很容易地对它进行定制或作适当开发,来满足实际应用需要。例如,移动计算平台、信息家电(机顶盒、数字电视)、媒体手机、工业控制与商业领域(例如,智能工控设备、ATM机等)、电子商务平台,甚至军事应用,吸引力巨大。所以,目前嵌入式微处理器的应用就是继单片机、DSP之后的又一大应用热门。但就是,由于嵌入式微处理器通常不能高效地完成许多基本的数字处理运算,例如,乘法累加、矢量旋转、三角函数等。它的 体系结构对特殊类型的数据结构只能提供通用的寻址操作,而DSP则有专门的简捷寻址机构与辅助硬件来快速完成。所以嵌入式微处理器不适合高速、实时的数字信号处理运算。而更适合“嵌入”到系统中,完成高速的“通用”计算与复杂

相关文档
最新文档