石墨烯

石墨烯
石墨烯

1.石墨烯(Graphene)的结构石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。

如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。

图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。

图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。双层石墨烯

(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。少层石墨烯

(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA 堆垛等)堆垛构成的一种二维碳材料。

石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为0.7~1.0nm。这种三维

的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。

图1.3 单层石墨烯的典型构象

除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性

质 2.1 力学特性在石墨烯二维平面内,每一个碳原子都以σ键同相邻的三个碳原子相连,相邻两个键之间的夹角120°,键长约为0.142nm,这些C-C键使石墨烯具有良好的结构刚性,石墨烯是世界上已知的最牢固的材料,其本征(断裂)强度可达130GPa,是钢的100多倍,杨氏(拉伸)模量为1100GPa。如此高强轻质的薄膜材料,有望用于航空航天等众多领域。 2.2 电学特性石墨烯的每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。π电子在平面内可以自由移动,使石墨烯具有良好的导电性石墨烯独特的结构使其具有室温半整数量子霍尔效应,双极性电场效应,超导电性,高载流子率等优异的电学性质,其载流子率在室温下可达到 1.5×104cm2.V?1.S?1。

图2.1 绝缘体,导体,半导体的能带结构

图2.2 石墨烯能带结构 2.2.1石墨烯能带结构

当绝对零度下,半导体的价带是满带(完全被电子占据)。当受光电或热激

发后价带中的部分电子(石墨烯的电子运动速度高达106m/s,是光速的1/300)越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电

导带价带禁带电子能量导带价带重叠电子能量导带价带禁

带电子能量子后形成一个带正电的空位,成为空穴。导带中的电子和价带中的空穴合称为电子-空穴对,则电子,空穴能自由移动成为自由载流子。它们在外电场作用下产生定向运动形成宏观电流,分别成为电子导电和空穴导电。石墨烯的每一单位晶格有2 个碳原子,导致其在每个布里渊区有两个等价锥形相交点(K和K′)点,再相交点附近其能量于波矢量成线性关系

E=?UFK=?UF Kx2+Ky

2(2.1)E:能量,?:约化普朗克常数,UF:费米速度,1*106m/s,Kx,Ky分别是波矢量再X-和Y-轴的分量。因此,使得石墨烯中的电子和空穴的有效质量均为零,所有电子,空穴被称为狄拉克费米子。相交点为狄拉克点,在其附近能量为零,古石墨烯的带隙(禁带)为零。石墨烯独特的载流子特性和无质量的狄拉克费米子属性使其能够在室温下观测到霍尔效应和异常的半整数量子霍尔效应(当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面会出现电势差)。表明了其独特的载流子特性和优良的电学性质。石墨烯的室温载流子迁移率实测值达15000cm2/V·s(电子密度1013cm2)。 2.2.2石墨烯高迁移率的原因散射机制在一定温度下,即使没有外加电场,半导体中的大量载流子也在永不停息的作着无规则的、杂乱无章的热运动。载流子在运动时,便会不断的与热振动着的晶格或半导体中电离子的杂质离子发生碰撞,使载流子速度的大小及方向发生改变。也就是说载流子在运动中受到了散射。当有外电场作用时,一方面,载流子在电场力的作用下作定向运动;另一方面,载流子仍不断的遭到散射,使其运动方向不断的改变。载流子就是在外力和散射的双重影响下,以一定的平均速度沿力的方向漂移。

众所周知,在具有严格周期势场的晶体中,载流子不会遭到散射。载流子遭到散射的根本原因就是这种周期势场被破坏。在实际的晶体中,除了存在周期势场外还存在一个附加势场,从而使周期势场发生变化。由于附加势场的作用,就会使能带中的载流子发生在不同状态间的跃迁。例如,原来处于状态的载流子遭到散射后以一定的几率跃迁到各种其他的状态。晶体电子可看成是处于晶体原子所构成的晶格周期性势场之中的微观粒子,

此势场的形式就决定了晶体电子的能量状态—能带。此即意味着晶体电子的状态(用电子波的波矢k表征)由晶格周期性势场决定,即规则排列的晶体原子,

就决定着由许多波矢k表征的晶体电子的状态。因为载流子散射就是载流子的动量发生改变的现象,也就是波矢k(晶体动量,大小为波长的倒数)发生改变的现象;而规则排列的原子构成的晶格周期性势场只是决定晶体电子的稳定状态,而不会引起状态的变化。故可以说,在完整的晶格周期性势场中运动的电子不会遭受散射。因此,规则排列的晶体原子不会散射载流子。规则排列的晶体原子不散射载流子的情况,也可以用电子波在晶体中的传播概念来理解。因为电子在晶体中的运动,实际上就是电子波在晶体中的传播;而规则原子构成的许多晶面都可以反射电子波,而各个反射波之间干涉的结果,除了某一定波长的电子波因满足Bragg反射最大的条件、而不能传播以外,其余的电子波都可以在晶格中很好地传播,从而相应的这些电子并不遭受散射。而在晶体中不能传播的电子波的波矢,正好是Brillouin区边缘的那种波矢(状态),即这种状态是不存在的。在能量上,Brillouin区边缘就对应于禁带;Brillouin区内部的波矢所对应的就是容许带(能带)。因此,处于能带中的晶体电子,不会受到晶格的反射,即不会受到晶体原子的散射。总之,规则排列的晶体原子、亦即相应的晶格周期性势场不会散射载流子。可以想见,不是规则排列的晶体原子、亦即不是完整的晶格周期性势场就必将散射载流子。换句话说,在完整晶格周期性势场之上的任何附加势场,对于晶体中的载流子都将要产生散射作用。所以,电子在石墨烯中传输时不易发生散射,表明石墨烯的主要散射机制是缺陷散射。可以提高石墨烯的完整性来增加其迁移率。

2.3光学特性单层石墨烯的透过率可从菲涅耳公式用于通用光传导的薄膜材料中得到G0=e2

4h≈6.08?10?5Ω?1

(2.2)1 (1+0.5πα)

2≈1-πα≈97.7%

(2.3)其中,α= e2 αε0

hc= G0 αε0

c ≈1137,e是光子的电荷、C为光速, α为精细结构常

数。可见单层石墨稀对光的吸收率达到了 2.3%,对于多层石墨炼片,可以看

做单层石墨烯的简单叠加,每一层的吸收是恒定不变的,随着层数的增加,吸收也线性增长。多层石墨烯的透过率为:T=(1-α abs )2。其中α abs =2.3%为单层石墨稀的非饱和吸收效率,n为石墨稀的层数。根据上式得出的多层石墨烯对光的吸收率和层数的关系,随着层数的增加,石墨烯对光的吸收率也变大,10层时吸收率达到0.207。吸收波长取决于能带间隙,即禁带宽度。因为石墨烯为零带隙结构,理论上对任何波长都有吸收作用,另外,当入射光的强度超过某一临界值时,石墨烯对其的吸收会达到饱和,这一非线性光学行为称为可饱和吸收。

2.3.1可饱和吸收原理当强光照射到石墨稀上时,石墨稀的吸收不再是线性的,而是非线性的依赖于光强,这个效应称为可饱和吸收。初始时(图 2.3 a)在光子的入射下,价带上的电子将吸收光子的能量跃迁到导带。这些电子经热化和冷却后形成热费米-狄拉克分布。遵循泡利不相容原理,占据导带上最低的能量状态,热载流子能量降到平衡态,价带的电子也重新分布到低能量状态,能量高的状态呗空穴占据这个过程同事伴随着电子-空穴复合和声子散射(图 2.3b)。对于c,当光的强度降低时,吸收系数与载流子的宽度呈递减关系。若光的强度足够大,电子被源源不断激励到导带,光生载流子将整个导带-价带填满,阻碍光的进一步吸收,对光表现为透明,带间跃迁被阻断此时石墨稀被饱和,光子无损耗通过。可饱和吸收特性归因于两个主要原因,首先,石墨烯强烈的与波长无关的线性吸收(2.3%)提供了吸收饱和调制深度的潜能。这种大的线性吸收来源于石墨烯的独特的性能,包括石墨烯是二维无质量费米子和圆锥形的能带结构。第二,石墨烯的激发态吸收的是动量禁止的,因此需要声子的辅助。激发态电子唯一的光子耦合过程过受激发射实现的。

图2.1(a)电子有价带跃迁到导带,(b)费米‐狄拉克分布形成,(c)高强度入射光下光生载流子引起饱和,阻止进一步吸收。泡利不相容原理(Pauli’s exclusion principle)又称泡利原理,在费米(电子)子组成的系统中,不能有两个或两个以上的粒子处于完全相同的状态。在原子中完全确定一个电子的状态需要四个量子数,所以泡利不相容原理在原子中就表现为:不能有两个或两个以上的电子具有完全相同的四个量子数,这成为电子在核外排布形成周期性从而解释元素周期表的准则之一。调制深度,是材料完全饱和时的反射率的最大变化,一般由可饱和的吸收体的材料和厚度决定。石墨炼的调制深度随着其层数的改变而改变,这种简单的方法降低了制备难度和成本。单层石墨稀调制深度达66.5%,调制深度与石墨稀层数成反比关系,可以通过控制其层数来调节调制深度。但是层数的增加也带来了散射损耗和内部缺陷,这些非饱和损耗带来了调制深度的降低。因此,需要合理的选择石墨烯的层数,来优化锁模脉冲的性能。弛豫,一个宏观平衡系统由于周围环境的变化或受到外界的作用而变为非平衡状态,这个系统再由非平衡状态过渡到新的平衡态的过程。实质,系统中微观例子由于相互作用而交换能量最后达到稳定分布的过程。当光能量足够大时,电子的跃迁速率高于带间驰豫速率,被吸收光子能量对应的激发态之下的能态全部被填满,同时价带顶也被价带上的空穴填满,对光吸收达到饱和。石墨稀可饱和吸收过程中,带间跃迁驰豫时间在0.4-1.7ps范围内,可起到启动锁模作用;带内载流子散射和复合驰豫时间在70-120fs范围内,可以有效压缩脉冲,稳定锁模,产生飞秒脉冲。脉冲通常是指电子技术中经常运用的一种象脉搏似的短暂起伏的电冲击(电压或电流)。主要特性有波形、幅度、宽度和重复频率。脉冲是相对于连续信号在整个信号周期内短时间发生的信号,大部分信号周期内没有信号。就像人的脉搏一样。现在一般指数字信号,它已经是一个周期内有一半时间有信号。计算机内的信号就是脉冲信号,又叫数字信号。此外,脉冲也用来表示思想感情上的冲动和要求。锁模锁模是光学里一种用于产生极短时间激光脉冲的技术,脉冲的长度通常在皮秒(10负十二次方秒)甚至飞秒(10负十五次方秒)。该技术的理论基础是在激光共振腔中的不同模式间引入固定的相位关系,这样产生的激光被称为锁相激光或锁模激光。这些模式之间的干涉会使激光产生一系列的脉冲。根据激光的性质,这些脉冲可能会有极短的持续时间,甚至可以

达到飞秒的量级。在自由运转的激光器中纵模与横模同时震荡,模式之间无固定相位关系,无规则的相位关系干涉了谐振腔的纵模,造成了很强的扰动,如果谐振腔内有合适的非线性器件,或者从外部驱动光调制器,这些无规则的扰动就可能装换成循环在谐振腔中相位规则且功率很大的单脉冲。第一种情况下,因为辐射本身与被动非线性器件共同产生周期性调制,导致轴向模有固定的相位关系,所以称为被动锁模。第二种情况下,因为给调制器施加的射频信号提供了相位或频率调制而导致锁模,所以称为主动锁模。自锁模又称克尔透镜锁模(Kerr Lens ModeLocking(KLML)),是利用激活介质本身的非线性效应对振荡光束进行强度调制、相位锁定,来实现锁模的,它不需要外加主动或被动调制的组件。由于晶体的克尔效应引起光学自聚焦作用,晶体的折射率随光强的变化而发生变化,晶体中的光束为高斯分布时,使晶体折射率由中心至边缘逐渐降低,形成自聚焦现象,晶体类似一个凸透镜,即克尔透镜。如果在谐振腔中随着强度增大而模尺寸减小的位置插入一个直径很小的光阑,就能获得可饱和吸收体的作用。锁模具有脉宽窄、结构简单等优点。

但是自锁模激光器存在问题:一是不能自启动,只有得到外加的干扰信号才能实现锁模,这样不利于激光器的正常运行,因此这就使它对任一外界的扰动等非常灵敏,;二是泵浦源要求腔内功率密度足够高,过度的自调制将引起锁模的不稳定,严重影响了固体自锁模激光器的稳定运转和广泛应用。近年来,为了追求结构更加简单的锁模激光器,研究的焦点主要集中在和可饱和吸收体锁模技术上。锁模理论:在一个简单的激光器中,这些模式都是独立的振荡的,因此模式之间没有固定地关系,就好像一组彼此独立、频率稍有不同的激光从激光器中同时射出一样。每一束光的相位都没有固定,而且相位可能因为各种原因产生随机的变化,例如激光器的工作材料的温度变化等等。在只有很少的几个振荡模式的激光器中,模式之间的干涉会产生激光输出的拍频现象,这会引起激光强度的随机波动。而在具有成千上万个模式的激光器,这些干涉现象会平均起来产生近似常数的输出强度,这种激光的工作方式被称为连续波。如果不允许模式独立振荡,而是要求每个模式与其他模式之间保持固定的相位,激光输出就会有很大的不同特点。这时的输出强度不再是随机性的变化或者近似为常数,而是由于不同模式的激光周期性的建立起相生干涉,导致产生脉冲激光。这样的激光器被

称为锁模或者锁相。这些激光脉冲的时间间隔为τ = 2L/c,其中τ是激光往返共振腔所需的时间。这个时间对应的激光器模式之间的频率间隔,也就是Δν = 1/τ。脉冲的持续时间由同相振荡的激光的纵模数量决定。在现实的激光器中,并不是所有的激光纵模都会被锁相。如果相位锁定的模式数量为N,频率间隔为Δν,那么总的锁模激光带宽为NΔν,带宽越宽,激光发出的脉冲持续时间越短。在现实中,实际的脉冲持续时间还受到脉冲波形的影响,这个波形是由每个纵模的振幅与相位之间的关系决定的。例如,对于一个产生的脉冲时域波形为高斯形状的机况起来说,其最短的脉冲持续时间Δt为Δt=0.44/(N*Δν) 其中的常数0.44被称为脉冲的时间带宽积,是一个与脉冲形状有关的常数。对于超短时间激光脉冲,其脉冲形状通常认为是双曲正割平方,此时的时间带宽积为0.315. 通过这个等式,我们可以根据激光的频谱宽度计算出最短的脉冲持续时间。

对于氦氖激光器,其频谱带宽为1.5吉赫,而它在这个带宽下所能产生的最短高斯形状脉冲大约是300皮秒,而对于钛掺杂蓝宝石固体激光器,它的带宽对应的脉冲持续时间将仅有3飞秒。这些数值表示的根据激光的带宽理论上所能产生的最短持续时间,而在实际的锁模激光中,脉冲持续时间还受到其它各种因素的影响,如真实的脉冲形状、激光腔的色散等等。需要注意的是,从理论上说,随后的调制会进一步缩短脉冲的持续时间,然而频谱的宽度将会相应的增加。

2.4热学特性研究发现,石墨烯的热导率可达 5000 W/m·

K,是金刚石的 3倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。 2.5磁性特性由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。 2石墨烯应用 2.1传感器石墨烯的二维结构(二维结构是指原子或离子集团中的原子或离子具有在空间沿二维方向的正、反向延伸作有规律排布的结构)使得它在层状材料中的比表面积最大,表面部位与体相间无区别,这对高明敏感性必不可少,这种材料已成为其它纳米材料传感器实施背后的主要推动力。

超高比表面与奇异电子性质的结合意味着石墨烯上任何分子的破坏都容易检测到,石墨烯导向的传感器检测表面上下的单个分子很敏感。二维石墨烯的获

得使设计和制备石墨烯导向的电极并使其运用在电化学传感器和生物传感器中成为可能。 2.2电化学催化石墨烯基材料的电催化作用来自两个不同途径。一方面,石墨烯或其衍生物自身有极好的催化性质。石墨烯显著的快速电子传递功能和活泼的电催化作用主要是由于出现在垂直石墨烯纳米片最后的类似于热解石墨边缘平面的边缘面/缺陷。另一方面,在石墨烯上沉积无机金属,尤其是贵金属纳米颗粒,形成石墨烯衍生物,由于贵金属纳米颗粒有着极好的催化活性,因此形成的石墨烯衍生物呈现出新的电催化性质。

2.3电化学发光电化学发光是一种通过电化学激发反应产生化学发光的现象。电化学发光传感器中石墨烯的

超高导电性质能有效地促进电子转移。当石墨烯进入传感器平台,它可以充当发光团和电极之间的通路。而且,石墨烯的引入可以提高平台的表面积和孔隙率,这可以使共反应物扩散得更快。 2.4能量存储装置石墨烯和石墨烯基材料

导电性好、比表面积高、透明度高、电位窗口宽,因此,它们成为能量转换装置中一种极有前途的电极材料。石墨烯基材料电极的优点已在与能量相关的电化学装置的应用中得到证明,如锂电池(LIBs)、太阳能电池、超级电容器等。 2.5场效应晶体管

场效应晶体管(Field Effect Transistor FET是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件)在大规模、灵活、低成本电子学中有潜在的应用,因而在过去的数十年中已引起研究者们的注意。场效应晶体管靠电场效应运作,这种电场效应是一种类型的电荷载流子(电子或空穴)通过单一类型的半导体金属(例,一个“导电通道”)从源头到通道的流动产生。石墨烯本质上是半金属或零带隙半导体、具有很高的载流子迁移率

, 电子在石墨烯中的传导速度比硅快很多, 而且不受温度的影响,这些优异的结构、电子和物理性质实现了石墨烯在场效应晶体管中的直接应用。场效应晶体管是电压控制型半导体器件,可以通过外加电场来调控其工作电流的开启与关闭,具有输入电阻高(108~109Ω)、噪声小等多种优点。场效应晶体管的结构主要分为底栅、顶栅、环栅和侧栅四种。

场效应器件的开关比是指器

件处于开态和关态时的电流比;载流子迁移率是指在单位电场作用下载流子在

导电沟道中的平均速度。两者共同决定了半导体材料性能,当测试条件相同时,半导体材料的开关比和载流子迁移率越大,性能越高。石墨烯的二维平面结构和超高的载流子迁移率(室温下可达104 cm2/Vs)使其在场效应晶体管领域具有十分广阔的前景。不过由于石墨烯是零带隙结构,无法实现器件的关态,因而开关比很低,这在一定程度上阻碍了石墨烯的应用。石墨烯应用—生物传感

图 4.1 是石墨烯生物传感器的结构图。

石墨烯生物传感器采用了场效应管(FET)的构造,厚度为 25 μm 镍箔垂直安装在器件顶部作为栅电极(Gate);石墨烯直接生长在石英基片的表面作为导电沟道(生长方法如上章所述),1 mm 厚的导电银漆(PELCO)涂覆在石墨烯的两侧分别作为源电极(Source)和漏电极(Drain),并与测试的外电路相连。器件的测量室尺寸为 1.0 cm×1.0 cm×0.2 cm。当固定于敏感微栅表面上的生物探针在与目标物发生相互作用后,会引起 FET 源极(Source)和漏极(Drain)之间电位和电荷密度等参数的信号变化。因此可以实现对待测物的分析检测。由于石墨烯的能级大小可以通过修饰和改性来调控,它被认为是一种理想的 FET 原件。拉曼光谱石墨烯薄膜的2D峰在2660cm?1附近,半峰宽大约为65cm?1。2D 峰源自双重共振电子光子散射过程,其峰位和强度被用来鉴别石墨烯的层数。G峰在1580 cm?1附近,是sp2杂化结构碳的特征峰,是石墨烯材料对称性和结晶程度的反映。根据2D峰的峰位,半峰宽和I2D/IG强度比,可以确定石墨烯基本为单层。从图上可以看出,在1300cm?1到1400cm?1范围内,基本上没有D

峰信号(D 峰代表的是石墨烯的无序性,属于缺陷峰),这说明得到的石墨烯具有很高的质量。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

石墨烯及其复合材料在水处理中的研究

石墨烯及其复合材料在水处理中的研究 摘要:石墨烯作为一种新型碳纳米材料,具有巨大的比表面积、较高的机械强度和稳定的化学性质等优点,在诸多领域有广泛的应用。石墨烯因具有巨大的比表面积和高的反应活性,作为一种优异的吸附材料在水处理方向具有较好的应用前景。本文概述了石墨烯及其复合材料在水处理方面的研究进展。石墨烯及其复合材料对于处理重金属离子和有机污染物质的吸附效果好,吸附容量高。最后对其在水处理中的应用前景做了展望。关键词:石墨烯;复合材料;吸附;水处理 引言 石墨烯(graphene,GN)自2004年发现以来,由于具有独特的结构与性能,很快成为新材料研究领域的热点。石墨烯是一种sp2杂化的碳原子以六边形排列的周期性蜂窝状二维碳质新材料[1]。石墨烯具有独特的物理化学性质[2],除强度较高外,其理论比表面积竟高达2630m2/g,孔隙结构较丰富,这一点使其成为良好吸附材料的基础[3]。除此之外,还具有良好热导率和电导率[4]~[5],可在传感器、电极材料、储氢材料等应用[6]。 石墨烯作为水处理材料,在环保领域拥有广阔的应用前景。这主要是因为,它具有二维的平面结构、开放的孔结构、良好的柔韧性、稳定的化学特性、巨大的比表面积等优点;石墨烯的比表面积比碳纳米管更大,吸附能力更强。从而应用石墨烯的优异性能,可将其加工成催化材料、吸附材料和过滤材料等,可以有效吸附水中的多种污染物。同时,由于制造石墨烯的石墨来源比较广泛,且石墨烯相比碳纳米管价格比较低廉,制备过程简单,许多学者开始研究石墨烯在水处理中的应用[7]~[8]。 本文介绍了石墨烯与水处理相关的主要性能,综述了石墨烯及其复合材料在水处理中的研究进展,并对当今石墨烯材料在水处理研究中遇到的挑战和问题做了进一步分析,对今后这一领域的研究作了展望。 1石墨烯及其复合材料在水处理中的研究 1.1石墨烯 石墨烯因其吸附原理简单、费用低及处理效果好等优点广泛应用在水环境治理中。巨大的比表面积使石墨烯成为良好的吸附材料。作为吸附剂在水处中的相关研究主要集中在吸附两类污染物:有机物与无机阴离子[9]。水中的有机污染物易与石墨烯表面发生相互作用,形成稳定的复合物,进一步得到去除。因而许多学者主要研究了石墨烯吸附去除水中的有机染料。 Liu 等人研究了石墨烯在不同温度、pH值、接触时间和浓度下对亚甲基蓝的吸附,研究发现石墨烯最大吸附量高达到153.85mg/g,吸附等温线符合Langmu模型[10]。Wu 等人研究了石墨烯对丙烯腈、甲苯磺酸及甲基蓝的吸附,与其他碳纳米材料相比,石墨烯表现出较强的吸附能力,甲基蓝因为有苯环和大分子,从而使石墨烯的吸附速度更快,吸附容量更大[11]。Li等人研究了石墨烯在不同温度、pH值、反应时间下对氟化物的吸附性能,结果发现在298K下,当氟化物的初始浓度为25mg/L时,石墨烯的吸附量可达17.65 mg/g[12]。石墨烯对无机污染物的吸附研究使其在水处理领域的研究进一步扩大。

《石墨烯相关知识》word版

石墨烯 石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的 平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov),成功地在 实验中从石墨中分离出石墨烯,而证实它可以单独存在。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸 收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其 电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10- 6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料(仅限常温下,肯定 比不过超导)。因为它的电阻率极低,电子跑的速度极快,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论 才能描绘。石墨烯被期待可用来发展出更薄、导电速度更快的新一代电子元件 或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明 触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢 晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的 graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯 内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶 格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时, 不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常 温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边 形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月, 佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并 观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路. 发现历史 在本质上,石墨烯是分离出来的单原子层平面石墨。按照这说法,自从20世纪初,X射线晶体学的创立以来,科学家就已经开始接触到石墨烯了。1918年,V. Kohlschütter 和 P. Haenni详细地描述了石墨氧化物纸的性质(graphite oxide paper)。1948年,G. Ruess 和 F. Vogt发表了最早用穿透式电子显微 镜拍摄的少层石墨烯(层数在3层至10层之间的石墨烯)图像。

石墨烯与水制氢开发项目简介

石墨烯与水制氢开发项目简介 目前主要开发建设的石墨烯与水制氢,二氢斛皮素,桦树茸菌项目有6个,分别介绍如下: 一、石墨烯润滑油项目 本项目最早于2011年由俄罗斯引进,最初在国家科技部立项名称为:“军民两用陶瓷基金属磨损自修复技术”,经改进后称为:“石墨烯基金属磨损智能修复材料”,但从其功能老说:称为“石墨烯润滑油”比较易懂易记。 经黑龙江省环保局实际检测,对选定的13台柴油载重车添加本品前后对比,得出以下结论:平均污染颗粒物降低10.9倍;CH(碳氢化和物)排放污染物平均下降2.18倍;CO(一氧化碳)排放污染物平均降低35%;NO(一氧化氮)排放污染平均降低1.88倍。 同时对添加本品后发动机缸压变化结果进行对比,得出:单行程缸压提高41%、四行程缸压提高48%、多行程缸压提高42%的结果。 缸压的提高说明发动机的密封性和动力性明显改善,达到了减排增效的目的。 本品实际上最大的功能是:新车、新机械的磨合。早在1964年苏联学者就提出:磨合程度不同,磨合工况不同,车辆、机械的寿命也不同。而本项目生产的产品具有相当好的修复功能,可以使纳米级石墨烯颗粒,在润滑油中稳定分散,根据不同工况自调节沉积,促进

车辆机械的最佳磨合,延长使用寿命。 石墨烯润滑油可以减少环境污染、提高设备的寿命,是绿色、环保、节能、增效,促进社会稳定发展的好产品。 目前全世界每年消耗润滑油4000多万吨,中国每年消耗润滑油在600万吨左右,但大多数生产厂家生产的是低档次润滑油,采用石墨烯润滑油的仅万吨左右,因此市场前景良好。 本项目预计建设万吨石墨烯润滑油的生产企业需要投资2亿元左右,投资回收期在2-3年左右。 二、石墨烯防霾口罩项目 利用石墨烯过滤性好,热传导性能好的特点进行开发,以满足人们对在雾霾天气下使用的需求。 本项目利用石墨烯纳米纤维纺纱技术,通过该技术制作的口罩,可有效过滤99%纳米以下的微观物质。防霾石墨烯口罩用料轻薄,就像餐巾纸一样,在高效过滤有害物质的同时,令穿戴者呼吸轻松。 三、石墨烯创伤敷料: 利用石墨烯吸附力强的特点,可以对创伤或者手术刀口使用的敷料采用石墨烯,(经高温灭菌消毒)可以较空的吸取伤口的渗液,达到创伤表面干燥,促进医疗康复的作用。 四、水制氢清洁能源 用电解的方法,将水分解成氢气和氧气,这是一个众所周知的原

石墨烯

石墨烯问题释疑II 已有 589 次阅读2011-1-17 10:01|个人分类:石墨烯|系统分类:论文交流|关键词:科学家大尺度半导体六边形诺贝尔 因为与多位老师讨论,他们提出了疑问,为了更清楚解释,对原文作了修改,再次发表。我要强调这只是我们研究结果的一个推论,2009年长沙纳米会议上就提出了相关研究结论。在2010年诺贝尔物理奖的公告发表前就已经有定论的东西,只是当时并未拿起人们重视。诺奖公告中很多对于石墨稀的宏观应用预测,如石墨稀吊床等是不真实的,应该打假;但对于石墨稀微观性能研究还应继续深入,比如半导体器件等研究。 广为传播的网上石墨烯由多个正六边形组成的图案,是想当然的图案,因为边界处碳原子与两个碳原子连接,键长短强度大,而石墨烯内部碳原子与三个碳原子连接,键长长强度小,两者以现有试验数据,就可知化学键能差距约在40%左右(注意有误差,但差距明显不容否认),石墨烯边界处碳碳之间和内部碳碳之间,是不同的化学键在相互连接。这点得到了包括前诺奖得主在内的多位科学家认同。 石墨烯的特异性是依靠其边界而存在的,我们提出边界碳原子的色散作用导致石墨烯可以存在的微观结构本质原因。我们认为其悬浮态下,很难制备更大尺度超过数十微米的稳定的单层悬浮石墨烯。若石墨稀附着载体上,其尺寸会达到几十厘米级别,但是大尺寸石墨稀与微米级以下的石墨烯性质已经不同,此时若石墨稀悬浮,它会极不稳定而发生破裂或者褶皱(注意这也形成了新的边界,此时化学键的键角发生了变化)。诺奖公告中的与此相关的很多宏观应用的结论是不真实的。 打个比方就象两种不同强度的弹簧联接着碳原子,而边界处的碳原子受到短而更高强度的弹簧来连接,那么其结果是对于内的较弱强度长的弹簧会起到收紧的作用。而在表观上起到了限制石墨烯内部碳原子自由振动的作用,石墨烯才在现实中可以稳定存在,所以二维石墨烯才能有制备分离出来的可能。 因为键长键角不同,边界处石墨烯六边形结构会变形,而因为原子和原子间结构的紧密性,保持六边形必然使得相邻碳原子电子云受到色散应力,这一应力作用范围有限,但是它会想接力赛一样,将这一应力一级一级传递下去,而在微观尺度下,传递效率会很高,受不同角度和方向边界传递过来的这一色散应力作用,会发生抵消衰减的,石墨烯内部的就会难以稳定存在,所以石墨烯(我强调单一完整的悬浮)不可能获得尺寸无限增大。而且即使增大到数百微米的石墨烯与一微米大小的石墨烯相比,因为上述原因,其性质也会有差异,而且具体可以获得的石墨烯最大尺寸与制备时大气环境下的温度和压力也相关。 实际能稳定存在的石墨烯其内部每个碳碳化学键的电子云分布都要受到边界不同碳碳键导致的色散应力的影响,而达到一个动态均化的平衡,这是悬浮石墨稀能够存在的动力学基础。2010年诺奖得主应当是对此认识不清,诺奖委员会对

石墨烯

题目:石墨烯的结构性能以及研究现状 院(部)系材料科学与工程学院 所学专业材料工程 年级、班级2014级 学号2014730056 完成人姓名卫明

摘要 采用对氧化石墨进行高温还原获得石墨烯,通过高速剪切分散法将石墨烯分散到聚二甲基硅氧烷中,固化后得到石墨烯/室温硫化( RTV) 硅橡胶复合材料。对石墨烯和复合材料的微观形貌进行了表征,并考察了复合材料的性能。结果表明,所制备石墨烯的厚度为1 ~3 nm,为具有较少层数的石墨烯片层结构;复合材料断面呈微相分离结构,但其差示扫描量热曲线只有1个玻璃化转变温度( Tg ) 。随着石墨烯用量的增加,复合材料的Tg 升高,结晶熔点降低。 关键词:石墨烯;复合材料;力学性能 Abstract Graphene was prepared by reducing graphite oxide with hydrazine hydrate as reductant. Graphenewasdispersed in -polydimethylsiloxane by high-speed shearing dispersion method.The graphene /room temperature vulcanized (RTV) silicone rubber composites were obtained after curing. The micro morphology of graphene and the composites were characterized and the properties of the composites were analyzed. The results showed that the as-prepared graphene nanosheet had fewer layers and its thickness was 1-3 nm. The composites had a microphase separation structure, but its differential scanning calorimetry curve exhibited only one glass transition temperature (Tg) and one crystalline melting point(Tm). With the increase of the content of graphene, Tg increased and Tm decreased. Key words: graphene; composite; mechanical property

大面积无支撑石墨烯复合纸的印刷制备及其储能性能研究_张哲野

大面积无支撑石墨烯复合纸的印刷制备及其储能性能研究 张哲野,肖菲,奚江波,王帅* 华中科技大学化学与化工学院,湖北武汉,430074 *Email: chmsamuel@https://www.360docs.net/doc/218862433.html, 近年来,将石墨烯纳米片层组装成宏观结构(如石墨烯纸等)已经取得了显著的突破[1]。我们开发了一种新型的柔性石墨烯/聚苯胺复合纸的制备工艺,首先采用滚筒印刷法在普通商业A4纸上打印一层氧化石墨烯纸,然后以石墨烯水凝胶为基底,通过吸附和原位聚合的方法制备石墨烯/聚苯胺水凝胶,再通过球磨处理制得稳定分散的石墨烯/聚苯胺浆料,最后采取喷墨打印的方法将石墨烯/聚苯胺浆料打印在柔性的氧化石墨烯纸上,并通过氢碘酸一步还原和剥离处理即得柔性石墨烯/聚苯胺复合纸,这种新型石墨烯复合纸的比电容高达864 F/g。以该复合纸为电极材料,选择固态电解质,研制开发柔性全固态超级电容器,该器件具有较高的能量密度、良好的循环稳定性和机械性能,使其在柔性能源器件和可穿戴电子产品行业具有广泛的应用前景。 Fig.1 The photograph of graphene nanocomposite paper and the electrochemcial performance of all-solid-state device 关键词:印刷法;聚苯胺;无支撑石墨烯复合纸;柔性全固态超级电容器 参考文献 [1] El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Science2012, 335: 1326. Scalable synthesis of freestanding graphene nanocomposite paper by printing method and its energy storage characteristics Zheye Zhang, Fei Xiao, Jiangbo Xi, Shuai Wang* School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 Nowadays, remarkable progress has been made in self-assembly of graphene nanosheets into macroscopic structure such as graphene paper. Here we demonstrate the fabrication of a new type of flexible graphene/polyaniline nanocomposite paper, which was fabricated by spreading graphene oxide (GO) solution on a piece of standard commercial A4 paper, followed by modified the GO paper with the home-made graphene/polyaniline ink by inkject printing method. Then, the resultant GO-based nanohybrid paper was chemically reduced using hydroiodic acid solution and simultaneously peeled off from A4 paper via a bubbling delamination method to form a freestanding graphene/polyaniline paper, which has a high specific capacitance of 864 F/g. The flexible and lightweight all-solid-state symmetric supercapacitor fabricated by graphene nanohybrid paper electrodes and polymer gel electrolyte exhibited high energy density, remarkable mechanical flexibility and reasonable cycling performance. These observations substantially demonstrate its extensive potential applications for flexible energy-related device and wearable electronics.

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

石墨烯(论文)

石墨烯的制备,特征,性能及应用的研究 内蒙古工业大学化学工程与工艺徐涛 010051 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的碳! 热潮。分析了近1 年来发表在Science、Nature 等期刊上的关于石墨烯的论文, 对石墨烯制备、表征及应用方面的最新进展进行了综述, 并对各种制备技术及表征手段进行了分析评价。 关键字: 石墨烯, 制备, 表征, 应用, 石墨烯氧化石墨烯(GO) 功能化石墨烯传感器 碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。碳材料是一种地球上较普遍而特殊的材料, 它可以形成硬度较大的金刚石, 也可以形成较软的石墨. 近20 年来, 碳纳米材料一直是科技创新的前沿领域, 1985 年发现的富勒烯[1]和1991 年

发现的碳纳米管(CNTs)[2]均引起了巨大的反响, 兴起了研究热潮. 2004 年, Manchester 大学的Geim 小组[3]首次用机械剥离法获得 了单层或薄层的新型二维原子晶体——石墨烯. 石墨烯的发现, 充 实了碳材料家族,形成了从零维的富勒烯、一维的CNTs、二维的石墨 烯到三维的金刚石和石墨的完整体系. 石墨烯是由碳原子以sp2 杂 化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的 苯六元环, 其理论厚度仅为0.35 nm, 是目前所发现的最薄的二维材料[3]. 石墨烯是构成其它石墨材料的基本单元, 可以翘曲变成零维 的富勒烯, 卷曲形成一维的CNTs[4-5]或者堆垛成三维的石墨(图1). 这种特殊结构蕴含了丰富而奇特的物理现象, 使石墨烯表现出许多 优异的物理化学性质, 如石墨烯的强度是已测试材料中最高的, 达130 GPa[6], 是钢的100 多倍; 其载流子迁移率达1.5×104 cm2〃V-1〃s-1 [7], 是目前已知的具有最高迁移率的锑化铟材料的2 倍, 超过商用硅片迁移率的10 倍, 在特定条件下(如低温骤冷等), 其迁移率甚至可高达2.5×105 石墨烯的热导率可达5×103W〃m-1〃K-1, 是金刚石的3 倍[. 另外, 石墨烯还具有室温量子霍尔效应(Hall effect)[10]及室温铁磁性[11]等特殊性质. 石墨烯的这些优异性引 起科技界新一轮的“碳”研究热潮, 已有一些综述性文章从不同方面对石墨烯的性质进行了报道.,本文仅根据现有的文献报道对石墨烯 的制备方法、功能化以及在化学领域中的应用作一综述

石墨烯疏水性能研究

文章编号:1001G9731(2018)09G09156G04 石墨烯疏水性能研究? 洪一跃1,李多生1,叶一寅1,Q i n g h u aQ i n2,邹一伟1,林奎鑫1 (1.南昌航空大学材料科学与工程学院,南昌330063; 2.R e s e a r c hS c h o o l o fE n g i n e e r i n g,A u s t r a l i a nN a t i o n a lU n i v e r s i t y,A c t o nA C T2601,A u s t r a l i a) 摘一要:一通过化学气相沉积(C V D)方法在蓝宝石衬底表面生长石墨烯,探究生长时间对石墨烯疏水性能和微结构的影响.利用接触角测量仪二傅里叶红外光谱仪二拉曼光谱仪二场发射扫描电镜研究石墨烯的疏水性能和微结构.发现生长时间是30m i n时,石墨烯的接触角最大,为129.96?,表现出疏水性,红外测试表明只有C C,拉曼分析发现在10~30m i n的生长时间下,石墨烯都出现了3个特征峰.较大的接触角使石墨烯有望作为疏水材料,甚至可以通过对其疏水改性让它在超疏水领域存在潜在应用. 关键词:一石墨烯;疏水性;接触角;半高宽 中图分类号:一O647文献标识码:A D O I:10.3969/j.i s s n.1001G9731.2018.09.029 0一引一言 1966年,M e r m i n和W a g n e r提出的M e r m i nGW a g n e r理论,指出二维晶体材料不能稳定存在[1],导致二维碳材料的研究一直处于空白阶段.2004年,英国曼彻斯特大学N o v o s e l o v和G e i m等[2]用机械剥离的方法制备石墨烯,打破了二维晶体材料在常温中无法稳定存在的预言.石墨烯具有优良的导电性二机械性能二电化学性能和催化性能,在电容材料二电极材料二催化剂二生物传感器和润滑添加剂等方面具有很高的应用价值[3G6].但是到目前为止,人们的研究主要集中在石墨烯的光学二电学性质,对其表面性质研究较少.根据W e n z e l[7]和C a s s i e[8]理论,石墨烯薄膜的表面浸润性质由两个因素决定:薄膜表面粗糙度和表面自由能.L e e n a e r t s等[9]用密度泛函理论计算得出:石墨烯薄膜表面的水分子之间的结合能大于其与石墨烯的吸附能,使得水分子团聚为水滴,石墨烯表现为疏水性. Y o u n g等[10]制备的外延石墨烯薄膜的接触角为92?, S h i n等[11]制备的还原石墨烯薄膜的接触角为127?.当材料的接触角>150?时,材料表现为超疏水,此时材料可以通过超疏水表面的构建实现表面自清洁效应.因此,石墨烯的疏水性有望在不久的将来用于疏水甚至超疏水材料的领域[12G13].蓝宝石作为一种窗口材料,在其表面制备出疏水性较高的石墨烯有利于窗口表面的清洁和光的透过,增强了窗口的光学性能.石墨烯在金属衬底[14G15]上的生长相较于绝缘衬底[16G17]上的生长来说更为容易一些,在目前制备石墨烯的众多方法中,化学气相沉积[18](C V D)法是制备石墨烯的一种重要的生长方法.因此本文采用C V D法在蓝宝石衬底上制备石墨烯,研究生长时间对石墨烯接触角和石墨烯生长质量的影响. 1一实一验 1.1一石墨烯的制备 以尺寸为10mm?10mm的蓝宝石(0001)作为生长的衬底材料,然后经丙酮二无水乙醇二去离子水超声清洗20m i n,待衬底吹干后通过推杆将衬底送入刚玉管中心区域,最后将刚玉反应室抽至真空,检查气密性,开启装置加热程序进行实验,石墨烯C V D生长过程示意图如图1所示.在实验中采用C H4作为碳源气体,H2作为刻蚀气体,A r作为载气,C H4流量为6m L/m i n,H2流量为40m L/m i n,A r流量为100m L/m i n,生长温度为1300?,生长压力约为10T o r r,生长时间为10~30m i n,生长完成后,关闭加热程序,待衬底冷却至室温,关闭气体流量. 图1一C V D生长过程示意图 F i g1C V D g r o w t h p r o c e s s d i a g r a m 6519 02018年第9期(49)卷 ?基金项目:国家自然科学基金资助项目(51562027,11772145);江苏省精密与微细制造技术重点实验室基金资助项目(J K L2015001) 收到初稿日期:2018G02G27收到修改稿日期:2018G04G26通讯作者:李多生,EGm a i l:d u o s h e n g.l i@n c h u.e d u.c n 作者简介:洪一跃一(1993-),男,安徽安庆人,在读硕士,师承李多生副教授,从事石墨烯材料研究.

石墨烯散热片

石墨烯散热片的应用及介绍 摘要:石墨烯材料因其辐射水平优于绝大数散热材料,配合纳米碳粉有特别好的散热作用,因此广泛用于解决电子器件因功耗增大导致的热问题。本文 重点介绍了石墨烯散热片的基本知识,散热原理,应用案例。 关键词:石墨烯,散热片,导热系数 1.石墨烯散热片 1.1 石墨烯散热片概述 导热石墨片(TCGS-S)也称石墨烯散热片,是一种全新的导热散热材料,具有独特的晶粒取向,沿两个方向均匀导热,平面内具有150-1500 W/m.K 范围内的超高导热性能,片层状结构可很好地适应任何表面,屏蔽热源与组件的同时改进消费类电子产品的性能。其分子结构示意图如下: 石墨散热片( TCGS-S : Thermal Flexible Graphite sheet)的化学成分主要是单一的碳(C)元素,是一种自然元素矿物。薄膜高分子化合物可以通过化学方法高温高压下得到(TCGS-S)石墨化薄膜,因为碳元素是非金属元素,但却有金属材料的导电、导热性能,还具有象有机塑料一样的可塑性,并且还有特殊的热性能,化学稳定性,润滑和能涂敷在固体表面的等一些良好的工艺性能,因此,在电子、通信、照明、航空及国防军工等许多领域都得到了广泛的应用。 1.2 石墨烯散热片的组成 界面导热材料是由基体材料和导热填料组成的复合材料。?

A.基体材料? 石墨烯散热片的基体主要有硅油、矿物油、硅橡胶、环氧树脂、聚丙烯酸酯、聚乙烯、聚氨酯等。石墨烯基散热片的关键点是石墨烯与环氧树脂基体的复合。目前,行业内的供应商将环氧树脂和石墨烯材料采取分层剥离和喷涂,导热系数可达到80w/m.k. B.导热填料 石墨烯散热片以石墨烯或石墨烯与碳纳米管,金属等混合作为导热填料。现有技术很难大量制备高质量的单层石墨烯,而少层或多层石墨烯相对容易制备和较便宜,?且其可保持热传导性质,石墨层可自然地连接到散热片上,?避免了?应用中接触热阻的问题,导热效率较常规的纳米散热片提升20%以上。 1.3.石墨烯散热片的散热原理。 典型的热学管理系统是由外部冷却装置,散热器和热力截面组成。而散热片的重要功能是创造出最大的有效表面积,在这个表面上热力被转移并有外界冷却媒介带走。石墨散热片就是通过将热量均匀的分布在二维平面从而有效的将热量转移,保证组件在所承受的温度下工作。 图 1 TCGS-S 石墨散热片热扩散示意图 2.石墨散热片的应用: 石墨散热片通过在减轻器件重量的情况下提供更优异的导热散热性能,能有效的解决电子设备的热设计难题,广泛的应用于PDP、LCDTV 、Notebook PC、UMPC、Flat Panel Display 、MPU 、Projector 、Power Supply、LED 等电子产品。 目前石墨散热片已大量应用于通讯工业、医疗设备、SONY/DELL/Samsung 笔记本、中

相关文档
最新文档