CAN总线基础(1)— CAN简介及特点

CAN总线基础(1)— CAN简介及特点
CAN总线基础(1)— CAN简介及特点

1.CAN是什么?

CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。

现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。

下图是车载网络的构想示意图。CAN 等通信协议的开发,使多种LAN 通过网关进行数据交换得以实现。

2.CAN的应用实例

3.总线拓扑图

CAN 控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者必居其一。发送方通过使总线电平发生变化,将消息发送给接收方。

CAN的连接示意图

4.CAN的特点

CAN 协议具有以下特点:

(1) 多主控制

在总线空闲时,所有的单元都可开始发送消息(多主控制)。

最先访问总线的单元可获得发送权(CSMA/CA 方式)。

多个单元同时开始发送时,发送高优先级ID 消息的单元可获得发送权。

(2) 消息的发送

在CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(Identifier 以下称为ID)决定优先级。ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息时,对各消息ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。(3) 系统的柔软性

与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。

(4) 通信速度

根据整个网络的规模,可设定适合的通信速度。

在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通信速度。

(5) 远程数据请求

可通过发送“遥控帧” 请求其他单元发送数据。

(6) 错误检测功能·错误通知功能·错误恢复功能

所有的单元都可以检测错误(错误检测功能)。

检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。

正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。

(7) 故障封闭

CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。

(8) 连接

CAN 总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。

1.CAN的错误状态类型

单元始终处于3 种状态之一。

(1) 主动错误状态

主动错误状态是可以正常参加总线通信的状态。

处于主动错误状态的单元检测出错误时,输出主动错误标志。

(2) 被动错误状态

被动错误状态是易引起错误的状态。

处于被动错误状态的单元虽能参加总线通信,但为不妨碍其它单元通信,接收时不能积极地发送错误通知。

处于被动错误状态的单元即使检测出错误,而其它处于主动错误状态的单元如果没发现错误,整个总线也被认为是没有错误的。

处于被动错误状态的单元检测出错误时,输出被动错误标志。

另外,处于被动错误状态的单元在发送结束后不能马上再次开始发送。在开始下次发送前,在间隔帧期间内必须插入“延迟传送”(8 个位的隐性位)。

(3) 总线关闭态

总线关闭态是不能参加总线上通信的状态。

信息的接收和发送均被禁止。

这些状态依靠发送错误计数和接收错误计数来管理,根据计数值决定进入何种状态。错误状态和计数值的关系如表1 及图所示。

图:单元的错误状态

2.错误计数值

发送错误计数值和接收错误计数值根据一定的条件发生变化。

错误计数值的变动条件如表2 所示。

一次数据的接收和发送可能同时满足多个条件。

错误计数器在错误标志的第一个位出现的时间点上开始计数。

1. CAN协议的基本参照模型

CAN 协议如表3 所示涵盖了ISO 规定的OSI基本参照模型中的传输层、数据链路层及物理层。

CAN 协议中关于ISO/OSI 基本参照模型中的传输层、数据链路层及物理层,具体有哪些

定义如图所示。

图:ISO/OSI 基本参照模型和CAN 协议数据链路层分为MAC 子层和LLC 子层,MAC 子层是CAN 协议的核心部分。数据链路层的功能是将物理层收到的信号组织成有意义的消息,并提供传送错误控制等传输控制的流程。具体地说,就是消息的帧化、仲裁、应答、错误的检测或报告。数据链路层的功能通常在CAN 控制器的硬件中执行。

在物理层定义了信号实际的发送方式、位时序、位的编码方式及同步的步骤。但具体地说,信号电平、通信速度、采样点、驱动器和总线的电气特性、连接器的形态等均未定义。这些必须由用户根据系统需求自行确定。

2. ISO 标准化的CAN 协议

CAN 协议经ISO 标准化后有ISO11898 标准和ISO11519-2 标准两种。ISO11898 和ISO11519-2 标准对于数据

链路层的定义相同,但物理层不同。

(1) 关于ISO11898

ISO11898 是通信速度为125kbps-1Mbps 的CAN 高速通信标准。

目前,ISO11898 追加新规约后,成为ISO11898-1 新标准。

(2) 关于ISO11519

ISO11519 是通信速度为125kbps 以下的CAN 低速通信标准。

ISO11519-2 是ISO11519-1 追加新规约后的版本。

下图表示CAN 协议和ISO11898 及ISO11519-2 标准的范围。

图:ISO 标准化的CAN 协议

3. CAN 和标准规格

不仅是ISO,SAE 等其它的组织、团体、企业也对CAN 协议进行了标准化。

基于CAN 的各种标准规格如表6 所示,如图所示,面向汽车的通信协议以通信速度为准

进行了分类。

图:通信协议分类

CAN总线基础(4)— CAN协议报文

1. 帧的总类

通信是通过以下5 种类型的帧进行的。

● 数据帧

● 遥控帧

● 错误帧

● 过载帧

● 帧间隔

另外,数据帧和遥控帧有标准格式和扩展格式两种格式。标准格式有11 个位的标识符(Identifier: 以下称ID),扩展格式有29 个位的ID。

各种帧的用途如表7 所示,各种帧的构成如图1~图5 所示。

图1.数据帧的构成

图2.遥控帧的构成

图3.错误帧

图4.过载帧

图5.帧间隔

2.优先级的决定

在总线空闲态,最先开始发送消息的单元获得发送权。

多个单元同时开始发送时,各发送单元从仲裁段的第一位开始进行仲裁。连续输出显性电平最多的单元可继续发送。

仲裁的过程如图所示。

图.仲裁过程

3.位填充

位填充是为防止突发错误而设定的功能。当同样的电平持续5 位时则添加一个位的反型数据。

位填充的构成如图所示。

(1) 发送单元的工作

在发送数据帧和遥控帧时,SOF~CRC 段间的数据,相同电平如果持续5 位,在下一个位(第6 个位)则要插入1 位与前5 位反型的电平。

(2) 接收单元的工作

在接收数据帧和遥控帧时,SOF~CRC 段间的数据,相同电平如果持续5 位,需要删除下一个位(第6 个位)再接收。如果这个第6 个位的电平与前5 位相同,将被视为错误并发送错误帧。

4. 错误的种类

错误共有5 种。多种错误可能同时发生。

● 位错误

● 填充错误

● CRC 错误

● 格式错误

● ACK 错误

错误的种类、错误的内容、错误检测帧和检测单元如表9 所示。

5.位时序

由发送单元在非同步的情况下发送的每秒钟的位数称为位速率。一个位可分为4 段。

● 同步段(SS)

● 传播时间段(PTS)

● 相位缓冲段1(PBS1)

● 相位缓冲段2(PBS2)

这些段又由可称为Time Quantum(以下称为Tq)的最小时间单位构成。

1 位分为4 个段,每个段又由若干个Tq 构成,这称为位时序。

1 位由多少个Tq 构成、每个段又由多少个Tq 构成等,可以任意设定位时序。通过设定位时序,多个单元可同时采样,也可任意设定采样点。

各段的作用和Tq 数如表11 所示。1 个位的构成如图所示。

6. 取得同步的方法

CAN 协议的通信方法为NRZ(Non-Return to Zero)方式。各个位的开头或者结尾都没有附加同步信号。发送单元以与位时序同步的方式开始发送数据。另外,接收单元根据总线上电平的变化进行同步并进行接收工作。但是,发送单元和接收单元存在的时钟频率误差及传输路径上的(电缆、驱动器等)相位延迟会引起同步偏差。因此接收单元通过硬件同步或者再同步的方法调整时序进行接收。

6.1 硬件同步

接收单元在总线空闲状态检测出帧起始时进行的同步调整。

在检测出边沿的地方不考虑SJW 的值而认为是SS 段。

硬件同步的过程如图所示。

6.2 再同步

在接收过程中检测出总线上的电平变化时进行的同步调整。

每当检测出边沿时,根据SJW 值通过加长PBS1 段,或缩短PBS2 段,以调整同步。但如果发生了超出SJW值的误差时,最大调整量不能超过SJW 值。

再同步如图所示。

6.3 调整同步的规则

硬件同步和再同步遵从如下规则。

(1) 1 个位中只进行一次同步调整。

(2) 只有当上次采样点的总线值和边沿后的总线值不同时,该边沿才能用于调整同步。

(3) 在总线空闲且存在隐性电平到显性电平的边沿时,则一定要进行硬件同步。

(4) 在总线非空闲时检测到的隐性电平到显性电平的边沿如果满足条件(1)和(2),将进行再同步。但还要满足下面条件。

(5) 发送单元观测到自身输出的显性电平有延迟时不进行再同步。

(6) 发送单元在帧起始到仲裁段有多个单元同时发送的情况下,对延迟边沿不进行再同步。

CAN总线8个特点

CAN总线8个特点 一、CAN总线是什么 CAN总线是与串行总线不同的工业控制通信系统,是德国博世公司为提供汽车电子产品的升级服务,所有它更多的用于汽车控制。 为什么它非常适合汽车行业呢?有以下几个原因: ●CAN总线最远的数据传输距离为10公里,完全可以满足汽车的通讯控制需求。●CAN总线具有很强的抗干扰性,不容易出现问题,可以有效地保证驾驶员的安全。 ●can总线的数据传输速度快,理论峰值达到1Mbps,并且具有很高的数据通信即 时性。 ●一条CAN总线可以同时连接128个节点。对于一辆汽车,一个或两个CAN总线 可以完全完成汽车控制工作,这对于广阔的汽车行业来说是个再合适不过的选择。 二、CAN总线原理 ●需要传输的数据从一个节点通过CAN总线被广播到另一个节点,当一个节点发送 数据时,该节点的CPU将发送的数据和标识符发送到该节点的CAN芯片,并使它们处于就绪状态。

●当CAN芯片接收到总线分配时,消息进入发送状态,并且CAN芯片发送的数据 以预定的消息格式发送。此时,网络中的所有其他节点都处于接收状态,并且所有节点都首先接收该节点,并通过检测消息是否发送给自身来进行判断。 ●CAN总线是一种面向内容的地址方案,可实现控制系统的建立和灵活部署,并允 许在不修改硬件和软件的情况下将新节点添加到CAN总线。 三、CAN总线的8个特点 ●采用两线串行通讯方式,具有较强的错误检测能力,可以在高噪声干扰环境下工作●具有实时性强,传输距离长,电磁干扰强,成本低的优点。 ●可靠的错误处理和错误检测机制 ●节点具有严重错误时自动终止总线的功能 ●具有通过CAN控制器将多个控制模块连接到CAN总线以形成多主机本地网络的 优先级和仲裁功能。 ●消息的身份可以决定接收还是屏蔽消息 ●如果传输的信息已损坏,则可以自动重新传输 ●该消息不包含源地址和目标地址,仅使用标志来指示功能信息和优先级信息。

CAN总线的特点有哪些

CAN总线的特点有哪些 CAN 总线的特点有哪些?(1) 多主控制在总线空闲时,所有的单元都可开始发送消息(多主控制)。最先访问总线的单元可获得发送权(CSMA/CA 方式*1)。多个单元同时开始发送时,发送高优先级ID 消息的单元可获得发送权。 (2) 消息的发送在CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送 消息时,根据标识符(Identifier 以下称为ID)决定优先级。ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始 发送消息时,对各消息ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行 接收工作。(3) 系统的柔软性与总线相连的单元没有类似于地址的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。(4) 通信速度根据整个网络的规模,可设定适合的通信速度。在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它 的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可 以有不同的通信速度。(5) 远程数据请求可通过发送遥控帧请求其他单元发送数据。(6) 错误检测功能-错误通知功能-错误恢复功能所有的单元都可以检测错误(错误检测功能)。检测出错误的单元会立即同时通知其他所有单元(错误 通知功能)。正在发送消息的单元一旦检测出错误,会强制结束当前的发送。 强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢 复功能)。(7) 故障封闭CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总

汽车CAN总线基础知识培训资料

汽车C A N总线基础知 识

CAN总线协议 控制器局域网总线(CAN,Controller Area Network)是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。CAN协议用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。该协议的健壮性使其用途延伸到其他自动化和工业应用。CAN协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。 CAN总线发展 控制器局域网CAN( Controller Area Network)属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。是由德国博世公司在20世纪80年代专门为汽车行业开发的一种串行通信总线。而且能够检测出产生的任何错误。当信号传输距离达到10km时,CAN仍可提供高达50kbit/s的数据传输速率。CAN总线的工作原理 CAN总线使用串行数据传输方式,可以1Mb/s的速率在40m的双绞线上运行,也可以使用光缆连接,而且在这种总线上总线协议支持多主控制器。[1]CAN与I2C总线的许多细节很类似,但也有一些明显的区别。当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。当几个站同时竞争总线读取时,这种配置十分重要。

当一个站要向其它站发送数据时,该站的CPU将要发送的数据和自己的标识符传送给本站的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。CAN芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。每个处于接收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的,以确定是否接收它。由于CAN总线是一种面向内容的编址方案,因此很容易建立高水准的控制系统并灵活地进行配置。我们可以很容易地在CAN总线中加进一些新站而无需在硬件或软件上进行修改。当所提供的新站是纯数据接收设备时,数据传输协议不要求独立的部分有物理目的地址。它允许分布过程同步化,即总线上控制器需要测量数据时,可由网上获得,而无须每个控制器都有自己独立的传感器。 CAN总线在空闲(没有节点传输报文)时是一直处于隐性状态。当有节点传输报文时显性覆盖隐性,由于CAN总线是一种串行总线,也就是说报文是一位一位的传输的,而且是数字信号(0和1),1代表隐性,0代表显性。在传送报文的过程中是显隐交替的,就像二进制数字0101001等,这样就能把信息发送出去,而总线空闲的时候是一直处于隐性的。 CAN总线特征 (1)报文(Message)总线上的数据以不同报文格式发送,但长度受到限制。当总线空闲时,任何一个网络上的节点都可以发送报文。 (2)信息路由(Information Routing)在CAN中,节点不使用任何关于系统配置的报文,比如站地址,由接收节点根据报文本身特征判断是否接收这帧信息。因此系统扩展时,不用对应用层以及任何节点的软件和硬件作改变,可以直接在CAN中增加节点。

CAN总线的性能特点

CAN总线的性能特点 由于采用了许多的新技术和独特的设计,CAN总线与一般的通信总线相比,它的数据通信具有突出的可靠性、实时性和灵活性。其性能特点可以概括如下: (1)CAN是到目前为止唯一具有国际标准的现场总线; (2)CAN为“多主”工作方式,网络上任一节点均可在任意时刻主动的向网络上的节点发送信息,不分主从。 (3)在报文标识符上,CAN上的节点分成不同的优先级,可满足不同的实时要求,优先级高的数据最多可在134us内得到传输。 (4)CAN采用非破坏性总线仲裁技术。当多个节点同时向总线发送信息时,优先级较低的节点会主动退出发送,而最高优先级的节点可不受影响的继续传输数据,从而大大的节省了总线冲突仲裁时间。 (5)CAN节点只需要通过对报文的标识符滤波即可实现点对点,一点对多点及全局广播等几种方式传送接收数据,无需专门的“调度”。 (6)CAN上的节点的个数主要取决于总线驱动电路,目前可达110个。在标准“帧”报文标识符(CAN2.0A)可达2032种,而在扩展帧的报文标识符(CAN2.OB)几乎不受限制。 (7)CAN报文采用“短帧”结构,传输时间短,受干扰概率低,具有极好地检错效果。 (8)CAN的每帧信息都有CRC校验以及其他检错措施,具有很

好的检错效果。 (9)CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上的其它节点的操作不受影响。 (10)CAN的最大通信速率为1Mbps(当总线长为40m时),直接通信距离可达10km(而当通信速率为5Kbps时),其通信距离与通信速率之间的关系如下图所示: 图 1 CAN总线位的数值表示 (10)CAN总线具有较高的性能价格比。它结构简单,器件容易购置,每个节点的价格较低,而且开发技术容易掌握,能充分利用现有的单片机开发工具。

CAN总线基础(1)— CAN简介及特点

1.CAN是什么? CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。 现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。 下图是车载网络的构想示意图。CAN 等通信协议的开发,使多种LAN 通过网关进行数据交换得以实现。

2.CAN的应用实例 3.总线拓扑图 CAN 控制器根据两根线上的电位差来判断总线电平。总线电平分为显性电平和隐性电平,二者必居其一。发送方通过使总线电平发生变化,将消息发送给接收方。 CAN的连接示意图

4.CAN的特点 CAN 协议具有以下特点: (1) 多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。 最先访问总线的单元可获得发送权(CSMA/CA 方式)。 多个单元同时开始发送时,发送高优先级ID 消息的单元可获得发送权。 (2) 消息的发送 在CAN 协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(Identifier 以下称为ID)决定优先级。ID 并不是表示发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息时,对各消息ID 的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。(3) 系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。 (4) 通信速度 根据整个网络的规模,可设定适合的通信速度。 在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通信速度。 (5) 远程数据请求 可通过发送“遥控帧” 请求其他单元发送数据。 (6) 错误检测功能·错误通知功能·错误恢复功能 所有的单元都可以检测错误(错误检测功能)。 检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。 正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。 (7) 故障封闭 CAN 可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。 (8) 连接 CAN 总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。 1.CAN的错误状态类型 单元始终处于3 种状态之一。

CAN总线特点与规范

CAN总线特点与规范 CAN 总线规范: CAN总线属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络,位速率可高达1MBPS。可以应用在汽车控制系统,自动化电子领域中的各种部件(传感器,灯光,执行机构等)与主机连接组成CAN 网络。本章介绍通过CAN总线与液晶显示器的连接。 CAN 具有下列主要特性: 1 多主站依据优先权进行总线访问。 总线开放时,任何单元均可开始发送报文,具有最高优先权的报文的单元赢得总线访问权。利用这个特点可以用液晶显示器作为多主机的公用监视器,不用每台主机配一个监视器,从而节约系统成本。 2 无破坏性的基于优先权的仲裁。 网络上的每个主机可以同时发送,哪个主机的数据可以发送出去取决于主机所发送报文的标识符决定的优先权的大小,没有发送出去的帧可自动重发。以后将介绍数据怎样仲裁。 3 借助接收滤波的多地址帧传送 收到报文的标识符与本机的接收码寄存器与屏蔽寄存器相比较,符合的报文本机才予以接收。 4.远程数据请求。 网络上的每个接点可以发送一个远程帧给另一个接点,请求该接点的数据帧,该数据帧与对应的远程帧以相同的标识符ID命名。 5.配置灵活性 通过八个寄存器进行接点配置,每个接点可以接收,也可以发送。 6.全系统数据相容性 7.错误检测和出错信令 有五种错误类型,每个接点都设置有一个发送出错计数器和一个接收出错计数器。发送接点和接收接点在检测到错误时,出错计数器根据一定规则进行加减,并根据错误计数器数值发送错误标志(活动错误标志和认可错误标志),当错误计数器数值大于255时,该接点变为“脱离总线”状态,输出输入引脚浮空,既不发送,也不接收。 CAN 中的总线数值为两种互补逻辑数值:“显形”和“隐性”,用差分电压表示。 “显形”表示逻辑“0”,显性状态用大于最小阈值的差分电压表示。 “隐性”表示逻辑“1”,这时输出的差分电压Vdiff 近似为0,Vcanh ,Vcanl固定于平均电压电平,显性位与隐性位同时发送时,最后总线数值为显性。在总线空闲或隐性位期间, 平均电压

CAN总线简介及其特点

摘要:CAN总线的数据通讯具有突出的可靠性、实时性和灵活性,其总线规范已经成为国际标准,被公认为几种最有前途的总线之一。本文在总结CAN总线特点的基础上,对其通信介质访问方式进行了详细的描述,介绍了它在应用中需要解决的技术问题以及目前应用状况。 关键词:CAN总线;通信介质访问控制;实时;应用技术 1CAN总线简介及其特点 CAN网络(ControllerAreaNetwork)是现场总线技术的一种,它是一种架构开放、广播式的新一代网络通信协议,称为控制器局域网现场总线。CAN网络原本是德国Bosch公司为欧洲汽车市场所开发的。CAN推出之初是用于汽车内部测量和执行部件之间的数据通信。例如汽车刹车防抱死系统、安全气囊等。对机动车辆总线和对现场总线的需求有许多相似之处,即能够以较低的成本、较高的实时处理能力在强电磁干扰环境下可靠地工作。因此CAN总线可广泛应用于离散控制领域中的过程监测和控制,特别是工业自动化的底层监控,以解决控制与测试之间的可靠和实时数据交换。 CAN总线有如下基本特点: * CAN协议最大的特点是废除了传统的站地址编码,代之以对数据通信数据块进行编码,可以多主方式工作; * CAN采用非破坏性仲裁技术,当两个节点同时向网络上传送数据时,优先级低的节点主动停止数据发送,而优先级高的节点可不受影响地继续传输数据,有效避免了总线冲突; * CAN采用短帧结构,每一帧的有效字节数为8个(CAN技术规范2.0A),数据传输时间短,受干扰的概率低,重新发送的时间短; * CAN的每帧数据都有CRC效验及其他检错措施,保证了数据传输的高可靠性,适于在高干扰环境中使用; * CAN节点在错误严重的情况下,具有自动关闭总线的功能,切断它与总线的联系,以使总线上其它操作不受影响; * CAN可以点对点、一点对多点(成组)及全局广播集中方式传送和接受数据; * CAN总线直接通讯距离最远可达10km/5Kbps,通讯速率最高可达1Mbps/40m; * 采用不归零码(NRZ—Non-Return-to-Zero)编码/解码方式,并采用位填充(插入)技术。 详细的CAN协议可参见CAN技术规范2.0a和2.0b以及CAN国际标准ISO11898(参考文献3)。

CAN总线学习心得--重要

CAN总线学习心得--重要 SJ A1 0 0 0 的常用标准波特率设置,为什么基本上都是单次采样?即使是低速的时候也是这样的,既然T SEG1 的设置周期都很大,比如都大于1 0 了,为什么不让他采样三次呢?答:是不好理解,但那是Ci A 推荐的值。用5 1 系列芯片和两个SJ A1 0 0 0 接口还要外扩一个RAM,请问5 1 的AL E 能否同时与三个芯片的AL E 管脚相连( 地址不同) 有哪位高手做过双SJ A1 0 0 0 冗余的请指教!答:能同时连接。请问CAN 总线在想传输1 0 0 0 m 的情况下, 最快的速度能到多少呢?答: 5 0 k b p s = 1 3 0 0 m。如果一个网络中只有 2 个节点, 其中一个处于监听模式,另一个节点发送报文会使处于监听模式的节点进入中断吗?答:能进入接收中断,你自己的试验也可以证明。想组建一个简单的CAN 网络, 已经有两个节点, 我想问CAN 总线如何组建, 终端电阻安装在哪里?小弟还没有入门, 大虾们指点一下。答1 :直接将节点CANH 和CANL 连到总线上,终端电阻接在总线两端,大约1 2 0 欧。答2 :推荐北航出版《现场总线CAN 原理与应用技术》,研读一下。请问各位老师:我是一名c a n 总线的新手,我正在做c a n 总线的开发,控制器用s j a 1 0 0 0 t ( 我自己两个控制板互通) , 但我在发送数据后将出现总线关闭,我看到发送错误计数器在不断增加,直到0 x f f 最后恢复到0 x 7 f , 谢谢各位老师帮我解答这个问题。或者对我给与启发答1 ;首先调通单个节点。答2 :这是单节点发送没有成功( 或者由于网络中其他节点没有收到帧并在响应场响应) 建议参考网站CAN 应用方案。我想请教各位c a n 远程贞有何作用?如何应用?在什么情况下才需要用到远程贞?谢谢了!答:远程帧的用与不用完全取决你自己的协议,c a n 有远程帧的功能,是可用可不用的!用网站提供的计算波特率的工具算出的数,1 2 k 以上的都正确,无论是自接收还是两个节点通讯都没有任何问题。但是1 2 k 以下的数据一个都不能用,两个节点通讯没有成功的,自接收有1 0 k 的几个数据成功。我们的项目要求必须在1 0 k 以下,最好是5 k ,但是不成功,自己计算的数据也没有成功的。(我们至少试验了3 0 多个,所有情况都考虑了。)我现在怀疑s j a 1 0 0 0 的波特率根本达不到5 k 和相对应的传输1 0 k m。或者可以谁能提供个经过实践检验的正确的总线定时器0 和1 的设置呢?要求低于1 0 k 。答:PCA8 2 C2 5 0 / 2 5 1 可以保证5 KBPS 的速率;比如Z L GCAN 系列接口卡。答:t j a 1 0 5 0 在低速时好像有问题。我用1 0 5 0 进行5 k 的时候不行,用8 2 c 2 5 0 很好,你可以试一试。我本想双机调试,一边收,一边发,但跑程序后,发送方会不断进入复位模式,所以现在进行自测试模式,我先进入复位模式,设置进入PEL I CAN 模式,对寄存器初始化后,设置接收,发送中断使能,最后设置进入自接收,单滤波模式,这样初始化就结束了,我的ACR0 ~ ACR3 为0 x 5 5 , 0 x 5 5 , 0 x 5 5 0 x 5 0 , AMR0 ~ AMR3 为0 x f f , 之后,我就往BUF F ER 里填数,0 x 8 8 , 0 x 5 5 , 0 x 5 5 , 0 x 5 5 , 0 x 5 0 , 0 x 3 0 , 0 x 3 1 , .0 x 3 7 , 之后,启动自接收请求命令,但是程序只进入了中断一次,是发送空中断,接收中断没有产生,我读发送错误寄存器,发现有错误产生,我读接收计数寄存器,为0 ,说明我没有收到数,但我读接收BUF F ER 时,值为0 x 5 5 , 0 x 5 5 , 0 x 5 5 , 0 x f f , 0 x f f , 0 x f f , 0 x f f , 0 x f f , 0 , 0 , 0 , 0 , 0 , 以上测试时,我在CANH 和CANL 之间加入了两个1 2 0 欧的匹配电阻并联在一起的,请各位高手指点呀,谢谢了答:在总线上加个CAN 接口卡会方便许多,或者加个捕获功能的示波器也可以检测波形。仿真环境:k e i l u v 2 编译器:k e i l c 5 1 7 . 0 仿真器:t k s - 5 9 1 s c p u : p 8 7 c 5 9 1 程序大小:8 K 左右兄弟在一片CPU 中烧写了一个,运行一个CAN 总线,I I C 总线测试程序能够正常运行。这个基础上加上应用程序后在仿真机中运行正常,但是烧写到c p u 后插入c p u 程序不能运行,请问是什么原因?另外一个问题:在另外一个项目中条件相同,程序只有4 K, 程序正常跑着,CAN 接口可以检测到输出波形但是却不能正确传输数据,在一块旧板子上就可以,比较两者之后发现电路完全相同测量也正常,只是布局不同,请教原因。答:程序已运行了吧?可能是HEX 文件有错;编制程序时注意P8 7 C5 9 1 的ERAM 设置、6 CL K 设置。位流数据采样自发送节点的8 2 c 2 5 0 的T x 管脚。测试条件:p e l i c a n ,扩展,双滤波模式,对方I D:0 x 8 8 , 0 x 1 1 , 0 x 5 5 , 0 x 1 0 ,发送的对方I D 为:0 x 8 8 , 0 x 1 1 , 0 x 0 0 , 0 x 0 0 ,发送2 字节数据为:0 x 0 5 , 0 x 0 6 采集的位流数据如下:0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 请教位流数据的含义?答:自行计算时要区分位,还需要进行“位填充”的逆运行;简单的方法是将此信号连接

CAN总线技术在汽车中的应用

技术导向 CAN总线技术在汽车中的应用 【摘要】文章首先概述了CAN总线技术,并详细阐述了CAN总线技术的特点和优点,及其结构和数据,传输原理,从而引出CAN总线研究的重点、关键技术及其在现代汽车上的应用现状和发展趋势。 【主题词】CAN总线汽车应用 前言 近20年来,随着现代电子技术、信息技术的发展,汽车上由电子控制单 元(ECU)控制的部件数量越来越多,例如,数字式电控燃油喷射系统(DEFI)、 废气再循环控制系统(EGR)、防抱死制动系统(ABS)、防滑控制系统(ASR)、 牵引力控制系统(TRC)、车辆稳定控制系统(VSC)、巡航系统(CCS)等等。 大量传感器、集成电路和计算机芯片等电子元器件在汽车上的广泛应用, 在提高汽车动力性、经济性、舒适性和安全性的同时,也带来其他问题: (1)电子设备的大量应用必然导致车身布线愈来愈复杂、运行可靠性降低、故障维修难度增大,必然造成庞大的布线系统。比如在沃尔沃公司生产的S80型轿车中,所安装的电缆长达1200 m,有54根保险丝。从材料成本和工作效率看,传统布线方法都将不能适应汽车的发展。 (2)上述DEFI、EGR、ABS、ASR等子系统对控制信息的共享和实时性的要求,需要共享发动机转速、车轮转速、油门踏板位置等公共数据,同时各个子系统对实时性的要求因为数据的更新速率和控制周期的不同而有 差别。传统的线缆已远远不能满足这种需求。 (3)为了使不同厂家生产的部件能在同一辆汽车中协调工作,必须按照

某种约定的标准来解决其状态信号和控制信息的传递问题。针对上述问题,在借鉴计算机网络技术和现场控制技术的基础上,诞生了各种适用于汽车环境的汽车网络技术。经过长时间发展,已形成Hart、Lonworks、Profibus、Bitbus及CAN等多种现场总线协议。CAN是控制器局域网络的简称,它由德国的Bosch公司及几个半导体生产商开发的,CAN总线是一种串行多主站控制器局域网总线。它具有很高的网络安全性、通讯可靠性和实时性,简单实用,网络成本低。特别适用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境。因此CAN总线在诸多总线中独占鳌头,逐渐成为汽车总线的代名词。 1、CAN总线技术的特点和优点 CAN总线与一般的通信总线相比,它的数据通信具有突出的可靠性、实时性和灵活性。其主要特性如下: (1)具有较高的性价比。它结构简单,器件容易购置,每个节点的价格较低,而且开发过程中能充分利用现在的单片机开发工具; (2)是目前为止唯一有国际标准的现场总线; (3)为多主方式工作,网络上任一节点均可在任意时刻主动向网络上其他节点发送信息而不分主从,通信方式灵活,且无需站地址等节点信息; (4)网络上的节点信息分成不同的优先级, 可满足不同的实时要求,高优先级的数据最多可在134μs内得到传输; (5)采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动地退出发送,而最高优先级的节点不受影响地继续传输数据,从而大大节省了总线冲突仲裁时间。尤其是在网络负载很重的情

汽车通信-CAN总线详解

CAN总线及应用实例 (1)CAN特点 ●CAN为多主方式工作,网络上任意智能节点均可在任意时刻主动向网络上其他节点发送信息,而不分主从,且无需站地址等节点信息,通信方式灵活。利用这特点可方便地构成多机备份系统。 ●CAN网络上的节点信息分成不同的优先级(报文有2032种优先权),可满足不同的实时要求,高优先级的数据最多可在134,us内得到传输。 ●CAN采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动地退出发送,大大节省了总线冲突仲裁时间。 ●CAN只需通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式收发数据,无需专门“调度”。 ●CAN的直接通信距离最远可达l 0km(速率5kbp以下):通信速率最高可达Mbps(此时通信距离最长为40m) 。 ●CAN上的节点数主要取决于总线驱动电路,目前可达110个;报文标识符可达2032种(CAN2.0A),而扩展(CAN2.0B)的报文标识符几乎不受限制。 (2)CAN总线协议 CAN协议以国际标准化组织的开放性互连模型为参照,规定了物理层、传输层和对象层,实际上相当于ISO网络层次模型中的物理层和数据链路层。图3.9 为CAN总线网络层次结构,发送过程中,数据、数据标识符及数据长度,加上必要的总线控制信号形成串行的数据流,发送到串行总线上,接收方再对数据流进行分析,从中提取有效的数据。CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,数据在网络上通过广播方式发送。其优点是可使网络内的节点个数在理论上不受限制(实际中受网络硬件的电气特性限制),还可使同一个通信数据块同时被不同的节点接收,这在分布式控制系统中非常有用。CAN 2.0A版本规定标准CAN的标识符长度为11位,同时在2.0 B版本中又补充规定了标识符长度为29位的扩展格式,因此理论上可以定义2的11次方或2的19次方种不同的数据块。遵循CAN 2.0 B协议的CAN控制器可以发送和接收标准格式报文(11位标识符)或扩展格式报文(29位标识符),如果禁止CAN 2.0B则CAN控制器只能发送和接收标准格式报文而忽略扩展格式的报文,但不会出现错误。每个报文数据段长度为0-8个字节,可满足通常工业领域中控制命令、工作状态及检测数据传送的一般要求。同时,8个字节占用总线时间不长,从而保证了通信的实时性。CAN协议采用CRC检验并提供相应的错误处理功能,保证了数据通信的可靠性。 (3)报文传送和帧结构 CAN总线以报文为单位进行信息传送。报文中包含标识符,它标志了报文的优先权。CAN总线上各个节点都可主动发送。如同时有两个或更多节点开始发送报文,采用标识符ID来进行仲裁,具有最高优先权报文节点赢得总线使用权,而其他节点自动停止发送。在总线再次空闲后,这些节点将自动重发原报文。CAN系统中,一个CAN节点不使用有关系统结构的任何信息。报文中的标识符并不指出报文的目的地址,而是描述数据的含义。网络

《CAN总线基础知识》结构组成

CAN终端电阻 CAN终端电阻,顾名思义就是加在总线末端的电阻。此电阻虽小,但在CAN总线中却有十分重要的作用。 终端 CAN总线终端电阻的作用有两个: 一、提高抗干扰能力,确保总线快速进入隐性状态。 二、提高信号质量。 提高抗干扰能力 CAN总线有“显性”和“隐性”两种状态,“显性”代表“0”,“隐性”代表“1”,由CAN 决定。图1是一个CAN收发器的典型内部结构图,CANH、CANL连接总线。

图1 总线显性时,收发器内部Q1、Q2导通,CANH、CANL之间压差;隐性时,Q1、Q2截止,CANH、CANL处于无源状态,压差为0。 总线若无负载,隐性时电阻阻值很大,外部的干扰只需要极小的能量即可令总线进入显性(一般的收发器显性门限最小电压仅500mV)。为提升总线隐性时的抗干扰能力,可以增加一个差分负载电阻,且阻值尽可能小,以杜绝大部分能 量的影响。然而,为了避免需要过大的总线才能进入显性,阻值也不能过小。

确保快速进入隐性状态 在显性状态期间,总线的寄生电容会被,而在恢复到隐性状态时,这些电容需要放电。如果CANH、CANL之间没有放置任何阻性负载,电容只能通过收发器内部的差分电阻放电。我们在收发器的CANH、CANL之间加入一个220PF的电容进行模拟试验,位速率为 500kbit/s,波形如图2、图3。 图2 图3

从图3看出,显性恢复到隐性的时间长达1.44μS,在点较高的情况下勉强能够通信,若通信速率更高,或寄生电容更大,则很难保证通信正常。 为了让总线寄生电容快速放电,确保总线快速进入隐性状态,需要在CANH、CANL之间放置一个负载电阻。增加一个60Ω的电阻后,波形如图4、图5。从图中看出,显性恢复到隐性的时间缩减到128nS,与显性建立时间相当。 图4 图5

汽车CAN总线基础知识

CAN总线协议 控制器局域网总线(CAN, Controller Area Network )是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。CAN协议用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。该协议的健壮性使其 用途延伸到其他自动化和工业应用。CAN协议的特性包括完整性的串行数据通讯、提供实时 支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。 CAN总线发展 控制器局域网CAN( Controller Area Network)属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。是由德国博世公司在20世纪80年代专门为汽车行业开发的一种串行通信总线。而且能够检测出产生的任何错误。当信号传输距离达到10km时,CAN仍可提供高达50kbit/s的数据传输速率。 CAN总线的工作原理 CAN总线使用串行数据传输方式,可以1Mb/s的速率在40m的双绞线上运行,也可以 使用光缆连接,而且在这种总线上总线协议支持多主控制器。[1]CAN与I2C总线的许多细节 很类似,但也有一些明显的区别。当CAN总线上的一个节点(站)发送数据时,它以报文形式 广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。当几个站同时竞争总线读取时,这种配置十分重要。 当一个站要向其它站发送数据时,该站的CPU将要发送的数据和自己的标识符传送给 本站的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。CAN芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。每个处于接 收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的,以确定是否接收它。 由于CAN总线是一种面向内容的编址方案,因此很容易建立高水准的控制系统并灵活地进行配置。我们可以很容易地在CAN总线中加进一些新站而无需在硬件或软件上进行修改。 当所提供的新站是纯数据接收设备时,数据传输协议不要求独立的部分有物理目的地址。它允许分布过程同步化,即总线上控制器需要测量数据时,可由网上获得,而无须每个控制器 都有自己独立的传感器。 CAN总线在空闲(没有节点传输报文)时是一直处于隐性状态。当有节点传输报文时显性覆盖隐性,由于CAN总线是一种串行总线,也就是说报文是一位一位的传输的,而且是数字信号(0和1),1代表隐性,0代表显性。在传送报文的过程中是显隐交替的,就像二进制数字0101001等,这样就能把信息发送出去,而总线空闲的时候是一直处于隐性的。 CAN总线特征 (1)报文(Message)总线上的数据以不同报文格式发送,但长度受到限制。当总线空闲时, 任何一个网络上的节点都可以发送报文。 ⑵信息路由(Information Routing)在CAN中,节点不使用任何关于系统配置的报文,比 如站地址,由接收节点根据报文本身特征判断是否接收这帧信息。因此系统扩展时,不用对应用层以及任何节点的软件和硬件作改变,可以直接在CAN中增加节点。 (3) 标识符(Identifier)要传送的报文有特征标识符(是数据帧和远程帧的一个域),它给出的不是目标节点地址,而是这个报文本身的特征。信息以广播方式在网络上发送,所有节点都可以接收到。节点通过标识符判定是否接收这帧信息。

几种总线的总结之CAN 总线

CAN总线 CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO118?8)。是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。近年来,其所具有的高可靠性和良好的错误检测能力受到重视,被广泛应用于汽车计算机控制系统和环境温度恶劣、电磁辐射强和振动大的工业环境 基本概念 CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,现在在欧洲已是汽车网络的标准协议。现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。 编辑本段CAN总线优势 CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之目前许多RS-485基于R线构建的分布式控制系统而言, 基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 网络各节点之间的数据通信实时性强 首先,CAN控制器工作于多主方式,网络中的各节点都可根据总线访问优先权(取决于报文标识符)采用无损结构的逐位仲裁的方式竞争向总线发送数据,且CAN协议废除了站地址编码,而代之以对通信数据进行编码,这可使不同的节点同时接收到相同的数据,这些特点使得CAN总线构成的网络各节点之间的数据通信实时性强,并且容易构成冗余结构,提高系统的可靠性和系统的灵活性。而利用RS-485只能构成主从式结构系统,通信方式也只能以主站轮询的方式进行,系统的实时性、可靠性较差; 缩短了开发周期 CAN总线通过CAN收发器接口芯片82C250的两个输出端CANH和CANL与物理总线相连,而CANH端的状态只能是高电平或悬浮状态,CANL端只能是低电平或悬浮状态。这就保证不会在出现在RS-485网络中的现象,即当系统有错误,出现多节点同时向总线发送数据时,导致总线呈现短路,从而损坏某些节点的现象。而且CAN节点在错误严重的情况下具有自动关闭输出功能,以使总线上其他节点的操作不受影响,从而保证不会出现象在网络中,因个别节点出现问题,使得总线处于“死锁”状态。而且,CAN具有的完善的通信协议可由CAN

汽车CAN总线基础知识

CAN总线协议 控制器局域网总线(CAN,Controller Area Network)是一种用于实时应用的串行通讯协议总线,它可以使用双绞线来传输信号,是世界上应用最广泛的现场总线之一。CAN协议用于汽车中各种不同元件之间的通信,以此取代昂贵而笨重的配电线束。该协议的健壮性使其用途延伸到其他自动化和工业应用。CAN协议的特性包括完整性的串行数据通讯、提供实时支持、传输速率高达1Mb/s、同时具有11位的寻址以及检错能力。 CAN总线发展 控制器局域网CAN( Controller Area Network)属于现场总线的范畴,是一种有效支持分布式控制系统的串行通信网络。是由德国博世公司在20世纪80年代专门为汽车行业开发的一种串行通信总线。而且能够检测出产生的任何错误。当信号传输距离达到10km时,CAN仍可提供高达50kbit/s的数据传输速率。 CAN总线的工作原理 CAN总线使用串行数据传输方式,可以1Mb/s的速率在40m的双绞线上运行,也可以使用光缆连接,而且在这种总线上总线协议支持多主控制器。[1]CAN与I2C总线的许多细节很类似,但也有一些明显的区别。当CAN总线上的一个节点(站)发送数据时,它以报文形式广播给网络中所有节点。对每个节点来说,无论数据是否是发给自己的,都对其进行接收。每组报文开头的11位字符为标识符,定义了报文的优先级,这种报文格式称为面向内容的编址方案。在同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文。当几个站同时竞争总线读取时,这种配置十分重要。 当一个站要向其它站发送数据时,该站的CPU将要发送的数据和自己的标识符传送给本站的CAN芯片,并处于准备状态;当它收到总线分配时,转为发送报文状态。CAN芯片将数据根据协议组织成一定的报文格式发出,这时网上的其它站处于接收状态。每个处于接收状态的站对接收到的报文进行检测,判断这些报文是否是发给自己的,以确定是否接收它。由于CAN总线是一种面向内容的编址方案,因此很容易建立高水准的控制系统并灵活地进行配置。我们可以很容易地在CAN总线中加进一些新站而无需在硬件或软件上进行修改。当所提供的新站是纯数据接收设备时,数据传输协议不要求独立的部分有物理目的地址。它允许分布过程同步化,即总线上控制器需要测量数据时,可由网上获得,而无须每个控制器都有自己独立的传感器。 CAN总线在空闲(没有节点传输报文)时是一直处于隐性状态。当有节点传输报文时显性覆盖隐性,由于CAN总线是一种串行总线,也就是说报文是一位一位的传输的,而且是数字信号(0和1),1代表隐性,0代表显性。在传送报文的过程中是显隐交替的,就像二进制数字0101001等,这样就能把信息发送出去,而总线空闲的时候是一直处于隐性的。 CAN总线特征 (1)报文(Message)总线上的数据以不同报文格式发送,但长度受到限制。当总线空闲时,任何一个网络上的节点都可以发送报文。 (2)信息路由(Information Routing)在CAN中,节点不使用任何关于系统配置的报文,比如站地址,由接收节点根据报文本身特征判断是否接收这帧信息。因此系统扩展时,不用对应用层以及任何节点的软件和硬件作改变,可以直接在CAN中增加节点。 (3)标识符(Identifier) 要传送的报文有特征标识符(是数据帧和远程帧的一个域),它给出的不是目标节点地址,而是这个报文本身的特征。信息以广播方式在网络上发送,所有节点都可以接收到。节点通过标识符判定是否接收这帧信息。

CAN总线的特点和优点

CAN总线的特点和优点 CAN总线的特点和优点; (1)多主控制 在总线空闲时,所有的单元都可开始发送消息(多主控制)。最先访问总线的单元可获得发送权(CSMA/CA)。多个单元同时开始发送时,发送高优先级D消息的单元可获得发送权。 (2)消息的发送 在CAN协议中,所有的消息都以固定的格式发送。总线空闲时,所有与总线相连的单元都可以开始发送新消息。两个以上的单元同时开始发送消息时,根据标识符(D)决定优先级。两个以上的单元同时开始发送消息时,对各消息ID的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。 (3)系统的柔软性 与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元时,连接在总线上的其它单元的软硬件及应用层都不需要改变。 (4)通信速度 根据整个网络的规模,可设定适合的通信速度。在同一网络中,所有单元必须设定成统一的通信速度。即使有一个单元的通信速度与其它的不一样,此单元也会输出错误信号,妨碍整个网络的通信。不同网络间则可以有不同的通信速度。 表1一1 CAN总线系统任意两节点间的最大距离 最大距离/m 位速率bps 10 1000 130 500 270 250 530 125 620 100 1300 50

3300 20 6700 10 10000 5 CAN总线上任意两节点之间的通信距离与其位速率有关,表2一1列举了相关数据。 (5)远程数据请求可通过发送“请求帧”请求其他单元发送数据。 (6)错误检测功能·错误通知功能·错误恢复功能 所有的单元都可以检测错误(错误检测功能)。检测出错误的单元会立即同时通知其他所有单元(错误通知功能)。正在发送消息的单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发送此消息直到成功发送为止(错误恢复功能)。 (7)故障封闭 CAN可以判断出错误的类型是总线上暂时的数据错误(如外部噪声等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。 (8)连接 CAN总线是可同时连接多个单元的总线。可连接的单元总数理论上是没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。

相关文档
最新文档