多元逐步回归算法

多元逐步回归算法
多元逐步回归算法

逐步回归分析的基本思想

在实际问题中, 人们总是希望从对因变量y有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量y进行预报或控制。所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量y影响显著的自变量而不包含对影响不显著的自变量的回归方程。逐步回归分析正是根据这种原则提出来的一种回归分析方法。它的主要思路是在考虑的全部自变量中按其对y的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行F检验, 以保证在引人新变量前回归方程中只含有对y 影响显著的变量, 而不显著的变量已被剔除。

逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于最小的一个更不需要剔除)。相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。将对影响不显著的变量全部剔除, 保留的都是显著的。接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。

在供选择的m个自变量中,依各自变量对因变量作用的大小,即偏回归平方和(partial regression sum of squares)的大小,由大到小把自变量依次逐个引入。每引入一个变量,就

≤时,将该自变量引入回归方程。新变量引入回归方程后,对方对它进行假设检验。当Pα

程中原有的自变量也要进行假设检验,并把贡献最小且退化为不显著的自变量逐个剔出方程。因此逐步回归每一步(引入一个自变量或剔除一个自变量)前后都要进行假设检验,直至既没有自变量能够进入方程,也没有自变量从方程中剔除为止。回归结束,最后所得方程即为所求得的“最优”回归方程。

逐步回归分析的特点:双向筛选,即引入有意义的变量(前进法),剔除无意义变量(后退法)

多元线性回归的应用

1.影响因素分析

2.估计与预测用回归方程进行预测时,应选择

具有较高2

R值的方程。

3.统计控制指利用回归方程进行逆估计,即通

过控制自变量的值使得因变量Y为

给定的一个确切值或者一个波动范

围。此时,要求回归方程的2R值要

大,回归系数的标准误要小。

1.样本含量

应注意样本含量n与自变量个数m的比例。通常,

样本含量至少为变量数的5-10倍。

2.方程“最优”问题

目的是精选自变量以求得拟合效果最好的多元回

归方程。最优子集回归是选择一组使回归方程拟

和最好的自变量,而逐步回归则选择对因变量作

用有意义的自变量,要根据研究目的选用合适的

方法。

逐步回归分析的主要计算步骤

1) 确定检验值

在进行逐步回归计算前要确定检验每个变量是否显若的检验水平, 以作为引人或剔除变量的标准。检验水平要根据具体问题的实际情况来定。一般地, 为使最终的回归方程中包含较多的变量, 水平不宜取得过高, 即显著水平α不宜太小。水平还与自由度有关, 因为在逐步回归过程中, 回归方程中所含的变量的个数不断在变化, 因此方差分析中的剩余自由度也总在变化, 为方便起见常按计算自由度。为原始数据观测组数, 为估计可能选人回归方程的变量个数。例如, 估计可能有2~3个变量选入回归方程, 因此取自由度为15-3-1=11, 查分布表, 当α=0.1, 自由度,

时, 临界值, 并且在引入变量时, 自由度取, , 检验的临界值记, 在

剔除变量时自由度取, , 检验的临界值记, 并要求, 实际应用中常取

(2) 逐步计算

如果已计算步(包含=0), 且回归方程中已引入个变量, 则第步的计算为:

()计算全部自变量的贡献(偏回归平方和)。

()在已引入的自变量中, 检查是否有需要剔除的不显著变量。这就要在已引入的变量中选取具有最小

值的一个并计算其值, 如果, 表示该变量不显著, 应将其从回归方程中剔除, 计算转至()。

如则不需要剔除变量, 这时则考虑从未引入的变量中选出具有最大值的一个并计算值, 如

果, 则表示该变量显著, 应将其引人回归方程, 计算转至()。如果, 表示已无变量可选入方程, 则逐步计算阶段结束, 计算转人(3)。

()剔除或引人一个变量后, 相关系数矩阵进行消去变换, 第步计算结束。其后重复()~()再进行下步计算。

由上所述, 逐步计算的每一步总是先考虑剔除变量, 仅当无剔除时才考虑引入变量。实际计算时, 开头几步可能都是引人变量, 其后的某几步也可能相继地剔除几个变量。当方程中已无变量可剔除, 且又无变量可引入方程时, 第二阶段逐步计算即告结束, 这时转入第三阶段。

(3) 其他计算, 主要是计算回归方程入选变量的系数、复相关系数及残差等统计量。

逐步回归选取变量是逐渐增加的。选取第个变量时仅要求与前面己选的-1个变量配合起来有最小的残差平方和, 因此最终选出的个重要变量有时可能不是使残差平方和最小的个, 但大量实际问题计算结果表明, 这个变量常常就是所有个变量的组合中具有最小残差平方和的那一个组合, 特别当不太大时更是如此, 这表明逐步回归是比较有效的方法。

引人回归方程的变量的个数与各变量贡献的显著性检验中所规定的检验的临界值与的取值大小有关。如果希望多选一些变量进人回归方程, 则应适当增大检验水平α值, 即减小的值, 特别地, 当时, 则全部变量都将被选入, 这时逐步回归就变为一般的多元线性回归。相反, 如果α取得比较小, 即与取得比较大时, 则入选的变量个数就要减少。此外, 还要注意, 在实际问题中, 当观测数据样本容量较小时, 入选变量个数不宜选得过大, 否则被确定的系数的精度将较差。

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

二次插值算法

二次插值法亦是用于一元函数在确定的初始区间内搜索极小点的一种方法。它属于曲线拟合方法的范畴。 一、基本原理 在求解一元函数的极小点时,常常利用一个低次插值多项式来逼近原目标函数,然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数的近似极小点。如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。 常用的插值多项式为二次或三次多项式,分别称为二次插值法和三次插值法。这里我们主要介绍二次插值法的计算公式。 假定目标函数在初始搜索区间中有三点、和 ,其函数值分别为、和(图1},且满足,,即满足函数值为两头大中间小的性质。利用这三点及相应的函数值作一条二次曲线,其函数为一个二次多项式 (1) 式中、、为待定系数。

图1 根据插值条件,插值函数与原函数在插值结点、、处函数值相等,得 (2) 为求插值多项式的极小点,可令其一阶导数为零,即 (3) 解式(3)即求得插值函数的极小点(4) 式(4)中要确定的系数可在方程组(2)中利用相邻两个方程消去而得: (5)

(6)将式(5)、(6)代入式(4)便得插值函数极小值点的计算公式: (7)把取作区间内的另一个计算点,比较与两点函数值的大小,在保持两头大中间小的前提下缩短搜索区间,从而构成新的三点搜索区间,再继续按上述 方法进行三点二次插值运算,直到满足规定的精度要求为止,把得到的最后的作为 的近似极小值点。上述求极值点的方法称为三点二次插值法。 为便于计算,可将式(7)改写为 (8) 式中: (9) (10) 二、迭代过程及算法框图 (1)确定初始插值结点 通常取初始搜索区间的两端点及中点为,, 。计算函数值,,,构成三个初始插值结点、、。

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

多元线性回归方程的建立

多元线性回归方程的建立 建立多元线性回归方程,实际上是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解使全部观测值与回归值的残差平方和达到最小值。由于残差平方和 (2-2-5) 是的非负二次式,所以它的最小值一定存在。 根据极值原理,当Q取得极值时,应满足 由(2-2-5)式,即满足 (2-2-6)(2-2-6)式称为正规方程组。它可以化为以下形式 (2-2-7)如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。则有

(2-2-8) 式中X是多元线性回归模型中数据的结构矩阵,是结构矩阵X的转置矩阵。 (2-2-7)式右端常数项也可用矩阵D来表示 即 因此(2-2-7)式可写成 Ab=D (2-2-10) 或 (2-2-11)

如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式和(2-11)式得的最小二乘估计为 (2-2-12) 也就是多元线性回归方程的回归系数。 为了计算方便往往并不先求,再求b,而是通过解线性方程组(2-2-7)来求b。(2-2-7)是一个有p+1个未知量的线性方程组,它的第一个方程可化为 (2-2-13) 式中 (2-2-14) 将(2-2-13)式代入(2-2-7)式中的其余各方程,得 (2-2-15) 其中 (2-2-16)将方程组(2-2-15)式用矩阵表示,则有 Lb=F (2-2-17) 其中

于是 b=L-1F (2-2-18) 因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。求b时,可用克莱姆法则求解,也可通过高斯变换求解。如果把b直接代入(2-2-18)式,由于要先求出L的逆矩阵,因而相对复杂一些。 例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。求y 对x1, x2, x3的线性回归方程。 表2-2-1 土壤含磷情况观察数据

第三章_曲线拟合算法的研究汇总

第三章 曲线拟合算法的研究 3.1 引言 随着航空、汽车等现代工业与计算机技术的发展,圆锥曲线与列表点曲线已经成为形状数学描述的常用方法,得到了广泛的应用。为了满足激光切割加工任务的需要,自动编程系统集成了多种曲线拟合算法,这样利用现有的激光切割机,即可实现特殊曲线的插补功能,极大地丰富系统的插补能力,满足复杂的生产要求。 3.2 圆锥曲线拟合算法的研究 在经济型数控系统中,对于圆锥曲线即平面二次曲线的加工是数控加工中经常遇到的问题,随着数控加工对圆锥曲线插补的需求,近年来有关各种圆锥曲线的插补算法应运而生[26]。常用的解决方法是先用低次的有理参数曲线拟合或将其离散,再用直线、圆弧逼近,然后才能进行数控加工[28]。本章从一个新的视角利用双圆弧方法,提出先对圆锥曲线进行标准化处理,再用双圆弧拟合逼近,然后再进行数控加工。这样的优点是:圆弧样条的等距曲线还是圆弧;双圆弧样条能达到C 1连续,基本上能满足要求;所有数控系统都具有直线插补和圆弧插补功能,无需增加额外负担。 由于工程应用不同,对曲线拟合的要求也不同。有的只要求拟合曲线光滑,有的要求光顺[9-10]。本章中开发的软件要求是:支持多种常用圆锥曲线的拟合;拟合曲线要求光滑;拟合曲线与函数曲线间的误差应控制在允许的范围之内,且拟合圆弧段数较少。 本章提出的对圆锥曲线的插补,是建立在对平面任意二次曲线可以进行分类的基础上,先将二次曲线进行分类,然后对各类曲线分别进行双圆弧拟合,这样就可以直接利用数控系统的圆弧插补功能进行插补。 3.2.1 圆锥曲线的一般理论[9] 在平面直角坐标系中,二元二次方程所表示的曲线称为二次曲线。其中系数A 、B 、 C 、 D 、 E 、 F 为实常数,且A 、B 、C 不同时为零。 022=+++++F Ey Dx Cy Bxy Ax (3.1) 式(3.1)称为圆锥曲线的隐式方程。令 AC B 42-=? (3.2) 称上式为二元二次方程(3.1)的判别式。 0

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

EXCEL在多元线性回归分析中的应用

EXCEL 在多元线性回归分析中的应用 高 平/文 在一元线性回归分析中,重点放在了用模 型中的一个自变量X 来估计因变量Y 。实际 上,由于客观事物的联系错综复杂,一个因变 量的变化往往受到两个或多个自变量的影响。 为了全面揭示这种复杂的依存关系,准确地 测定它们的数量变动,提高预测和控制的精确 度,就要考虑更多的自变量,建立多元回归模 型。多元回归分析的原理和方法同一元线性回归分析基本相同,但有两个不同点:1.不能用散点图来表示变量之间的关系。2.多元回归的计算难度要远大于简单线性回归,且变量越多,计算越复杂。但应用EXCEL 来完成计算将变得简单和轻松。 以下图中的数据为例: 多元线性回归的EXCEL 数据分析操作 方法首先单击工具栏,在弹出的菜单中选择 数据分析 ,在数据分析工具的选项框中选中 回归 ,然后在输入、输出选项以及有关的选项框中进行适当的选择,必须注意在进行自变量X 的输入时要按照已经确定的各个自变量的顺序把所有自变量的单元格引用范围一起 放在X 值的输入区域内。见下图 :!27!

点击 确定按钮,即可得到线性回归分析的结果。见下图: ! ! 28

根据上图中的显示结果,可直接写出二元线性回归方程: Y i=b0+b1X1i+b2X2i=-51.3127+1. 4053x1i+6.3823x2i b1表示在促销费用固定时,商店的规模大小每增加1平方米,年销售额平均增加1.4053万元;b2表示在商店的规模大小固定时,促销费用每增加1万元,年销售额平均增加6.3823万元。这里b1即商店的规模大小的回归系数比一元线性回归方程中的回归系数b= 1.6246小,是因为一元线性回归方程只考虑了商店的规模大小对年销售额的影响,忽略了促销费用这一很重要的因素,在商店的规模大小的影响中渗入了促销费用的影响。这里的截距b0=-51.3127万元,与一元线性回归方程中的截距+99.01万元有很大的不同,因为X1=0和X2 =0都不在X1、X2的样本取值范围之内,因而对截距项的解释要非常谨慎。 判定系数等于85.14%,表明在年销售额的变动中,有85.14%可由商店规模大小和促销费用多少这两个因素的变动来解释,只有14.86%的因素属于随机误差。引进了第二个自变量之后,回归方程的判定系数85.14%,比一元线性回归方程的判定系数77.68%提高了7.46个百分点。但需注意,在一般情况下,增加自变量,即使这个自变量在统计上并不显著,也会使判定系数的值增大。 年平均销售额的估计标准误差为112. 1015万元,引进了第二个自变量促销费用之后,回归方程的估计标准误差比一元线性回归方程的估计标准误差131.99万元有了下降,说明多元线性回归方程的代表性高于一元线性回归方程。 设显著性水平 =0.05,b1的检验统计量t=6.2817;b2的检验统计量t=2.4538,查t 表知t0.05/2(15-3)= 2.1788。因为6. 2817> 2.1788, 2.4538>2.1788。因此拒绝H0:1=0、H0:2=0的假设,认为这两个回归系数在统计上都是显著的。需注意的是,若此例的显著性水平=0.01,不是0.05,则t0. 01/2(15-3)= 3.0545。虽然6.2817> 3. 0545,但是2.4538< 3.0545,因此仍要拒绝H0: 1=0的假设,但无法拒绝、H0: 2=0的假设,所以第二个回归系数在统计上不是非常显著。 设计显著性水平 =0.05,查得F0.05(2, 12)=3.89。F=34.38>F0.05(2,12)= 3.8,所以拒绝原假设,表明样本的r2是显著的,由此推论已建立的二元线性回归模型有效。所谓复相关,是指一个因变量同多个自变量之间的相关关系。所有自变量共同变动时,因变量随之变动,其相关程度就可用复相关系数来测定。该例中商店规模大小、促销费用和年销售额三个变量的复相关系数为0.9227。计算结果表明,商店规模大小、促销费用作为一个整体影响因素同年销售额存在高度相关,其相关程度比一元回归中商店规模大小单个自变量同年销售额的相关系数更高。但需要强调是当我们研究的客观事物本质上属于多因素影响的变量时,用多元回归、复相关和偏相关分析,比一元回归和单相关分析更为真实和准确。 (作者单位:省统计局) (下接第37页) 3、加强普查队伍的建设与培训。农业普查不仅工作量大,而且专业性强,数据质量要求高。能否建立一支业务过硬、作风严谨、责任心强的高素质普查队伍,关系到普查的成败。因此,各级、各部门特别是县区政府一定要按照普查办法的要求,把好人员选聘和培训关,选调业务过硬、作风严谨、责任心强的人员充实到各级普查机构。与此同时,要认真做好普查培训和切实搞好普查试点工作,使所有普查人员明确普查指标的内容含义、要求及普查指标间的逻辑关系,准确把握普查的难点内容和问题,尤其要学会如何利用被调查对象的总体情况,现场分析评估被调查对象申报的数据,当场修改不实数据,确保各类普查数据的真实性。 4、加强依法普查,确保普查质量。各级、各有关部门要以这次普查为契机,加大统计普法力度,使各级普查机构严格按照?中华人民共和国统计法#的有关规定和普查的具体要求,克服困难,依法实事求是认真调查和填报,不弄虚作假,使各被调查单位和农户如实填报普查表,不虚报、瞒报。 总之,要确保此次普查情况不失真,调查数字不含水,统计数据不掺假,经得起实践的检验、群众的检验和历史的检验,为更好地推进新农村建设,获取真实的 三农数据。做到这一要求,只要有好的方案,通过法制手段、宣传手段、培训手段和市场经济手段等多种措施,解决了人的问题,包括各级领导、各级普查人员、各被调查对象的认识问题、思想问题,普查的难点会迎刃而解。否则,别无他法。 (作者单位:山东省沂南统计局 文登统计局) ! 29 !

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

二次插值算法

二次插值法亦是用于一元函数在确定的初始区间搜索极小点的一种方法。它属于曲线拟合方法的畴。 一、基本原理 在求解一元函数的极小点时,常常利用一个低次插值多项式来逼近原目标函数, 然后求该多项式的极小点(低次多项式的极小点比较容易计算),并以此作为目标函数 的近似极小点。如果其近似的程度尚未达到所要求的精度时,可以反复使用此法,逐次拟合,直到满足给定的精度时为止。 常用的插值多项式为二次或三次多项式,分别称为二次插值法和三次插值法。这里我们主要介绍二次插值法的计算公式。 假定目标函数在初始搜索区间中有三点、和 ,其函数值分别为、和(图1},且满足,,即满足函数值为两头大中间小的性质。利用这三点及相应的函数值作一条二次曲线,其函数为一个二次多项式 (1) 式中、、为待定系数。

图1 根据插值条件,插值函数与原函数在插值结点、、处函数值相等,得 (2) 为求插值多项式的极小点,可令其一阶导数为零,即 (3) 解式(3)即求得插值函数的极小点(4) 式(4)中要确定的系数可在方程组(2)中利用相邻两个方程消去而得: (5)

(6) 将式(5)、(6)代入式(4)便得插值函数极小值点的计算公式: (7) 把取作区间的另一个计算点,比较与两点函数值的大小,在保持 两头大中间小的前提下缩短搜索区间,从而构成新的三点搜索区间,再继续按上述方法进行 三点二次插值运算,直到满足规定的精度要求为止,把得到的最后的作为的近似极小值点。上述求极值点的方法称为三点二次插值法。 为便于计算,可将式(7)改写为 (8) 式中: (9) (10) 二、迭代过程及算法框图 (1)确定初始插值结点 通常取初始搜索区间的两端点及中点为,,。计算函数值,,,构成三个初始插值结点、、。

用EXCEL进行生产函数的多元线性回归分析

用EXCEL进行生产函数的多元线性回归分析 一、相关函数 EXCEL电子制表系统中函数的语法分为函数名和参数两部分,参数用圆括号括起来,之间以逗号隔开。参数可以为单元格区域、数组、函数、常数(逻辑型、数值型等)。 进行回归分析时,主要采用线性回归函数LINEST,辅以使用索引取值INDEX与四舍五入ROUND函数。 1、线性回归函数LINEST。 使用最小二乘法对已知数据进行最佳直线拟合,并返回描述此直线的数组。因为此函数返回数值数组,所以必须以数组公式的形式输入。 该函数的功能为:运算结果返回一线性回归方程的参数,即当已知一组混合成本为Y因变量序列值、N组Xi有关自变量因素的数量序列值时,函数返回回归方程的系数bi(i=1,2…n单位变动成本)和常数a(固定成本或费用)。 多元回归方程模型则为:y=b1x1+b2X2……+bnXn+a 语法 LINEST(known_y's,known_x's,const,stats) Known_y's 是关系表达式 y = mx + b 中已知的 y 值集合。 ?如果数组 known_y's 在单独一列中,则 known_x's 的每一列被视为一个独立的变量。 ?如果数组 known-y's 在单独一行中,则 known-x's 的每一行被视为一个独立的变量。 Known_x's 是关系表达式 y = mx + b 中已知的可选 x 值集合。 ?数组 known_x's 可以包含一组或多组变量。如果只用到一个变量,只要 known_y's 和 known_x's 维数相同,它们可以是任何形状的区域。如果用到多个变量,则 known_y's 必须为向量(即必须为一行或一列)。 ?如果省略 known_x's,则假设该数组为 {1,2,3,...},其大小与 known_y's 相同。Const 为一逻辑值,用于指定是否将常量 b 强制设为 0。 ?如果 const 为 TRUE 或省略,b 将按正常计算。 ?如果 const 为 FALSE,b 将被设为 0,并同时调整 m 值使 y = mx。 Stats 为一逻辑值,指定是否返回附加回归统计值。 ?如果 stats 为 TRUE,则 LINEST 函数返回附加回归统计值,这时返回的数组为{mn,mn-1,...,m1,b;sen,sen-1,...,se1,seb;r2,sey;F,df;ssreg,ssresid}。

使用Excel数据分析工具进行多元回归分析

使用Excel数据分析工具进行多元回归分析 使用Excel数据分析工具进行多元回归分析与简单的回归估算分析方法基本相同。但是由于有些电脑在安装办公软件时并未加载数据分析工具,所以从加载开始说起(以Excel2010版为例,其余版本都可以在相应界面找到)。 点击“文件”,如下图: 在弹出的菜单中选择“选项”,如下图所示:

在弹出的“选项”菜单中选择“加载项”,在“加载项”多行文本框中使用滚动条找到并选中“分析工具库”,然后点击最下方的“转到”,如下图所示:

在弹出的“加载宏”菜单中选择“分析工具库”,然后点击“确定”,如下图所示:

加载完毕,在“数据”工具栏中就出现“数据分析”工具库,如下图所示: 给出原始数据,自变量的值在A2:I21单元格区间中,因变量的值在J2:J21中,如下图所示: 假设回归估算表达式为: 试使用Excel数据分析工具库中的回归分析工具对其回归系数进行估算并进行回归分析:点击“数据”工具栏中中的“数据分析”工具库,如下图所示:

在弹出的“数据分析”-“分析工具”多行文本框中选择“回归”,然后点击“确定”,如下图所示: 弹出“回归”对话框并作如下图的选择: 上述选择的具体方法是: 在“Y值输入区域”,点击右侧折叠按钮,选取函数Y数据所在单元格区域J2:J21,选完后再单击折叠按钮返回;这过程也可以直接在“Y值输入区域”文本框中输入J2:J21; 在“X值输入区域”,点击右侧折叠按钮,选取自变量数据所在单元格区域A2:I21,选完后再单击折叠按钮返回;这过程也可以直接在“X值输入区域”文本框中输入A2:I21; 置信度可选默认的95%。 在“输出区域”如选“新工作表”,就将统计分析结果输出到在新表内。为了比较对照,我选本表内的空白区域,左上角起始单元格为K10.点击确定后,输出结果如下:

多元线性回归的计算方法

多元线性回归的计算方法 摘要 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭 消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。 多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由 于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。这里只介绍多元线性回归的一些基本问题。 但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下: Zy=β1Zx1+β2Zx2+…+βkZxk 注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。 多元线性回归模型的建立 多元线性回归模型的一般形式为 Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n 其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数 (regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为 E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki βj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open;

2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、

Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue. 3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据 图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1)

其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。 关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足 整理得到拟合曲线满足的方程:

巧用Excel解决多元非线性回归分析

农业网络信息 AGRICULTURE NETWORK INFORMATION ·研究与开发· 2011年第1期 巧用Excel 解决多元非线性回归分析 龚江,石培春,李春燕 (石河子大学农学院,石河子832003) 摘 要:非线性回归是回归分析的重要内容和难点,而多元非线性回归在农业生产中有重要的应用。应用Excel “工具” 菜单“数据分析”选项中的“回归”分析工具,以二元二次非线性回归为例,阐述了用Excel 做多元非线性回归的详细过程,并与SPSS 软件做的结果进行比较,证明使用Excel 做多元非线性回归完全可行,且操作简单、易行,并就方程的统计意义进行了分析。 关键词:Excel ;多元;非线性回归中图分类号:S126 文献标识码:A 文章编码:1672-6251(2011)01-0046-03 Application of Excel Software in Multi-nonlinear Regress Analysis GONG Jiang,SHI Peichun,LI Chunyan (Agriculture College of Shihezi Univerity,Shihezi 832003) Abstract:Nonlinear regress analysis was a difficult and significant method of regress analysis ,the application of which was important in agriculture production.In this paper,with the multi-linear regression analysis by “data analysis ”tool of Microsoft Excel as example,a 2times nonlinear regress analysis ’s process was described,and the results showed that the output was same with SPSS software ,then the statistical significance of the 2times nonlinear regress equation was analyzed.Key words:Excel software;multi analysis;nonlinear regress 注:新疆石河子大学农学院一类课程“生物统计学”支助。 作者简介:龚江(1976-),男,硕士,讲师,研究方向:生物统计教学和植物营养。收稿日期:2010-12-10 大量统计软件的问世,使统计分析在科研领域迅速普及应用。众所周知,统计软件如SAS 、SPSS 等虽然功能强大,但较难掌握,并且市面上出售的统计软件大都是盗版软件,不但运行结果的可靠性无法保证,也侵犯了知识产权。对于大多数科研工作者,尤其是基层的科研工作者来说,经常使用的统计软件与涉及的方法也很有限,主要集中在方差分析、回归与相关分析等少数几种方法上,并不需要包罗万象、功能强大的统计软件。而正版统计软件也由于其价格不菲,难以被大多数科研工作者承受。Excel 是Office 家族的一个成员,是功能强大、使用方便的电子表格式数据综合管理与分析系统,可用来记录和整理试验数据。另外,Excel 也具备一些统计运算的功能 [1] ,若能 巧妙地使用,也可以解决一些较为复杂的农业统计运算问题,如多元非线性回归的问题等,其统计结果和 SPSS 软件结果一致。 1Excel 统计功能的安装 单击Microsoft Excel 中文版菜单栏中“工具”的 “加载宏”命令,在“加载宏”对话框中选定“分析工具库”,再按“确定”钮(见图1), “数据分析” 这一项就出现在工具菜单栏中(见图2)。若Excel “工具”中的“加载宏”没有“分析工具库”,则将 Office Excel 中文专业版光盘放入光驱中,运行“安装”程序,点击“添加/删除”按钮,出现“Microsoft Office 维护”对话框后,在“选项”一栏中,选中“Microsoft Excel ”,然后单击“更改选项”按钮,出现新的对话框,再选中“加载宏”继续单击“更改选项”按钮,在新的对话框中选取分析工具库,确定即可,之后按照安装向导的指示即可顺利安装。 图1Excel 统计功能的安装

相关文档
最新文档