光刻概述

光刻概述
光刻概述

《微电子学导论》课程报告题目:光刻工艺概述

姓名:王泽卫

学号:2011700214

专业:材料科学与工程

完成日期:2014年11月17日

光刻工艺概述

摘要:从半导体制造的初期,光刻就被认为是集成电路制造工艺发展的驱动力。直到今天,集成电路正致力于把更多的器件和组合电路集成在一个芯片上,这种趋势仍在延续。在半导体制造业发展的五十年来,正像摩尔定律所阐明的,相比于其他单个技术来说,光刻对芯片性能的发展有着革命性的贡献。本文将从光刻的原理、工艺流程、以及目前先进的光刻工艺等几个方面对其进行介绍。

关键词:光刻原理、光刻工艺流程、先进光刻工艺

一、光刻概述

(一)光刻的概念及原理

光刻就是利用照相复制与化学腐蚀相结合的技术,在工件表面制取精密、微细和复杂薄层图形的化学加工方法。在光刻的过程中,使用光敏光刻胶材料和可控制的曝光在硅片表面形成三维图形。光刻过程的其他说法是照相、光刻、掩膜、图形形成。总的来说,光刻指的是将图形转移到转移到一个平面的任一复制过程。因此,光刻有时就是指“复制”。

光刻的原理就是利用光致抗蚀剂(或称光刻胶)感光后因光化学反应而形成耐蚀性的特点,将掩模板上的图形刻制到被加工表面上。在光刻的过程中,为获得令人满意的光刻图形,对光刻提出了几点要求:高分辨率;光刻胶高光敏性;精确对准;精确的工艺参数控制;低缺陷密度。

(二)光刻胶

光刻胶也称为光致抗蚀剂,它是由感光树脂、增感剂和溶剂三部分组成的对光敏感的混合液体。光刻胶主要用来将光刻掩模板上的图形转移到元件上。

根据光刻胶的化学反应机理和显影原理,可将其分为:正性光刻胶和负性光刻胶。负性光刻胶把与掩膜版上图形相反的图形复制到硅片表面。正性光刻胶把与掩膜版上相同的图形复制到硅片表面。

根据所能形成的图形的关键尺寸可将其分为:传统光刻胶(包括I线、G线和H线)和深紫外光刻胶。传统的光刻胶只适用于线宽在0.35μm和以上的硅

片非关键层,关键尺寸最小的是I线光刻胶。深紫外光刻胶可用于制作0.25μm 及以下关键尺寸。

二、光刻工艺流程

光刻工艺是一个复杂过程,它有很多影响其工艺宽容度的工艺变量。例如较小的特征尺寸、对准偏差、掩膜层数以及硅片表面的清洁度等。一般,将光刻工艺分为以下八个步骤:气相成底模处理;旋转涂胶;软烘(前烘);对准和曝光;曝光后烘焙(中烘);显影;坚膜烘焙;显影检查。现将八个步骤分述如下:(一)步骤一:气相成底模处理

光刻的第一步是清洗、脱水和硅片表面成底膜处理。这些步骤的目的是增强硅片和光刻胶之间的粘附性。清洗:硅片上的沾污物会造成光刻胶与硅片的粘附性很差,从而引起光刻胶的漂移问题,故需要清洗;脱水:光刻胶粘附要求严格的干燥表面,故需要脱水烘焙;成底模的作用是:提高粘附性,成底模所用试剂的成分是六甲基二硅胺烷。

(二)步骤二:旋转涂胶

成底模处理后,硅片要立即采用旋转涂胶的方法涂上液相光刻胶材料。旋转涂胶有四个基本的步骤:a、低速分滴;b、旋转铺开;c、旋转甩掉;d、溶剂挥发。原光刻胶的溶剂约占65~85%,旋涂后约占10~20%。决定光刻胶涂胶厚度的关键参数:光刻胶的黏度,黏度越低,光刻胶的厚度越薄;旋转速度,速度越快,厚度越薄。影响光刻胶均匀性的参数:旋转加速度,加速越快越均匀;与旋转加速的时间点有关。一般旋涂光刻胶的厚度与曝光的光源波长有关(因为不同级别的曝光波长对应不同的光刻胶种类和分辨率)。

(三)步骤三:软烘(前烘)

光刻胶涂到硅片表面后必须经过软烘,软烘的目的是:a、将硅片上覆盖的光刻胶溶剂去除;b、增强光刻胶的粘附性以便在显影时使光刻胶可以很好地粘附;c、缓和在旋转过程中光刻胶胶膜内产生的应力;d、防止光刻胶沾到设备上(保持器械洁净)。软烘提高了粘附性,提升了硅片上光刻胶的均匀性,在刻蚀中得到了更好地线宽控制。

(四)步骤四:对准和曝光

对准和曝光工艺代表了现代光刻中的主要设备系统。硅片首先被定位在光学系统的聚焦范围内。硅片的对准标记与掩膜版上相似匹配的标记对准后,紫外光就通过光学系统和掩膜版图形投影。

1.对准

掩膜版与涂了胶的硅片上的位置正确对准。硅片表面可以是裸露的硅,但通常在其表面有一层事先确定的图形。一旦对准,将掩膜版和硅片曝光,把掩膜版图形转移到涂胶的硅片上

2.曝光

曝光就是对涂有光刻胶的基片进行选择性的光化学反应,使接受到光照的光刻胶的光学特性发生改变。曝光中最重要的两个参数是:曝光能量和焦距。如果能量和焦距调整不好,就不能得到要求的分辨率和大小的图形。表现为图形的关键尺寸超出要求的范围。曝光方法及其设备详细介绍如下:

(1)接触式曝光。掩膜板直接与光刻胶层接触。曝光出来的图形与掩膜板上的图形分辨率相当,设备简单。缺点:光刻胶污染掩膜板;掩膜板的磨损,寿命很低(只能使用5~25次);分辨率>0.5μm。

(2)接近式曝光。掩膜板与光刻胶层的略微分开,大约为10~50μm。可以避免与光刻胶直接接触而引起的掩膜板损伤。但是同时引入了衍射效应,降低了分辨率,最大分辨率仅为2~4μm。

(3)投影式曝光。在掩膜板与光刻胶之间使用透镜聚集光实现曝光。一般掩膜板的尺寸会以需要转移图形的4倍制作。优点:提高了分辨率;掩膜板的制作更加容易;掩膜板上的缺陷影响减小。投影式曝光又可分为扫描投影曝光和步进重复投影曝光。步进重复投影曝光相比于扫描投影曝光:增大了每次曝光的视场;提供硅片表面不平整的补偿;提高整个硅片的尺寸均匀性。但是,同时因为需要反向运动,增加了机械系统的精度要求。

(五)步骤五:曝光后烘焙(中烘)

为了促进关键光刻胶的化学反应,对光刻胶进行曝光后烘焙是必须的。对基于DNQ化学成分的常规I线胶,进行中烘减少了光刻胶中剩余的溶剂,从而提

高了光刻胶的粘附性并减少了驻波损失。对于CA DUV光刻胶,由于光刻胶在曝光过程中,光酸产生剂(PAG)在曝光区产生了一种酸,为使曝光的光刻胶能够在显影液中溶解,烘焙加热光刻胶,引起酸催化的去保护反应,从而使光刻胶能溶解于显影液。

(六)步骤六:显影

显影是在硅片表面光刻胶中产生图形的关键步骤,显影就是用显影液溶解掉不需要的光刻胶,将光刻掩模板上的图形转移到光刻胶上。

显影的方法有以下几种:a、整盒硅片浸没式显影,缺点是:显影液消耗很大,以及显影的均匀性差;b、连续喷雾显影(自动旋转显影)。c、水坑(旋覆浸没)式显影,优点是:显影液用量少;硅片显影均匀;最小化了温度梯度。

显影液是根据所使用的光刻胶确定的,对于不同的光刻胶,显影液分为以下几种:a、负性光刻胶的显影液。负胶通过紫外线曝光发生交联硬化,使曝光的光刻胶变得在显影液中不可溶解,所以显影液通常是一种有机溶剂(如二甲苯)。

b、正性光刻胶的显影液。正胶的显影液为碱性水溶液。最普通的正胶显影液是四甲基氢氧化铵(TMAH)。一般使用两种类型的正性光刻胶:常规DNQ I线胶和CA DNQ光刻胶。在I线光刻胶曝光中会生成羧酸,TMAH显影液中的碱与酸中和使曝光的光刻胶溶解于显影液,而未曝光的光刻胶没有影响;在化学放大光刻胶中包含的酚醛树脂以PHS形式存在。PAG产生的酸会去除PHS中的保护基团(t-BOC),从而使PHS快速溶解于TMAH显影液中。整个显影过程中,TMAH 没有同PHS发生反应。

(七)步骤七:坚膜烘焙

显影后的热烘焙称为坚膜烘焙,主要有以下几个目的:a、完全蒸发掉光刻胶里面的溶剂(以免污染后续的离子注入环境,例如DNQ酚醛树脂光刻胶中的氮会引起光刻胶局部爆裂);b、坚膜,以提高光刻胶在离子注入或刻蚀中保护下表面的能力;c、进一步增强光刻胶与硅片表面之间的黏附性;d、进一步减少驻波效应。对深紫外线坚膜,DNQ酚醛树脂光刻胶可以通过暴露在深紫外线下进行坚膜,曝光使正胶树脂发生交联形成一层薄的表面硬壳,由此增加了光刻胶的热稳定性。

(八)步骤八:显影检查

检查发现问题,剥去光刻胶,重新开始。光刻胶图形是暂时的,刻蚀和离子注入图形是永久的,光刻工艺是可以返工的。刻蚀和注入以后就不能再返工。如果不进行显影检查就进行后续工艺,如若失败,必将产生很大的损失。检测手段:扫描电子显微镜(SEM)、光学显微镜。

三、先进的光刻工艺

由于许多设备和工艺的改进,光学光刻技术的分辨率得到了延伸,特别在以下几个领域的改进:a、减小紫外光源波长;b、提高光学光刻工具的数值孔径;

c、化学放大深紫外光刻胶;

d、分辨率提高技术;

e、硅片平坦以减小表面凸凹度;

f、光刻设备的先进性(步进扫描光刻机)。

预测实际的光学光刻技术的分辨率极限多年来都是徒劳的。将来的某些分辨率极限使光学光刻技术的扩展不再可行。微结构的制作必须转移为一种可替换的光刻工艺,即下一代光刻技术。调查用于替换光学光刻的下一代光刻技术类型的专业研究正在进行当中。主要有四种光刻技术可能成功代替光学光刻技术:(一)极紫外(EUV)光刻技术

极紫外(EUV)光刻技术建立在光学光刻技术的成果之上,使用激光等离子源产生约13nm的紫外波长,并希望光刻图形精度达到30nm。将极紫外光刻技术应用到硅片生产中还有大量的问题需要解决。精密光学系统很难实现高质量表面的严格要求。故此技术能否成为下一代的光刻技术还有待考证。

(二)角度限制投影电子束光刻技术(SCALPEL)

角度限制投影电子束光刻自20世纪80年代后期发展以来,用已制造的电子束源代替光源成像。使用的多层薄膜掩膜版几乎不吸收电子。当电子束通过一个掩膜版中的高原子数目层时,该层散射出电子在样品表面形成一个高对比度的图形。SCALPEL的掩膜版是一个4倍掩膜版,因而不需要复杂的分辨率提高技术,系统也不需要昂贵的光学系统。第一套商业SCALPEL工具于2002年完成。(三)离子束投影光刻技术(IPL)

电子束投影光刻技术早期是用离子束进行光刻胶曝光,或者通过掩膜版,或

者用精确聚焦的电子束连续在光刻胶上直写。如果使用掩膜,则需要采用拼接技术,用一个宽的离子束在硅片表面形成小的曝光场。离子束投影光刻技术能获得非常高地分辨率,研究条件已证明能到达50nm的特征尺寸。

(四)X射线光刻技术

X射线技术是一种早已经确认的技术,可以在样品上成像关键尺寸小于100nm的图形。X射线源将X射线投影到一种特殊的掩膜版上,在已涂胶的样片上形成图形。但是,这种技术与光学光刻技术相比需要更高的资金投入,因而在微结构制造业并没有得到广泛的应用。

四、结论

光刻将图形从掩膜版转移到硅片表面的光敏光刻胶上。光刻可分为正性光刻和负性光刻,负性光刻胶在硅片上形成的图形与掩膜版上图形相反,而正性光刻胶在硅片上形成的图形与掩膜版上图形相同。光刻可分为八个基本步骤:(1)气相成底膜,(2)旋转涂胶,(3)软烘,(4)对准和曝光,(5)曝光后烘焙,(6)显影,(7)坚膜烘焙,(8)显影检查。光刻技术的进步带来了亚波长光刻技术,后者图形可以获得小于曝光波长的关键尺寸。为了最终能够替代光学光刻的光刻技术,下一代光刻技术正在评估。主要有四种光刻技术:极紫外(EUV)光刻技术、角度限制投影电子束光刻技术(SCALPEL)、离子束投影光刻技术(IPL)和X射线光刻技术。

光刻胶的发展及应用

Vo.l14,No.16精细与专用化学品第14卷第16期 F i n e and Specialty Che m ica ls2006年8月21日市场资讯 光刻胶的发展及应用 郑金红* (北京化学试剂研究所,北京100022) 摘 要:主要介绍了国内外光刻胶的发展历程及应用情况,分析了国内外光刻胶市场状况及未来走向,并在此基础上阐述了我国光刻胶今后的研发重点及未来的发展方向。 关键词:集成电路;光刻胶;感光剂 D evelop m ent T rends and M arket of Photoresist Z HENG J in hong (Be iji ng Instit u te o f Che m ica l R eagents,Be iji ng100022,Chi na) Abstrac t:The deve l op m ent course and app licati on o f photoresist i n Chi na and abroad we re i ntroduced.The m arket sta t us and head i ng d irec tion o f pho toresist in Ch i na and abroad w ere also analyzed.T he research f o cuses and deve l op m ent trends of pho t o res i st i n Ch i na w ere descri bed. K ey word s:i n teg ra ted c ircuit;photoresist;photosensiti zer 光刻胶(又称光致抗蚀剂)是指通过紫外光、准分子激光、电子束、离子束、X射线等光源的照射或辐射,其溶解度发生变化的耐蚀刻薄膜材料。主要用于集成电路和半导体分立器件的微细加工,同时在平板显示、LED、倒扣封装、磁头及精密传感器等制作过程中也有着广泛的应用。由于光刻胶具有光化学敏感性,可利用其进行光化学反应,将光刻胶涂覆半导体、导体和绝缘体上,经曝光、显影后留下的部分对底层起保护作用,然后采用蚀刻剂进行蚀刻就可将所需要的微细图形从掩模版转移到待加工的衬底上。因此光刻胶是微细加工技术中的关键性化工材料。 现代微电子(集成电路)工业按照摩尔定律在不断发展,即集成电路(I C)的集成度每18个月翻一番;芯片的特征尺寸每3年缩小2倍,芯片面积增加1 5倍,芯片中的晶体管数增加约4倍,即每过3年便有一代新的集成电路产品问世。现在世界集成电路水平已由微米级(1 0 m)、亚微米级(1 0~0 35 m)、深亚微米级(0 35 m以下)进入到纳米级(90~65nm)阶段,对光刻胶分辨率等性能的要求不断提高。因为光刻胶的可分辨线宽 =k /NA,因此缩短曝光波长和提高透镜的开口数(NA)可提高光刻胶的分辨率。光刻技术随着集成电路的发展,也经历了从g线(436nm)光刻,i线(365nm)光刻,到深紫外248nm光刻,及目前的193nm光刻的发展历程,相对应于各曝光波长的光刻胶也应运而生。随着曝光波长变化,光刻胶的组成与结构也不断地变化,使光刻胶的综合性能满足集成工艺制程的要求。 表1为光刻技术与集成电路发展的关系,其中光刻技术的变更决定了光刻胶的发展趋势。 1 国外光刻胶发展历程及应用 光刻胶按曝光波长不同可分为紫外(300~ 450nm)光刻胶、深紫外(160~280n m)光刻胶、电子束光刻胶、离子束光刻胶、X射线光刻胶等。根据曝 24 *收稿日期:2006 07 19 作者简介:郑金红(1967 ),女,北京化学试剂研究所有机室主任,教授级高工,主要从事微电子化学品光刻胶的研究工作。

光刻原理

光 刻 工 艺 一、目的: 按照平面晶体管和集成电路的设计要求,在SiO 2或金属蒸发层上面刻蚀出与掩模板完全相对应的几何图形,以实现选择性扩散和金属膜布线的目的。 二、原理: 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的SiO 2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂溶解。然后利用光致抗蚀剂的保护作用,对SiO 2层或金属蒸发层进行选择性化学腐蚀,从而在SiO 2层或金属层上得到与光刻掩模板相对应的图形。 (一)光刻原理图 (一)光刻胶的特性: 1.性能,光致抗蚀剂是一种对光敏感的高分子化合物。当它受适当波长的光照射后就能吸收一定波长的光能量,使其发生交联、聚合或分解等光化学反应。由原来的线状结构变成三维的网状结构,从而提高了抗蚀能力,不再溶于有机溶剂,也不再受一般腐蚀剂的腐蚀. 2.组成:以KPR 光刻胶为例: 感光剂--聚乙烯醇肉桂酸酯。 溶 剂--环己酮。 增感剂--5·硝基苊, 3.配制过程: 将一定重量的感光剂溶解于环己酮里搅拌均匀,然后加入一定量的硝基苊,再继续揖拌均匀,静置于暗室中待用。 感光剂聚乙烯醇肉桂酸酯的感光波长为3800?以内,加入5·硝基苊后感光波长范围发生了变化从2600—4700 ?。 (二)光刻设备及工具: 在SiO 2层上涂复光刻胶膜 将掩模板覆盖 在光刻胶膜上 在紫外灯下曝光 显影后经过腐蚀得到光刻窗口

1.曝光机--光刻专用设备。 2.操作箱甩胶盘--涂复光刻胶。 3.烘箱――烤硅片。 4.超级恒温水浴锅--腐蚀SiO2片恒温用。 5.检查显为镜――检查SiO2片质量。 6.镊子――夹持SiO2片。 7.定时钟――定时。 8.培养皿及铝盒――装Si片用。 9.温度计――测量温度。 图(二)受光照时感光树脂分子结构的变化 三、光刻步骤及操作原理 1.涂胶:利用旋转法在SiO2片和金属蒸发层上,涂上一层粘附性好、厚度适当、均匀的光刻胶。 将清洁的SiO2片或金属蒸发片整齐的排列在甩胶盘的边缘上,然后用滴管滴上数滴光刻胶于片子上,利用转动时产生的离心力,将片子上多余的胶液甩掉,在光刻胶表面粘附能力和离心力的共同作用下形成厚度均匀的胶膜。 涂胶时间约为1分钟。 要求:厚度适当(观看胶膜条纹估计厚薄),胶膜层均匀,粘附良好,表面无颗粒无划痕。 图(三)光刻工艺流程示意图

光刻工艺概述

光刻工艺流程图 一前处理(OAP) 通常在150~200℃对基片进行烘考以去除表面水份,以增强光刻胶与硅片的粘附性。(亲水表面与光刻胶的粘附性差,SI的亲水性最小,其次SIO2,最后PSI玻璃和BSI玻璃) OAP的主要成分为六甲基二硅烷,在提升光刻胶的粘附性工艺中,它起到的作用不是增粘剂,而是改变SiO2的界面结构,变亲水表面为疏水表面。OAP通常采用蒸汽涂布的方式,简单评

价粘附性的好坏,可在前处理过的硅片上滴一滴水,通过测量水与硅片的接触角,角度越大, SI 二、匀胶 光刻胶通常采用旋涂方式,在硅片上得到一层厚度均匀的胶层。影响胶厚的最主要因素:光刻胶的粘度及旋转速度。次要因素:排风;回吸;胶泵压力;胶盘;温度。 胶厚的简单算法:光刻胶理论的最小胶厚的平方乘以理论的转速=目标光刻胶的胶厚的平方乘以目标转速 例如:光刻胶理论厚度1微米需要转速3000转/分,那需要光刻胶厚度1.15微米时转速应为 12 *3000/1.152 三、前烘 前烘的目的是为了驱除胶膜中残余的溶剂,消除胶膜的机械应力。前烘的作用: 1)增强胶层的沾附能力;2)在接触式曝光中可以提高胶层与掩模板接触时的耐磨性能;3)可以提高和稳定胶层的感光灵敏度。前烘是热处理过程,前烘通常的温度和时间: 烘箱90~115℃ 30分钟 热板90~120℃ 60~90秒 四、光刻 光刻胶经过前烘后,原来液态光刻胶在硅片表面上固化。光刻的目的就是将掩膜版上的图形转移到硅片上。曝光的设备分类接触式、接近式、投影式、步进式/扫描式、电子束曝光、软X射线曝光。 五、显影 经过显影,正胶的曝光区域和负胶的非曝光区域被溶解,正胶的非曝光区域和负胶的曝光区域被保留下来,从而完成图形的转移工作。正胶曝光区域经过曝光后,生成羧酸与碱性的显影液中和反应从而被溶解。负胶的曝光区域经过曝光后产生胶联现象,不被显影液溶解。而未曝光的区域则被显影液溶解掉。定影液的作用是漂洗显影过程中产生的碎片,挤出残余的显影液,另外还可以起到收缩图形,提高图形的质量。

国外光刻胶及助剂的发展趋势

应用科技 国外光刻胶及助剂的发展趋势 中国化工信息中心 王雪珍编译 光刻是半导体产业常用的工艺,借助光刻胶可将印在光掩膜上的图形结构转移到硅片表面上。光掩膜制备也是一个光刻过程,不过其所用化学品不同。 每一层集成电路芯片都需要不同图案的光掩膜。在一些高级的集成电路中,硅片经历了50多步非常精细的光刻工艺。在过去10年里,光刻费用飞速上涨,其中最重要的花费在半导体领域。光刻工艺花费了硅片生产大约35%的费用,一个典型的例子是,在一个价格在50万欧元(合65万美元)的90nm 的光掩膜技术中,其光刻机花费是1000万欧元(合 1300万美元)。而这个费用比例在以后的生产装置和工艺中 还将不断提高。 在半导体产业中,常用的光刻胶有正型光刻胶与负型光刻胶两种。正型光刻胶的销售额大概是负型光刻胶的100倍,这是因为正型光刻胶具有更高的分辨率,可以用于微小精细的电路,同时,正型光刻胶与等离子干法刻蚀技术的相容性也更好一些。 光刻胶根据其辐照源进行分类,对于光致抗蚀技术来说,集成电路的最小特征尺寸受光源波长所限。由于集成电路越来越小,因此新光源和光刻胶联合使用以达到这一目的。一项联合了曝光波长为248nm 和193nm 的技术可以得到高分辨率的图案,其结果甚至比90nm 曝光波长的技术要来得好一些。一些光学技术可以扩大这个范围,但是其最终限制条件是光的频率。 光刻胶技术和制造 光刻胶指光照后能具有抗蚀能力的高分子化合物,用于在半导体基件表面产生电路的形状。其配方通常是一个复杂的体系,主要包括感光物质(PAC )、树脂和一些其他利于使用的材料如稳定剂、阻聚剂、粘度控制剂、染料、增塑剂和化学增溶剂等。 当光刻胶暴露在光源或者是紫外辐照源条件下时,其溶解度发生了改变:负型光刻蚀剂变为不溶,正型光刻胶变为可溶。大多数负型光刻蚀剂可以归为两种类型,一种是二元体系:大量的聚异戊二烯树脂和叠氮感光化合物;另外一种是一元体系:缩水甘油甲基丙烯酯和乙基丙烯酸酯的共聚物。前者是建立在酚醛树脂和重氮萘醌感光物质的基础之上的。使用248nm 曝光波长要求光刻胶使用乙酰氧基苯乙烯单体。通过4-乙酰氧基苯乙烯单体的自由基聚合,醋酸酯选择性地转换成酚醛,以及将其与其他反应性单体的化合,可以制备出许多用于远紫外光刻的聚合物。硅氧烷/硅倍半氧烷和碳氟化合物等材料在157nm 曝光波长时是相对透明的。 预计未来5年,使用聚羟基苯乙烯树脂的化学增幅抗蚀剂将成为主流。远紫外光刻胶也是基于聚甲基丙烯酸甲酯和氟化高分子或者是二者之一。 通常说来,感光化合物例如二芳基叠氮和重氮萘醌是易爆化学制品。所以,光刻胶的生产商一定要足够小心以防爆炸。目前用于负型光刻胶的有机溶剂和显影液对环境具有危害性,以致人们倾向于使用正型光刻胶。并且,其发展趋势是替换掉具有危害的溶剂,而选用对环境无污染的无毒产品。 在低密度远紫外辐照和其他替代i 线和g 线辐照源发展大趋势的刺激下,化学增幅抗蚀剂成为一个发展快速的热点领域。在化学增幅抗蚀剂领域,由于辐照源的匮乏,势必导致一种催化的东西产生,通常为中子源。在曝光的加热处理后,催化剂会引起树脂中组分发生复杂反应,这种反应将最终产生光刻图案。目前正型光刻胶体系和负型光刻胶体系都有了较好的发展。 集成电路 收稿日期:2009-04-23 作者简介:王雪珍(1983-),女,主要从事电子化学品、可降解塑料和食品添加剂的信息研究工作 。 12

光刻工艺流程

光刻工艺流程 Lithography Process 摘要:光刻技术(lithography technology)是指集成电路制造中利用光学—化学反应原理和化学,物理刻蚀法,将电路图形传递到单晶表面或介质层上,形成有效图形窗口或功能图形的工艺技术。光刻是集成电路工艺中的关键性技术,其构想源自于印刷技术中的照相制版技术。光刻技术的发展使得图形线宽不断缩小,集成度不断提高,从而使得器件不断缩小,性能也不断提利用高。还有大面积的均匀曝光,提高了产量,质量,降低了成本。我们所知的光刻工艺的流程为:涂胶→前烘→曝光→显影→坚膜→刻蚀→去胶。 Abstract:Lithography technology is the manufacture of integrated circuits using optical - chemical reaction principle and chemical, physical etching method, the circuit pattern is transferred to the single crystal surface or the dielectric layer to form an effective graphics window or function graphics technology.Lithography is the key technology in integrated circuit technology, the idea originated in printing technology in the photo lithographic process. Development of lithography technology makes graphics width shrinking, integration continues to improve, so that the devices continue to shrink, the performance is also rising.There are even a large area of exposure, improve the yield, quality and reduce costs. We know lithography process flow is: Photoresist Coating → Soft bake → exposure → development →hard bake → etching → Strip Photoresist. 关键词:光刻,涂胶,前烘,曝光,显影,坚膜,刻蚀,去胶。 Key Words:lithography,Photoresist Coating,Soft bake,exposure,development,hard bake ,etching, Strip Photoresist. 引言: 光刻有三要素:光刻机;光刻版(掩模版);光刻胶。光刻机是IC晶圆中最昂贵的设备,也决定了集成电路最小的特征尺寸。光刻机的种类有接触式光刻机、接近式光刻机、投影式光刻机和步进式光刻机。接触式光刻机设备简单,70年代中期前使用,分辨率只有微

光刻胶知识简介

光刻胶知识简介 光刻胶知识简介: 一.光刻胶的定义(photoresist) 又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。 二.光刻胶的分类 光刻胶的技术复杂,品种较多。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。 基于感光树脂的化学结构,光刻胶可以分为三种类型。 ①光聚合型 采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。 ②光分解型 采用含有叠氮醌类化合物的材料,经光照后,会发生光分解反应,由油溶性变为水溶性,可以制成正性胶. ③光交联型 采用聚乙烯醇月桂酸酯等作为光敏材料,在光的作用下,其分子中的双键被打开,并使链与链之间发生交联,形成一种不溶性的网状结构,而起到抗蚀作用,这是一种典型的负性光刻胶。柯达公司的产品KPR胶即属此类。 三.光刻胶的化学性质 a、传统光刻胶:正胶和负胶。 光刻胶的组成:树脂(resin/polymer),光刻胶中不同材料的粘合剂,给与光刻胶的机械与化学性质(如粘附性、胶膜厚度、热稳定性等);感光剂,感光剂对光能发生光化学反应;溶剂(Solvent),保持光刻胶的液体状态,使之具有良好的流动性;添加剂(Additive),用以改变光刻胶的某些特性,如改善光刻胶发生反射而添加染色剂等。 负性光刻胶。树脂是聚异戊二烯,一种天然的橡胶;溶剂是二甲苯;感光剂是一种经过曝光后释放出氮气的光敏剂,产生的自由基在橡胶分子间形成交联。从而变得不溶于显影液。负性光刻胶在曝光区由溶剂引起泡涨;曝光时光刻胶容易与氮气反应而抑制交联。 正性光刻胶。树脂是一种叫做线性酚醛树脂的酚醛甲醛,提供光刻胶的粘附性、化学抗蚀性,当没有溶解抑制剂存在时,线性酚醛树脂会溶解在显影液中;感光剂是光敏化合物(PAC,Photo Active Compound),最常见的是重氮萘醌(DNQ),在曝光前,DNQ是一种强烈的溶解抑制剂,降低树脂的溶解速度。在紫外曝光后,DNQ在光刻胶中化学分解,成为溶解度增强剂,大幅提高显影液中的溶解度因子至100或者更高。这种曝光反应会在DNQ中产生羧酸,它在显影液中溶解度很高。正性光刻胶具有很好的对比度,所以生成的图形具有良好的分辨率。

光刻

光刻 一、概述: 光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)。 光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 二、光学基础: 光的反射(reflection)。光射到任何表面的时候都会发生反射,并且符合反射定律:入射角等于反射角。在曝光的时候,光刻胶往往会在硅片表面或者金属层发生反射,使不希望被曝光的光刻胶被曝光,从而造成图形复制的偏差。常常需要用抗反射涂层(ARC,Anti-Reflective Coating)来改善因反射造成的缺陷。 光的折射(refraction)。光通过一种透明介质进入到另一种透明介质的时候,发生方向的改变。主要是因为在两种介质中光的传播速度不同(λ=v/f)。直观来说是两种介质中光的入射角发生改变。所以我们在90nm工艺中利用高折射率的水为介质(空气的折射率为1.0,而水的折射率为1.47),采用浸入式光刻技术,从而提高了分辨率。而且这种技术有可能将被沿用至45nm工艺节点。 光的衍射或者绕射(diffraction)。光在传播过程中遇到障碍物(小孔或者轮廓分明的边缘)时,会发生光传播路线的改变。曝光的时候,掩膜板上有尺寸很小的图形而且间距很窄。衍射会使光部分发散,导致光刻胶上不需要曝光的区域被曝光。衍射现象会造成分辨率的下降。 光的干涉(interference)。波的本质是正弦曲线。任何形式的正弦波只要具有相同的频率就能相互干涉,即相长相消:相位相同,彼此相长;相位不同,彼此相消。在曝光的过程中,反射光与折射光往往会发生干涉,从而降低了图形特征复制的分辨率。 调制传输函数(MTF, Modulation Transfer Function)。用于定义明暗对比度的参数。即分辨掩膜板上明暗图形的能力,与光线的衍射效应密切相关。MTF=(Imax-Imin)/(Imax+Imin),好的调制传输函数,就会得到更加陡直的光刻胶显影图形,即有高的分辨率。临界调制传输函数(CMTF,Critical Modulation Transfer Function)。主要表征光刻胶本身曝光对比度的参数。即光刻胶分辨透射光线明暗的能力。一般来说光路系统的调制传输函数必须大于光刻胶的临界调制传输函数,即MTF>CMTF。 数值孔径(NA, Numerical Aperture)。透镜收集衍射光(聚光)的能力。NA=n*sinθ=n*(透镜半径/透镜焦长)。一般来说NA大小为0.5~0.85。提高数值孔径的方法:1、提高介质折射率n,采用水代替空气;2、增大透镜的半径; 分辨率(Resolution)。区分临近最小尺寸图形的能力。R=kλ/(NA)=0.66/(n*sinθ) 。提高分辨率的方法:1、减小光源的波长;2、采用高分辨率的光刻胶;3、增大透镜半径;4、采用高折射率的介质,即采用浸入式光刻技术;5、优化光学棱镜系统以提高k(0.4~0.7)值(k是标志工艺水平的参数)。 焦深(DOF,Depth of Focus)。表示焦点周围的范围,在该范围内图像连续地保持清晰。焦深是焦点上面和下面的范围,焦深应该穿越整个光刻胶层的上下表面,这样才能够保证光刻胶完全曝光。DOF=kλ/(NA)2。增大焦深的方法:1、增大光源的波长;2、采用小的数值

光刻技术及其应用的状况和未来发展

光刻技术及其应用的状况和未来发展 光刻技术及其应用的状况和未来发展1 引言 光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一俩代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。如图1所示,是基于2005年ITRS对未来几种可能光刻技术方案的预测。也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。 2 光刻技术的纷争及其应用状况 众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。 以Photons为光源的光刻技术 2.1 以Photons为光源的光刻技术 在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。不但取得了很大成就,而且是目前产业中使用最多的技术,特别是前两种技术,在半导体工业的进步中,起到了重要作用。 紫外光刻技术是以高压和超高压汞(Hg)或者汞-氙(Hg-Xe)弧灯在近紫外(350~450nm)的3条光强很强的光谱(g、h、i线)线,特别是波长为365nm的i线为光源,配合使用像离轴照明技术(OAI)、移相掩模技术(PSM)、光学接近矫正技术(OPC)等等,可为0.35~0.25μm的大生产提供成熟的技术支持和设备保障,在目前任何一家FAB中,此类设备和技术会占整个光刻技术至少50%的份额;同时,还覆盖了低端和特殊领域对光刻技术的要求。光学系统的结构方面,有全反射式(Catoptrics)投影光学系统、折反射式(Catadioptrics)系统和折射式(Dioptrics)系统等,如图2所示。主要供应商是众所周知的ASML、NIKON、CANON、ULTRATECH 和SUSS MICROTECH等等。系统的类型方面,ASML以提供前工程的l:4步进扫描系统为主,分辨率覆盖0.5~0.25μm:NIKON以提供前工程的1:5步进重复系统和LCD的1:1步进重复系统为主,分辨率覆盖0.8~0.35μm和2~0.8μm;CANON以提供前工程的1:4步进重复系统和LCD的1:1步进重复系统为主,分辨率也覆盖0.8~0.35μm和1~0.8μm;ULTRATECH以提供低端前工程的1:5步进重复系统和特殊用途(先进封装/MEMS/,薄膜磁头等等)的1:1步进重复系统为主;而SUSS MICTOTECH以提供低端前工程的l:1接触/接近式系统和特殊用途(先进封装/MEMS/HDI等等)的1:1接触/接近式系为主。另外,在这个领域的系统供应商还有USHlO、TAMARACK和EV Group等。 深紫外技术

光刻工艺简要流程介绍

光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 光刻工艺过程 一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。 1、硅片清洗烘干(Cleaning and Pre-Baking) 方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮 气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是 HMDS-〉六甲基二硅胺烷)。 2、涂底(Priming) 方法:a、气相成底膜的热板涂底。HMDS蒸汽淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS 用量大。

目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 3、旋转涂胶(Spin-on PR Coating) 方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%); b、动态(Dynamic)。低速旋转(500rpm_rotation per minute)、滴胶、加速 旋转(3000rpm)、甩胶、挥发溶剂。 决定光刻胶涂胶厚度的关键参数:光刻胶的黏度(Viscosity),黏度越低,光刻胶的厚度越薄;旋转速度,速度越快,厚度越薄; 影响光刻胶厚度均运性的参数:旋转加速度,加速越快越均匀;与旋转加速的时 间点有关。 一般旋涂光刻胶的厚度与曝光的光源波长有关(因为不同级别的曝光波长对应不 同的光刻胶种类和分辨率): I-line最厚,约0.7~3μm;KrF的厚度约0.4~0.9μm;ArF的厚度约0.2~ 0.5μm。 4、软烘(Soft Baking) 方法:真空热板,85~120℃,30~60秒; 目的:除去溶剂(4~7%);增强黏附性;释放光刻胶膜内的应力;防止光刻胶 玷污设备; 边缘光刻胶的去除(EBR,Edge Bead Removal)。光刻胶涂覆后,在硅片边缘的正反两面都会有光刻胶的堆积。边缘的光刻胶一般涂布不均匀,不能得到很好的图形,而且容易发生剥离(Peeling)而影响其它部分的图形。所以需要去除。

基于表面等离子干涉原理的周期减小光刻技术研究

目录 目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................... III 第1章绪论 . (1) 1.1课题背景及研究的目的和意义 (1) 1.2周期减小光刻技术的研究现状 (2) 1.2.1 干涉光刻技术 (2) 1.2.2 泰伯光刻技术 (5) 1.3周期减小光刻技术的新发展 (8) 1.3.1 表面等离子干涉光刻技术 (8) 1.3.2 双曲线超材料光刻技术 (10) 1.4本研究领域存在的关键技术问题和科学问题 (14) 1.5本文的主要研究内容 (15) 第2章基于表面等离子干涉和ENZ超材料的周期减小光刻理论和设计 (16) 2.1引言 (16) 2.2基于表面等离子干涉和ENZ超材料的周期减小光刻原理 (16) 2.2.1 表面等离子干涉的激发结构 (17) 2.2.2 ENZ双曲线超材料结构 (22) 2.3周期减小光刻结构设计 (25) 2.3.1 干涉激发结构设计 (26) 2.3.2 ENZ双曲线超材料结构的设计 (30) 2.4周期减小光刻结构的设计实例 (42) 2.5本章小结 (45) 第3章超大曝光深度周期减小光刻的研究 (46) 3.1引言 (46) 3.2超大曝光深度周期减小光刻原理 (46) 3.2.1 MIM光栅结构 (47) 3.2.2 多层波导结构 (49) 3.3超大曝光深度周期减小光刻结构设计 (52) 3.3.1 SPP干涉波与一阶衍射波的匹配 (52) 3.3.2 多层波导的耦合 (53) 3.3.3 基于高折射率介质的超透镜结构设计 (55)

2020光刻胶行业现状及前景趋势

2020年光刻胶行业现状 及前景趋势 2020年

目录 1.光刻胶行业现状 (4) 1.1光刻胶行业定义及产业链分析 (4) 1.2光刻胶市场规模分析 (6) 1.3光刻胶市场运营情况分析 (7) 2.光刻胶行业存在的问题 (10) 2.1纯度要求高、工艺复杂 (10) 2.2配方技术问题 (10) 2.3光刻机的配套需求问题 (10) 2.4体量壁垒问题 (10) 2.5供应链整合度低 (11) 2.6产业结构调整进展缓慢 (11) 2.7供给不足,产业化程度较低 (11) 3.光刻胶行业前景趋势 (13) 3.1技术难度最高,国产化率极低 (13) 3.2技术含量较低,国产化率超过50% (13) 3.3市场规模最大,低端产品已实现国产化 (13) 3.4用户体验提升成为趋势 (14) 3.5生态化建设进一步开放 (14) 3.6呈现集群化分布 (15) 3.7需求开拓 (16)

4.光刻胶行业政策环境分析 (16) 4.1光刻胶行业政策环境分析 (16) 4.2光刻胶行业经济环境分析 (17) 4.3光刻胶行业社会环境分析 (17) 4.4光刻胶行业技术环境分析 (17) 5.光刻胶行业竞争分析 (19) 5.1光刻胶行业竞争分析 (19) 5.1.1对上游议价能力分析 (19) 5.1.2对下游议价能力分析 (19) 5.1.3潜在进入者分析 (20) 5.1.4替代品或替代服务分析 (20) 5.2中国光刻胶行业品牌竞争格局分析 (21) 5.3中国光刻胶行业竞争强度分析 (21) 6.光刻胶产业投资分析 (22) 6.1中国光刻胶技术投资趋势分析 (22) 6.2中国光刻胶行业投资风险 (22) 6.3中国光刻胶行业投资收益 (23)

光刻胶在光电产品中的应用及发展简述解读

光刻胶在光电产品中的应用及发展简述 进入90年代后,随着微电子信息技术的发展,微电子信息产业愈来愈受到人们的重视,发展速度之快,几乎超过人们的预料。与其相配套的世界电子化学品平均年增长率也保持在8%以上,是传统化工行业中发展最快的部门之一。预计到2005年,世界电子化学品的市场规模特超过300亿美元。 我国目前生产的电子化学产品,其中比较重要的两大类的发展现状如下:集成电路用电子化学品它包括四类关键产品:一是超净高纯试剂,BV-皿级试剂已达到国外Semi-c7质量标准,适合于0.8u-1.2um工艺,已形成500吨/年规模的生产能力,MOS 级试剂已开发生产出20多个品种,年产量超过4000吨;二是光刻胶,目前我国每年生产100吨左右,其中紫外线负胶已国产化,紫外线正胶可满足2um的工艺要求,电子束胶可提供少量产品,三是特种电子气体,目前少量由国内生产,有30多个品种主要由美国、法国和日本等国家的公司提供;四是环氧模塑料,目前国内已有3000吨/年的生产能力,可满足0.8um工艺要求,现在正在研制0.35um工艺要求的封装材料。 在全球产业界开始大规模向大陆转移产品生产基地的趋势下,在国内业界开始加大对平面显示器领域产品的投资中,发挥已有的优势,沿着产品的产业链上下、左右寻求研发、投资相关产品,应是业界不断努力探讨的方向。本文将重点介绍光刻胶产品在光电产品领域中的应用及其他发展前景。 一、光刻胶产品简介 光刻胶是指通过紫外光、电子束、准分子激光束、X射线、离子束等曝光源的照射或辐射,使溶解度发生变化的耐蚀刻薄膜材料,主要用于集成电路和半导体分立器件的细微图形加工,近年来也逐步应用于光电子领域平板显示器的制作。由于光刻胶具有光化学敏感性,可利用其进行光化学反应,经曝光、显影等过程,将所需要的微细图形从掩模版转移至待加工的衬底上,然后进行刻蚀、扩散、离子注入等工艺加工,因此刻胶光电信息产业中微细加工技术的关键性基础加工材料。

光刻机的技术原理和发展趋势

光刻机的技术原理和发展趋势 王平0930******* 摘要: 本文首先简要介绍了光刻技术的基本原理。现代科技瞬息万变,传统的光刻技术已经无法满足集成电路生产的要求。本文又介绍了提高光刻机性能的关键技术和下一代光刻技术的研究进展情况。 关键字:光刻;原理;提高性能;浸没式光刻;下一代光刻 引言: 光刻工艺直接决定了大规模集成电路的特征尺寸,是大规模集成电路制造的关键工艺。作为光刻工艺中最重要设备之一,光刻机一次次革命性的突破,使大模集成电路制造技术飞速向前发展。因此,了解光刻技术的基本原理,了解提高光刻机性能的关键技术以及了解下一代光刻技术的发展情况是十分重要的。本文就以上几点进行了简要的介绍。 光刻技术的基本原理: 光刻工艺通过曝光的方法将掩模上的图形转移到涂覆于硅片表面的光刻胶上,然后通过显影、刻蚀等工艺将图形转移到硅片上。 1、涂胶 要制备光刻图形,首先就得在芯片表面制备一层均匀的光刻胶。截止至2000年5月23日,已经申请的涂胶方面的美国专利就达118项。在涂胶之前,对芯片表面进行清洗和干燥是必不可少的。目前涂胶的主要方法有:甩胶、喷胶和气相沉积,但应用最广泛的还是甩胶。甩胶是利用芯片的高速旋转,将多余的胶甩出去,而在芯片上留下一层均匀的胶层,通常这种方法可以获得优于+2%的均匀性(边缘除外)。胶层的厚度由下式决定: 式中:F T为胶层厚度,ω为角速度,η为平衡时的粘度,ρ为胶的密度,t为时间。由该式可见,胶层厚度和转速、时间、胶的特性都有关系,此外旋转时产生的气流也会有一定的影响。甩胶的主要缺陷有:气泡、彗星(胶层上存在的一些颗粒)、条纹、边缘效应等,其中边缘效应对于小片和不规则片尤为明显。

光刻概述

《微电子学导论》课程报告题目:光刻工艺概述 姓名:王泽卫 学号:2011700214 专业:材料科学与工程 完成日期:2014年11月17日

光刻工艺概述 摘要:从半导体制造的初期,光刻就被认为是集成电路制造工艺发展的驱动力。直到今天,集成电路正致力于把更多的器件和组合电路集成在一个芯片上,这种趋势仍在延续。在半导体制造业发展的五十年来,正像摩尔定律所阐明的,相比于其他单个技术来说,光刻对芯片性能的发展有着革命性的贡献。本文将从光刻的原理、工艺流程、以及目前先进的光刻工艺等几个方面对其进行介绍。 关键词:光刻原理、光刻工艺流程、先进光刻工艺 一、光刻概述 (一)光刻的概念及原理 光刻就是利用照相复制与化学腐蚀相结合的技术,在工件表面制取精密、微细和复杂薄层图形的化学加工方法。在光刻的过程中,使用光敏光刻胶材料和可控制的曝光在硅片表面形成三维图形。光刻过程的其他说法是照相、光刻、掩膜、图形形成。总的来说,光刻指的是将图形转移到转移到一个平面的任一复制过程。因此,光刻有时就是指“复制”。 光刻的原理就是利用光致抗蚀剂(或称光刻胶)感光后因光化学反应而形成耐蚀性的特点,将掩模板上的图形刻制到被加工表面上。在光刻的过程中,为获得令人满意的光刻图形,对光刻提出了几点要求:高分辨率;光刻胶高光敏性;精确对准;精确的工艺参数控制;低缺陷密度。 (二)光刻胶 光刻胶也称为光致抗蚀剂,它是由感光树脂、增感剂和溶剂三部分组成的对光敏感的混合液体。光刻胶主要用来将光刻掩模板上的图形转移到元件上。 根据光刻胶的化学反应机理和显影原理,可将其分为:正性光刻胶和负性光刻胶。负性光刻胶把与掩膜版上图形相反的图形复制到硅片表面。正性光刻胶把与掩膜版上相同的图形复制到硅片表面。 根据所能形成的图形的关键尺寸可将其分为:传统光刻胶(包括I线、G线和H线)和深紫外光刻胶。传统的光刻胶只适用于线宽在0.35μm和以上的硅

光刻实验报告

光刻实验 一.实验目的 了解光刻在集成电路工艺中的作用,熟悉光刻工艺的步骤和操作。 二.实验原理 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的SiO2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂溶解。然后利用光致抗蚀剂的保护作用,对SiO2层或金属蒸发层进行选择性化学腐蚀,从而在SiO2层或金属层上得到与光刻掩模板相对应的图形。 (一)光刻原理图 晶片表面必须有如照相底片般的物质存在,属于可感光的胶质化合物(光刻胶),经与光线作用和化学作用方式处理后,即可将掩膜版上的图形一五一十地转移到晶片上。因此在光刻成像工艺上,掩膜版、光刻胶、光刻胶涂布显影设备及对准曝光光学系统等,皆为必备的条件。 三、实验药品及设备 化学药品:光刻胶(正胶)、显影液:5‰氢氧化钠溶液、甲醇、蒸馏水、丙酮;实验仪器:匀胶台、烘胶台、光刻机、真空泵、气泵

四.实验步骤 1.清洁硅片:去离子水和有机溶液冲洗,边旋转边冲洗,以去除污染物; 2.预烘硅片:在烘胶台商烘干硅片,去除硅片上的水蒸气,使光刻胶可以更加牢固的粘结在硅片表面; 3.涂胶:开启气泵,吸盘吸住硅片,在硅片上滴加适量的光刻胶;启动转台利用旋转产生的离心力使光刻胶均匀的涂覆在硅片表面;涂胶时间大约为1分钟左右; 4.前烘:将硅片放在烘胶台上烘干,促使胶膜内溶剂充分的挥发掉,使胶膜干燥,增加胶膜与硅片之间的黏附性; 5.曝光:接触式曝光,在光刻机上依次操作吸版 吸片 升降 -接触 密着 曝光;曝光时间结束后取出硅片; 6. 显影:将曝光后的硅片在0.5% NaOH 碱溶液中进行显影操作,将为感光部分的光刻胶溶除,以获得所需的图形; 显影后的硅片应立即用去离子水冲洗,之后将硅片放在匀胶机上旋转甩干上面的水渍; 7.后烘:将甩干后的硅片在烘胶台上烘干再次烘干,使显影后的光刻胶硬化,提高强度; 8.观测:在显微镜下观测拍照。 (二)光刻流程示意图

2021年光刻胶行业竞争格局发展和光刻胶市场分析报告

2021年光刻胶行业竞争格局发展和光 刻胶市场分析报告 分析和预测 Economic And Market Analysis China Industy Research Report 2020 zhongbangshuju

前言 行业分析报告主要涵盖范围 “重磅数据”研究报告主要涵盖行业发展环境,行业竞争格局和企业竞争分析,市场规模和市场结构,产品的生命周期,行业技术总体情况,主要领先企业的介绍和分析以及未来发展趋势等。 ”重磅数据“企业数据收集解决方案 ”重磅数据“平台解决方案自身数据库包含上中下游产业链数据资料。能够有效地满足不同纬度,不同部门的情报收集和整理。依据客户需求,搭建属于企业自身的知识关系图谱,打通上、中、下游的数据信息服务,一站式采集到所需要的全部数据服务。可以满足不论是企业、个人还是高校或者研究机构在不同层面需求。 关于我们 ”重磅数据”是基于知识关系挖掘的大数据工具,拥有关于企业、行业与专业研究机构的最完整的全球商业信息解决方案,帮助您在有限时间内获取最全面的商业资讯。提供全球超过

500个行业的分析报告,用户均可获取相关企业、行业与企业决策者的重要信息。在有限时间内获取有价值的商业信息。 “重磅源数”是中国行业数据库,中国产业数据库领先数据服务平台,旗下包含中国行业数据,中国产业数据,产品产量数据,产品销量数据和细分行业数据等,全库包含数据100万条。

目录 第一节光刻胶概况 (6) 第二节光刻胶主要用于图形化工艺 (8) 第三节光刻胶分类 (10) 第四节光刻胶市场空间分析 (11) 一、光刻胶需求不断增长 (11) 二、我国光刻胶产量 (12) 三、光刻胶竞争格局 (14) 第四节光刻胶分类 (15) 一、半导体光刻胶 (15) 二、全球半导体材料市场 (17) 三、全球半导体光刻胶市场规模 (18) 四、全球半导体光刻胶分类市场份额 (20) 三、LCD 光刻胶 (22) 第六节主要企业分析 (26) 一、雅克科技 (27) 二、晶瑞股份 (29) 三、飞凯材料 (30)

光刻工艺介绍

光刻工艺介绍 一、定义与简介 光刻是所有四个基本工艺中最关键的,也就是被称为大家熟知的photo,lithography,photomasking, masking, 或microlithography。在晶圆的制造过程中,晶体三极管、二极管、电容、电阻和金属层的各种物理部件在晶圆表面或表层内构成,这些部件是预先做在一块或者数块光罩上,并且结合生成薄膜,通过光刻工艺过程,去除特定部分,最终在晶圆上保留特征图形的部分。 光刻其实就是高科技版本的照相术,只不过是在难以置信的微小尺寸下完成,现在先进的硅12英寸生产线已经做到22nm,我们这条线的目标6英寸砷化镓片上做到0.11um。光刻生产的目标是根据电路设计的要求,生成尺寸精确的特征图形,并且在晶圆表面的位置正确且与其它部件的关联正确。

二、光刻工艺流程介绍 光刻与照相类似,其工艺流程也类似: 实际上,普通光刻工艺流程包括下面的流程:

1)Substrate Pretreatment 即预处理,目的是改变晶圆表面的性质, 使其能和光刻胶(PR)粘连牢固。主要方法就是涂HMDS,在密闭腔体内晶圆下面加热到120℃,上面用喷入氮气加压的雾状HMDS,使得HMDS和晶圆表面的-OH健发生反应已除去水汽和亲水健结构,反应充分后在23℃冷板上降温。该方法效果远比传统的热板加热除湿好。 2)Spin coat即旋转涂光刻胶,用旋转涂布法能提高光刻胶薄膜的 均匀性与稳定性。光刻胶中主要物质有树脂、溶剂、感光剂和其它添加剂,感光剂在光照下会迅速反应。一般设备的稳定工作最高转速不超过4000rpm,而最好的工作转速在2000~3000rpm。 3)Soft Bake(Pre-bake)即软烘,目的是除去光刻胶中溶剂。一般是 在90℃的热板中完成。 4)Exposure即曝光,这也是光刻工艺中最为重要的一步,就是用 紫外线把光罩上的图形成像到晶圆表面,从而把光罩上面的图形转移到晶圆表面上的光刻胶中。这一步曝光的能量(Dose)和成像焦点偏移(Focus offset)尤为重要. 5)Post Exposure Bake(PEB)即后烘,这是非常重要的一步。在 I-line光刻机中,这一步的目的是消除光阻层侧壁的驻波效应,

相关文档
最新文档