水力计算思路

水力计算思路
水力计算思路

(一)流量计算:

现分析流量计算步骤及程序如下:

一、首先分析在满足同时使用水枪支数条件下的充实水柱计算:

1、查建筑防火规范:第8.5.2条-室内消火栓用水量应根据同时使用水枪数量和充实水柱长度,由计算决定(可见不是纯粹查表得来的),但不应小于表8.5.2的规定(可见查表所得为规定的最小值,并不一定就是适合你手上建筑的正确值,如果经计算所得你的消火栓用水量大于表格内对应的消防水量,则应取较大的计算值)。

2、计算室内消火栓用水量的已知条件:同时使用水枪数量(可查表得到,一般为2支);未知条件:充实水柱长度

3、如何来计算充实水柱长度?

水枪充实水柱概念:水枪向上垂直射流,在26mm~38mm直径圆断面内、包含全部水量75%~90%的密实水柱长度称为充实水柱长度,以Hm表示(一般控制在7米~15米范围内)。

那么建筑所需充实水柱高度该如何来计算呢?对一定层高h的建筑来说,它所要求的消防要求是:当水柱的倾角控制在45~60度范围时可以喷到天花板上(上层楼板):

Hm=(h-1)/sina,这个公式在很多规范及教材中都出现过。

这里我们取a=45度,Hm=√2(h-1)

接下来,我们做一个统计,对由于Hm在7米~15米之间,我们来计算建筑层高控制在多少。

当Hm=7时,h=5.95米,意味着当h小于5.95米时,Hm仍取7米;

当Hm=15时,h=11.6米,意味着当h大于11.6米时,Hm超过15米,需选择其他灭火方式,消火栓系统不适用;

二、现在在满足了建筑防火规范要求的同时使用水枪支数的前提下给出了充实水柱的计算方法,接下来我们要校核,以上得出的充实水柱是否可以满足规范要求的每支水枪最小流量的要求呢?如果在该充实水柱条件下能同时满足规范要求的(1、同时使用水枪支数;2、每支水枪最小流量;)2个要求,那么这个充实水柱高度是正确的。

1、水枪流量对充实水柱有什么影响呢?

根据孔口出流公式:qxh=3.14udf2√2gHq/4=0.003477udf2√Hq,令

B=(0.003477udf2)2,则:qxh=√BHq,

Hq=qxh2/B -(1*)

B是水枪水流特性系数,与水枪喷嘴口径有关,可查表4-8(建筑给水排水工程、、中国建筑工业出版社)得到不同口径水枪喷嘴对应的B值。

O).-(2*)

Hq=af*Hm/(1-∮*af*Hm) (MH

2

af-试验系数,af=1.19+80(0.01*Hm)4

∮-与水枪喷嘴有关的阻力系数,

经验公式∮=0.25/(df+(0.1df)3 df-水枪口径

综上,将公式1*代入公式2*,可得:

qxh2/B= af*Hm/(1-∮*af*Hm)

Hm= qxh2/ af(B+∮qxh2)

我们常选用的消火栓口径:19mm,此时∮=0.0097,B=1.577, af可先选择1.20,计算出Hm后校核。

Hm= qxh2/ af(B+∮qxh2)

= qxh2/(1.89+0.012 qxh2)

三、现在我们分别在满足规范要求的同时使用水枪支数及每支水枪最小出流量要求下求得了Hm,两者比较,取大值,自然就能满足要求了。

四、实例:

(1)、层高8米,要求的每支水枪最小出流量5L/s。

计算:1、根据层高确定Hm, Hm=√2(h-1)=9.898米。

2、根据水枪出流量确定Hm, Hm= qxh2/(1.89+0.012 qxh2)=11.46米。

选择大值11.46米。

(2)、层高多少时,充实水柱高度大于11.46米?

Hm=√2(h-1)>11.46 h>9.10米

(3)、层高11米,每支水枪最小出流量5L/s,求充实水柱高度?此时实际出流量为多少?

计算:1、根据层高确定Hm, Hm=√2(h-1)=14.14米

2、根据水枪出流量确定Hm, Hm= qxh2/(1.89+0.012 qxh2)=11.46米。

选择大值14.14米。

qxh2/B= af*Hm/(1-∮*af*Hm)=1.22×14.14/(1-0.0097×1.22×14.14)=20.72,qxh=√(20.72×1. 577)=5.72L/s。

此时室内消防用水量为12L/s.

(二)压力计算:

消火栓口所需水压计算公式:

Hxh=Hq+hd+Hk

Hxh-消火栓口的水压

Hq-水枪喷嘴处的压力

hd-水带的水头损失

Hk-消火栓口水头损失

Hq= af*Hm/(1-∮*af*Hm)

Hd=A

Z *Ld q2

xh

*10 ;( A

Z

-水带阻力系数,表4-10;Ld-水带长度)

Hk=2m H2O

我们常选用的消火栓口径:19mm,水带直径65mm的25米长麻织水带,此时∮=0.0097,B=1.577,A

Z

=0.0 043 , af可根据计算所得Hm进行选择。

实例:

(1)、Hm=11.4米,qxh=5L/s,求栓口压力?

计算:Hq= af*Hm/(1-∮*af*Hm)

=1.2×11.4/(1-0.0097×1.2×11.4)

=15.7

Hd=A

Z *Ld q2

xh

*10

=0.0043×25×25×10=26KPa=2.6米水柱

Hk=2m H2O

故栓口压力Hxh=15.7+2.6+2=20.3米水柱

(2)、厂房净高11米,求消火栓所需流量和栓口所需压力?

计算:按上述流量计算方法,求得净高11米厂房所需充实水柱高度为14.14米,水枪实际出水量为5. 72L/s。同时水枪支数为2,故消防所需流量为5.72×2=11.44L/s。

栓口所需压力Hxh=Hq+hd+Hk

Hq=q2xh/B=5.722/1.577=20.75米水柱

Hd=A

Z *Ld q2

xh

*10=0.0043×25×25×10=26KPa=2.6米水柱

Hk=2m H2O

故栓口压力Hxh=20.75+2.6+2=25.35米水柱

水力计算案例分析解答

案例一 年调节水库兴利调节计算 要求:根据已给资料推求兴利库容和正常蓄水位。 资料: (1) 设计代表年(P=75%)径流年内分配、综合用水过程及蒸发损失月分配列于下表1,渗漏损失以相应月库容的1%计。 (2) 水库面积曲线和库容曲线如下表2。 (3) V 死 =300万m 3。 表1 水库来、用水及蒸发资料 (P=75%) 表2 水库特性曲线 解:(1)在不考虑损失时,计算各时段的蓄水量 由上表可知为二次运用,)(646031m V 万=,)(188032m V 万=,)(117933m V 万=, )(351234m V 万=,由逆时序法推出)(42133342m V V V V 万兴=-+=。采用早蓄方案,水库月末蓄水量分别为: 32748m 、34213m 、、34213m 、33409m 、32333m 、32533m 、32704m 、33512m 、31960m 、 3714m 、034213m 经检验弃水量=余水-缺水,符合题意,水库蓄水量=水库月末蓄水量+死V ,见统计表。 (2)在考虑水量损失时,用列表法进行调节计算: 121()2V V V =+,即各时段初、末蓄水量平均值,121 ()2A A A =+,即各时段初、末水面积 平均值。查表2 水库特性曲线,由V 查出A 填写于表格,蒸发损失标准等于表一中的蒸发量。 蒸发损失水量:蒸W =蒸发标准?月平均水面面积÷1000 渗漏损失以相应月库容的1%,渗漏损失水量=月平均蓄水量?渗漏标准 损失水量总和=蒸发损失水量+渗漏损失水量 考虑水库水量损失后的用水量:损用W W M +=

多余水量与不足水量,当M W -来为正和为负时分别填入。 (3)求水库的年调节库容,根据不足水量和多余水量可以看出为两次运用且推算出兴利库容)(44623342m V V V V 万兴=-+=,)(476230044623m V 万总=+=。 (4)求各时段水库蓄水以及弃水,其计算方法与不计损失方法相同。 (5)校核:由于表内数字较多,多次运算容易出错,应检查结果是否正确。水库经过充蓄和泄放,到6月末水库兴利库容应放空,即放到死库容330m 万。V '到最后为300,满足条件。另外还需水量平衡方程 0=---∑∑∑∑弃 损 用 来 W W W W ,进行校核 010854431257914862=---,说明计算无误。 (6)计算正常蓄水位,就是总库容所对应的高程。表2 水库特性曲线,即图1-1,1-2。得到Z ~F ,Z ~V 关系。得到水位865.10m ,即为正常蓄水位。表1-3计入损失的年调节计算表见下页。 图1-2 水库Z-V 关系曲线 图1-1 水库Z-F 关系曲线

水力计算案例分析解答

案例一年调节水库兴利调节计算 要求:根据已给资料推求兴利库容和正常蓄水位。 资料: (1)设计代表年(P=75%)径流年内分配、综合用水过程及蒸发损失月分配列于下表1, 渗漏损失以相应月库容的1%计。 (2)水库面积曲线和库容曲线如下表2。 (3) V 死=300 万m3。 表1水库来、用水及蒸发资料(P=75%) 表2水库特性曲线 解:(1)在不考虑损失时,计算各时段的蓄水量 由上表可知为二次运用,M =6460(万m3),V2 =1880(万m3),V^ 1179(万m3),V4 =3512(万m3),由逆时序法推出V兴“2 V4 -V3 =4213(万m3)。采用早蓄方案,水库月 末蓄水量分别为: 2748m3、4213m3、、4213m3、3409m3、2333m3、2533m3、2704m3、3512m3、1960m3、 714m3、0 4213m3 经检验弃水量=余水-缺水,符合题意,水库蓄水量=水库月末蓄水量+V死,见统计表。 (2)在考虑水量损失时,用列表法进行调节计算: — 1 1 . V =_(V1 V2),即各时段初、末蓄水量平均值,A= —(A1 ? A2),即各时段初、末水面积 2 2 平均值。查表2水库特性曲线,由V查出A填写于表格,蒸发损失标准等于表一中的蒸发量。 蒸发损失水量:W蒸=蒸发标准月平均水面面积■ 1000 渗漏损失以相应月库容的1%,渗漏损失水量=月平均蓄水量渗漏标准 损失水量总和=蒸发损失水量+渗漏损失水量

考虑水库水量损失后的用水量: M =W M W b 多余水量与不足水量,当 W 来 -M 为正和为负时分别填入。 (3) 求水库的年调节库容,根据不足水量和多余水量可以看出为两次运用且推算出兴 利库容 V 兴=V 2 V 4 -V 3 = 4462(万m 3),V 总二 4462 300 = 4762(万m 3)。 (4) 求各时段水库蓄水以及弃水,其计算方法与不计损失方法相同。 (5) 校核:由于表内数字较多,多次运算容易出错,应检查结果是否正确。水库经过 充蓄和泄放,到6月末水库兴利库容应放空,即放到死库容 30万m 3。V ?到最后为300,满 足条件。另外还需水量平衡方程W 来-W 用-' W 弃二0,进行校核 (6)计算正常蓄水位,就是总库容所对应的高程。表 2水库特性曲线,即图1-1,1-2。 得到Z ?F ,Z ?V 关系。得到水位865.10m ,即为正常蓄水位。表1-3计入损失的年调节 计算表见下 页。 ISJ 皐■ <# 2) ?年 ¥ M

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 建筑物层数 1 2 3 4 5 6 7 8 自由水头Hz (m ) 10 12 16 20 24 28 32 36 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

鸿业暖通-风管水力计算使用说明

目录 目录 目录 (1) 第 1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第 2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

鸿业暖通空调软件 第 1 章 风管水力计算使用说明 1.1 功能简介 命令名称: FGJS 功 能: 风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

第 1 章风管水力计算使用说明 如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。

风路系统水力计算

风路系统水力计算 1 水力计算方法简述 目前,风管常用的的水力计算方法有压损平均法、假定流速法、静压复得法等几种。 1.压损平均法(又称等摩阻法)是以单位长度风管具有相等的摩擦压力损失 m p ?为前提 的,其特点是,将已知总的作用压力按干管长度平均分配给每一管段,再根据每一管段的风量和分配到的作用压力,确定风管的尺寸,并结合各环路间压力损失的平衡进行调整,以保证各环路间的压力损失的差额小于设计规范的规定值。这种方法对于系统所用的风机压头已定,或对分支管路进行压力损失平衡时,使用起来比较方便。 2.假定流速法 是以风管内空气流速作为控制指标,这个空气流速应按照噪声控制、风管本身的强度,并考虑运行费用等因素来进行设定。根据风管的风量和选定的流速,确定风管的断面尺寸,进而计算压力损失,再按各环路的压力损失进行调整,以达到平衡。各并联环路压力损失的相对差额,不宜超过15%。当通过调整管径仍无法达到要求时,应设置调节装置。 3.静压复得法(略,具体详见《实用供热空调设计手册》之11.6.3) 对于低速机械送(排)风系统和空调风系统的水力计算,大多采用假定流速法和压损平均法;对于高速送风系统或变风量空调系统风管的水力计算宜采用静压复得法。工程上为了计算方便,在将管段的沿程(摩擦)阻力损失m P ?和局部阻力损失 j P ?这两项进行叠加时, 可归纳为下表的3种方法。 将m P ?与 j P ?进行叠加时所采用的计算方法 计算方法名称 基本关系式 备注 单位管长压力损失法(比摩阻法) 管段的全压损失 ) (2 222j m e j m P l p V l V d P l P P ?+?=+= ?+?=?ρζρ λ P ?——管段全压损失,Pa ; m p ?——单位管长沿程摩擦阻力,Pa/m 用于通风、空 调的送(回)风和排风系统的压力损失计算,是最常用的方法 当量长度法 2222ρ ζρ λV V d l e e = 风管配件的当量长度 λζ e e d l = 常见用静压 复得法计算高速风管或低速风管系统的压力损失。提供各类常用风管配

智慧树知到《工程水力计算》章节测试含答案

智慧树知到《工程水力计算》章节测试含答案 第一章单元测试 1、水在标准状态下,密度是()。 A.9800 kg/m3 B.1000 kg/m3 C.98kg/m3 D.1kg/m3 正确答案:1000 kg/m3 2、水银的容重是()。 A.9.8KN/ m3 B.9800KN/ m3 C.133.3KN/ m3 D.13600KN/ m3 正确答案:133.3KN/ m3

3、连续介质概念提出者是()。 A.欧拉 B.拉格朗日 C.谢才 D.曼宁 正确答案:欧拉 4、理想液体与实际液体最主要的区别是考虑不考虑()。 A.惯性 B.万有引力 C.压缩性 D.粘滞性 正确答案:粘滞性 5、1升水的重量是()。 A.9.8N B.9.8KN

C.1N D.1000N 正确答案:9.8N 6、1升水的质量是()。 A.1kg B.1000kg C.9.8kg D.9800kg 正确答案:1kg 7、液体的基本特性是()。 A.易流动 B.不易压缩 C.易结冰 D.连续介质 正确答案:易流动;不易压缩;连续介质

8、汽油的密度比水大。() A.对 B.错 正确答案:错 9、静止的液体就是理想液体。() A.对 B.错 正确答案:对 10、水利工程中一般不考虑水的表面张力特性。() A.对 B.错 正确答案:对 第二章单元测试 1、一个工程大气压相当于()m水柱高。 A.9.8

B.10 C.98 D.1000 正确答案:10 2、液体中某点的真空度为1m水柱,则该点的相对压强为()。 A.9.8 kN/m2 B.-9.8kN/m2 C.1 kN/m2 D.-1 kN/m2 正确答案:-9.8kN/m2 3、图示容器中,液面压强与当地大气压的关系是()。 A. B. C. D.

水力计算思路

(一)流量计算: 现分析流量计算步骤及程序如下: 一、首先分析在满足同时使用水枪支数条件下的充实水柱计算: 1、查建筑防火规范:第8.5.2条-室内消火栓用水量应根据同时使用水枪数量和充实水柱长度,由计算决定(可见不是纯粹查表得来的),但不应小于表8.5.2的规定(可见查表所得为规定的最小值,并不一定就是适合你手上建筑的正确值,如果经计算所得你的消火栓用水量大于表格内对应的消防水量,则应取较大的计算值)。 2、计算室内消火栓用水量的已知条件:同时使用水枪数量(可查表得到,一般为2支);未知条件:充实水柱长度 3、如何来计算充实水柱长度? 水枪充实水柱概念:水枪向上垂直射流,在26mm~38mm直径圆断面内、包含全部水量75%~90%的密实水柱长度称为充实水柱长度,以Hm表示(一般控制在7米~15米范围内)。 那么建筑所需充实水柱高度该如何来计算呢?对一定层高h的建筑来说,它所要求的消防要求是:当水柱的倾角控制在45~60度范围时可以喷到天花板上(上层楼板): Hm=(h-1)/sina,这个公式在很多规范及教材中都出现过。 这里我们取a=45度,Hm=√2(h-1) 接下来,我们做一个统计,对由于Hm在7米~15米之间,我们来计算建筑层高控制在多少。 当Hm=7时,h=5.95米,意味着当h小于5.95米时,Hm仍取7米; 当Hm=15时,h=11.6米,意味着当h大于11.6米时,Hm超过15米,需选择其他灭火方式,消火栓系统不适用; 二、现在在满足了建筑防火规范要求的同时使用水枪支数的前提下给出了充实水柱的计算方法,接下来我们要校核,以上得出的充实水柱是否可以满足规范要求的每支水枪最小流量的要求呢?如果在该充实水柱条件下能同时满足规范要求的(1、同时使用水枪支数;2、每支水枪最小流量;)2个要求,那么这个充实水柱高度是正确的。 1、水枪流量对充实水柱有什么影响呢? 根据孔口出流公式:qxh=3.14udf2√2gHq/4=0.003477udf2√Hq,令 B=(0.003477udf2)2,则:qxh=√BHq,

截流水力计算

截流水力计算(课程设计资料) 土木水电学院水利水电工程系二零零六年十二月

截流水力计算 一切将河道水流截断的工程措施,统称截流。截流的方法很多,用的最多的是抛石截流。抛石截流又分为平堵截流和立堵截流。由于立堵截流不需要架桥,施工简单,截流费用低,因此现在国内外绝大部分工程均采用立堵截流。下面仅研究立堵截流水力计算。 抛石截流计算最主要的任务是确定抛投体的尺寸的重量,而抛投块的稳定计算国内外广泛采用的是兹巴什公式,即 V =(1) 式中 V ——石块极限抗冲流速; d ——石块化引为球形的粒径; s γ、γ——分别为石块和水的容重; K ——综合稳定系数。 由(1)式可知,抛投块体的粒径与抗冲流速的平方成正比。也就是说,抛投块体的粒径在很大程度上取决于龙口流速,因此研究龙口流速变化规律有重要的意义。下面介绍两种计算龙口流速的方法。 一、图解法计算龙口流速(方法一) 一般情况下,合龙过程中截流设计流量0Q 由四部分组成: d s ac Q Q Q Q Q =+++ (2) 式中 Q ——龙口流量; d Q ——分流量(分流建筑物中通过的流量) ac Q ——上游河槽中的调蓄流量; s Q ——戗堤渗透流量。 当s Q 和ac Q 不计算,则有: 0d Q Q Q =+ (2-1)

龙口流量按宽顶堰公式计算: 3 2 Q m - =(3) 式中B - ——龙口平均过水宽度; H——龙口上游水头(龙口如有护底,应从护底顶部算起); m——流量系数,按下式计算: (1Z m H =- Z H小于0.3 淹没流 0.385 m= Z H大于或等于0.3 非淹没流(3-1)由连续方程可得龙口流速计算公式: Q V Bh - =(4)式中V——龙口计算断面平均流速; h——龙口计算断面水深(从护底顶部算起); 在立堵截流中,常常规定:当出现淹没流时, s h h =, s h为龙口底部(或护底) 以上的下游水深(图一);当出现非淹没流时, c h h =, c h为临界水深。 h的计算按下列四种情况考虑: 1.梯形断面淹没流: s h h = 由于进占过程中龙口底部高程不变, s h为常数。 2. 梯形断面非淹没流: c h h = c h按下式计算: 2 33 () 1 c c aQ B nh g B h - - + =(4-1) 式中n——戗堤端部边坡系数; a——计算断面动能修正系数,常取 1.0 a=计算;

(完整版)水力计算

室内热水供暖系统的水力计算 本章重点 ? 热水供热系统水力计算基本原理。 ? 重力循环热水供热系统水力计算基本原理。 ? 机械循环热水供热系统水力计算基本原理。 本章难点 ? 水力计算方法。 ? 最不利循环。 第一节热水供暖系统管路水力计算的基本原理 一、热水供暖系统管路水力计算的基本公式 当流体沿管道流动时,由于流体分子间及其与管壁间的摩擦,就要损失能量;而当流体流过管道的一些附件 ( 如阀门、弯头、三通、散热器等 ) 时,由于流动方向或速度的改变,产生局部旋涡和撞击,也要损失能量。前者称为沿程损失,后者称为局部损失。因此,热水供暖系统中计算管段的压力损失,可用下式表示: Δ P =Δ P y + Δ P i =R l + Δ P i Pa 〔 4 — 1 〕 式中Δ P ——计算管段的压力损失, Pa ;

Δ P y ——计算管段的沿程损失, Pa ; Δ P i ——计算管段的局部损失, Pa ; R ——每米管长的沿程损失, Pa / m ; l ——管段长度, m 。 在管路的水力计算中,通常把管路中水流量和管径都没有改变的一段管子称为一个计算管段。任何一个热水供暖系统的管路都是由许多串联或并联的计算管段组成的。 每米管长的沿程损失 ( 比摩阻 ) ,可用流体力学的达西.维斯巴赫公式进行计算 Pa/m ( 4 — 2 ) 式中一一管段的摩擦阻力系数; d ——管子内径, m ; ——热媒在管道内的流速, m / s ; 一热媒的密度, kg / m 3 。 在热水供暖系统中推荐使用的一些计算摩擦阻力系数值的公式如下: ( — ) 层流流动 当 Re < 2320 时,可按下式计算;

溢流坝水力计算说明书

溢流坝水力计算说明书 基本资料见《任务指导书》 一、 按明渠均匀流计算并绘制下游河道“水位~流量”关系曲线 (1) 由《资料》可知,坝址处河道断面为矩形断面 (2) 计算公式(按明渠均匀流计算,即谢才公式计算): V=C Ri Q=AC Ri C=n 1 R 6/1 A=bn X=b+2h R= X A (3) 计算(五十年一遇Q 和一百年一遇Q 相对应的水深,采用迭代法计算 水深,即矩形断面迭代公式为:b h b i nQ h 5 /25 /3) 2()( += a 、迭代法计算五十年一遇 Q=12503m /s 的水深h 将已知数据代入公式(Q=12503m /s ,i=0.001,n=0.04,b=52m )得: 52 )2.52() 001 .0125004.0( 5 /35 /3h h +?= 首先设水深h 01=0,代入上式,则得h 02=7.759,再将h 02代入上式得h 03=8.613,用同种方法可有:h 04=8.699,h 05=8.708,h 06=8.709,h 07=8.709,综上所述最后得h=8.709m. b 、用迭代法计算一百年一遇Q=14003m /s 相对应水深h 如a 所示,用同种方法可解得一百年一遇Q=14003m /s 相对应水深h=9.395m. (4)计算并绘制下游河道“水位~流量”关系曲线 (图一):溢流坝剖面图

下游河道水位与流量关系计算表 (表一) (图二)

二、 确定溢流堰得堰顶高程并溢流面剖面 (1) 坝顶高程的确定(参考例8-5) a 、 坝上水头H 0计算: 3/2)2( 0g mB Q H σε= 计算:1、初步估算 H 0可假定H O ≈H,由于侧收缩系数与上游作用水头有关,侧可先假设侧收缩系数ε,求出H ,再校核侧收缩系数的值。因堰顶高程和水头H0未知,先按自由出流计算,取σ=1.0,然后再校核。由题意可知Q=12503m /s ,设ε=0.90,则; 3/2)8 .9285502.090.00.11250 (0??????=H =6.25(m) 2、计算实际水头H 。查课本教材8-13及8-14表得边墩形状系数为0.7,闸门形状系数为0.45,因825.60= b H <0,应按b H 0 计算。 ε=1-0.2[][]923.08 525 .645.0)15(7.02.0100)1(=???-+?-=-+nb H n k ξξ 用求得的ε近似值代入上式重新计算H 0 )(145.6)8 .9285502.0923.00.11250 (03/2m H =??????= 又因 0.10

常用水力计算Excel程序使用说明(doc 15)

目录 目录 (1) 常用水力计算Excel程序使用说明 (1) 一、引言 (1) 二、水力计算的理论基础 (1) 1.枝状管网水力计算特点 (1) 2.枝状管网水力计算步骤 (2) 3.摩擦阻力损失,局部阻力损失和附加压头的计算方法 (2) 3.1摩擦阻力损失的计算方法 (2) 3.2局部阻力损失的计算方法 (3) 3.3附加压头的计算方法 (4) 三、水力计算Excel的使用方法 (4) 1.水力计算Excel的主要表示方法 (5) 2.低压民用内管水力计算表格的使用方法 (5) 2.1计算流程: (5) 2.2计算模式: (6) 2.3计算控制: (6) 3.低压民用和食堂外管水力计算表格的使用方法 (7) 3.1计算流程: (7) 3.2计算模式: (7) 3.3计算控制: (7) 4.低压食堂内管水力计算表格的使用方法 (8) 4.1计算流程: (8) 4.2计算模式: (8) 4.3计算控制: (9) 5.中压外管水力计算表格的使用方法 (9) 5.1计算流程: (9) 5.2计算模式: (9) 5.3计算控制: (10) 6.中压锅炉内管水力计算表格的使用方法 (10) 6.1计算流程: (10) 6.2计算模式: (10) 6.3计算控制: (11) 四、此水力计算的优缺点 (11) 1.此水力计算的优点 (11) 1.1.一个文件可以计算不同气源的水力计算 (11) 1.2.减少了查找同时工作系数,当量长度的繁琐工作 (12) 1.3.进行了计算公式的选择 (12) 1.4.对某些小细节进行了简单出错控制 (12) 2.此水力计算的缺点 (12) 2.1不能进行环状管网的计算 (12)

长距离输水水力计算

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力 计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

4. 公式的适用范围: 3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计 算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。 舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 柯列勃洛可公式 )Re 51 .27.3lg( 21 λ λ +?*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

常用水力计算Excel程序使用说明解析

目录 目录 (1 常用水力计算Excel程序使用说明 (1 一、引言 (1 二、水力计算的理论基础 (1 1.枝状管网水力计算特点 (1 2.枝状管网水力计算步骤 (2 3.摩擦阻力损失,局部阻力损失和附加压头的计算方法 (2 3.1摩擦阻力损失的计算方法 (2 3.2局部阻力损失的计算方法 (3 3.3附加压头的计算方法 (4 三、水力计算Excel的使用方法 (4 1.水力计算Excel的主要表示方法 (5 2.低压民用内管水力计算表格的使用方法 (5 2.1计算流程: (5 2.2计算模式: (6 2.3计算控制: (6 3.低压民用和食堂外管水力计算表格的使用方法 (7 3.1计算流程: (7

3.2计算模式: (7 3.3计算控制: (7 4.低压食堂内管水力计算表格的使用方法 (8 4.1计算流程: (8 4.2计算模式: (8 4.3计算控制: (9 5.中压外管水力计算表格的使用方法 (9 5.1计算流程: (9 5.2计算模式: (9 5.3计算控制: (10 6.中压锅炉内管水力计算表格的使用方法 (10 6.1计算流程: (10 6.2计算模式: (10 6.3计算控制: (11 四、此水力计算的优缺点 (11 1.此水力计算的优点 (11 1.1.一个文件可以计算不同气源的水力计算 (11 1.2.减少了查找同时工作系数,当量长度的繁琐工作 (12 1.3.进行了计算公式的选择 (12

1.4.对某些小细节进行了简单出错控制 (12 2.此水力计算的缺点 (12 2.1不能进行环状管网的计算 (12 2.2没有采用下拉菜单等可操作性强的方式 (12 2.3没有将某些已有的管件压损计算公式模块嵌入计算表中 (12 2.4没有将气源性质计算公式计算表中 (12 五、存在问题的改进 (13 六、后记 (13 常用水力计算Excel程序使用说明一、引言 随着我国经济的迅猛发展,人们对居住环境及生活条件改善的需求更加迫切。燃气以其高热值、低污染、使用方便、快捷等的优点正迅速代替其他燃料,成为城市居民及公共建筑、工业用户的主要燃料。水力计算是我们管道燃气设计的基础,通过水力计算,我们可以更加清楚地认识到我们的设计是否安全可靠,是否经济合理,这样我们的设计质量就能够得到更好的保证。通常的水力计算过程非常繁琐,设计人员在这上面如果花费太多时间,将会严重影响我们在工艺合理性的思考。而Excel 这个电子表格工具提供了比较方便的计算功能,这将在很大程度上节约我们的计算时间。 我的这个小程序主要有以下几个部分: 1.低压民用内管水力计算; 2.低压食堂内管水力计算; 3.低压外管水力计算;

(完整版)水文水利计算复习资料

水文计算 1.水文现象的基本特征及水文学的研究方法是什么. 基本规律(1)成因规律(确定性规律) (2)统计规律(随机性规律) (3)地区性规律 研究方法成因分析法、数理统计法、地理综合法 2.流域平均雨量计算有哪几种方法. 算数平均法、泰森多边形法、等雨量线图法 3.径流有哪些表示方法. 流量(Q):单位时间通过河流某断面的水量 径流量(W):时段?t内通过河流某一断面的总水量 径流深(R):径流量平铺在整个流域面积上的水层深度 R=QT/1000F 径流模数(M):流域出口断面流量与流域面积的比值 M=1000Q/F 径流系数(α):某一时段的径流深与相应的降雨深度的比值 α =R/P 4.生么是概率、频率?二者的关系。 概率:表示随机事件出现的可能性或几率,是用来度量可 能性大小的数值,常用百分数表示。 频率:一定程度上反映了事件出现的可能性大小。 二者关系:概率是理论值,是固定不变的,可以按照公式预先计

算出来。具有先验性;而频率是计算值,是可变的(具有明显的随机性)、试验的(不符合古典概率公式的事件,他们的概率只能通过多次观测试验来推求)。概率是指随机变量某值在总体中的出现机会;频率是指随机变量某值在样本中的出现机会。当样本足够大时,频率具有一定的稳定性;当样本无限增大时,频率趋于概率。因此,频率可以作为概率的近似值。 5.重现期(T )与频率(P )有什么关系,P=80%的枯水年,其重现期(T)为多少年?含有是什么。 频率与重现期的关系有两种: (1)当研究暴雨洪水问题时,研究的目的是防洪,一般设计频率P <50%,则 T=1/P (X ≥Xp) T---重现期 P---频率(%) (2)当考虑水库兴利调节研究枯水问题时,研究的目的是灌溉、发电、供水等兴利目的,更关心小于等于某一数值出现的可能性大小,设计频率P >50%,则 )(1)x x (11p p x x P P T <=≥-= P=80%的枯水年,(年)5%8011=-=T 它表示小于等于P =80%的枯水流量在长时期内平均5年出现一次。 6.在频率计算中,为什么要给经验频率曲线选配一条“理论”频率曲线?

城给水管网水力计算程序及例题

给水排水管道工程课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop:

for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

给水排水管道系统水力计算基础

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k ,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re 小于2000时,一般为层流,当Re 大于4000时,一般为紊流,当Re 介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流计算。

四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。 对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均 匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。 五、水流的水头和水头损失 水头是指单位重量的流体所具有的机械能,一般用符号h 或H 表示,常用单位为米水柱 (mH2O ,简写为米 (m。水头分为位置水头、压力水头和流速水头三种形式。位置水头是指因为流体的位置高程所得的机械能,又称位能,用流体所处的高程来度量,用符号Z 表示;压力水头是指流体因为具有压力而具有的机械能,又称压能,根据压力进行计算,即p (式中的p 为计算断面上的压力,γ为流体的比重;流速水头是指因为流体的流动速度而具有的机械能,又称动能,根据动能进行计算,即v 22g (式中v 为计算断面的平均流速,g 为重力加速度)。 位置水头和压力水头属于势能,它们二者的和称为测压管水头,流速水头属于动能。流体在流动过程中,三种形式的水头 (机械能总是处于不断转换之中。给水排水管道中的测压管水头较之流速水头一般大得多,在水力计算中,流速水头往往可以忽略不计。

采暖系统水力计算汇总

在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少?

实例:

附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成) 6.2.1水力计算界面: 菜单位置:【计算】→【采暖水力】(cnsl)菜单点取【采暖水力】或命令行输入“cnsL”后,会执行本命令,系统会弹出如下所示的对话框。 功能:进行采暖水力计算,系统的树视图、数据表格和原理图在同一对话框中,编辑数据的同时可预览原理图,直观的实现了数据、图形的结合,计算结果可赋值到图上进行标注。 快捷工具条:可在工具菜单中调整需要显示的部分,根据计算习惯定制快捷工具条内容;树视图:计算系统的结构树;可通过【设置】菜单中的【系统形式】和【生成框架】进行设置; 原理图:与树视图对应的采暖原理图,根据树视图的变化,时时更新,计算完成后,

可通过【绘图】菜单中的【绘原理图】将其插入到dwg中,并可根据计算结果进行标注;数据表格:计算所需的必要参数及计算结果,计算完成后,可通过【计算书设置】选择内容输出计算书; 菜单:下面是菜单对应的下拉命令,同样可通过快捷工具条中的图标调用; [文件] 提供了工程保存、打开等命令; 新建:可以同时建立多个计算工程文档; 打开:打开之前保存的水力计算工程,后缀名称为.csl; 保存:可以将水力计算工程保存下来; [设置] 计算前,选择计算的方法等; [编辑] 提供了一些编辑树视图的功能; 对象处理:对于使用天正命令绘制出来的平面图、系统图或原理图,有时由于管线间的连接处理不到位,可能造成提图识别不正确,可以使用此命令先框选处理后,再进行提图; [计算] 数据信息建立完毕后,可以通过下面提供的命令进行计算; [绘图] 可以将计算同时建立的原理图,绘制到dwg图上,也可将计算的数据赋回到原图上; [工具] 设置快捷命令菜单; 6.2.2采暖水力计算的具体操作: 1.下面以某住宅楼为例进行计算:住宅楼施工图如下:

水带系统水力计算

第二节水带系统水力计算 一、了解水带压力损失计算方法 每条水带的压力损失,计算公式如下:hd= SQ2 式中:hd――每条20米长水带的压力损失,104 Pa S ――每条水带的阻抗系数, Q――水带内的流量,L/ s 注:1mH2O=104 Pa(1米水柱=104帕);1Kg/cm2=105 Pa(1千克/厘米2) 二、了解水带串、并联系统压力损失计算方法 同型、同径水带串联系统压力损失计算: 压力损失叠加法:公式Hd=nhd 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; hd――每条水带的压力损失,104 Pa 。 阻力系数法:公式Hd=nSQ2 式中:Hd――水带串联系统的压力损失,104 Pa; n――干线水带条数,条; S――每条水带的阻抗系数; Q――干线水带内的流量,L/ s 。 不同类型、不同直径水带串联系统压力损失计算: 压力损失叠加法:公式Hd =hd1+ hd2+ hd3+…+ hdn 式中:Hd――水带串联系统的压力损失,104 Pa;

hd1、hd2、hd3、hdn――干线内各条水带的压力损失,104 Pa 。 阻力系数法:公式:Hd=S总Q2 Hd――水带串联系统的压力损失,104 Pa; S总――干线内各条水带阻抗系数之和; Q――干线水带内的流量,L/ s 。 同型、同径水带并联系统压力损失计算: 流量平分法公式:Hd =hd1+ hd2+ hd3+…+ hdn或Hd=S总(Q∕n)2 式中:Hd――并联系统水带的压力损失,104 Pa; hd1、hd2、hd3、hdn――任一干线中各条水带的压力损失,104 Pa; S总――并联系统中任一干线中各条水带阻抗系数之和;Q――并联系统的总流量,L/ s n――并联系统中干线水带的数量,条。 阻力系数法公式:Hd=S总Q2或S总=S∕n2 式中:Hd――并联系统水带的压力损失,104 Pa; S总――并联系统总阻抗系数之和; Q――并联系统的总流量,L/ s S――每条干线的阻抗; n――并联系统中干线水带的数量,条 灭火剂喷射器具应用计算

涵洞水力计算复习过程

涵洞水力计算

附录P 涵洞(或隧洞)水力计算 P.0.1 涵洞水流流态可按以下情况进行判别:圆形、拱形涵洞进口水深h1≤1.1D(洞高)或矩形涵洞h1≤1.2D时,为无压力流;圆形、拱形涵洞h1>1.1D 或矩形涵洞h1>1.2D,且洞长L≤l0(洞内回水曲线长度)+2.7D时,为半压力流;圆形、拱形或矩形涵洞h1>1.5D,且L>l0+2.7D时,为压力流。 P.0.2 无压力流可按下列情况进行判别: 1 淹没流与非淹没流的判别: 0≤i(洞底坡降)≤ik(洞底临界坡度),且涵洞出口水深h2≤(1.2~ 1.25)h k(洞内临界水深)或h2≤(0.75~0.77)H0(计及流速水头的涵洞进口水头)时,为非淹没流;反之,则为淹没流。I>i k,且L≤(8~15)h1时,仍可按上述标准判别涵洞是否淹没。 2 长洞与短洞的判别: i≈0时,且L ≤(52~64)h1或L ≤(86~106)h k时,为短洞;反之,则为长洞。0<i≤i k,且L ≤(52~83)h1或L ≤(86~138)h k时,为短洞;反之,则为长洞。,i>i k且L≥4h1时,均按短洞进行水力计算。 P.0.3 无压力流过水能力可按下列公式计算: 1 涵洞为短洞时:

式中 Q——涵洞设计流量(m3/s); m——无压力流时的流量系数; B——矩形涵洞底宽(m),涵洞为非矩形断面时,按公式(P.0.3-3)计算; g——重力加速度(m/s2); H0——计及流速水头的涵洞进口水头(m); m0——进口轮廓形状系数,可根据进口型式,由表P.0.3查得; A h——相应于涵洞进口水深的过水断面面积(m2); A j——进洞水流的过水断面面积(m2); A k——相应于临界水深的过水断面面积(m2); h k——洞内临界水深(m); h1——涵洞进口水深(m);