关于汽车空调的选型计算

关于汽车空调的选型计算
关于汽车空调的选型计算

关于汽车空调的选型计算(二)

来源:中国论文下载中心 [ 09-09-14 15:40:00 ] 作者:未知编辑:studa090420

目前已知进口干度为0.3,出口过热,因此平均干度

χdo=(0.3+1.0)/2=0.65

由此,可计算其余参数的平均值。动力黏度μcore的平均值为

μcore=[χ/μr+(1-χ)/μ1]-1=[0.65/11.446+(1-0.65)/266.78] -1=17.212 kg/(m·s)

每一散热板制冷剂质量流量

qmr,eq'= qmr/11=0.042/11=3.8182×10-3 kg/s

散热板内孔的制冷剂质量流速qmr,A为

qmr,A= qmr,eq'/(1/4·π·D2h,r)=0.0038182/[3.1416/4×

(3.7265×10-3)2] kg/(m2·s)= 350.077kg/(m2·s)

雷诺数Recore为

Recore= qmr,A·Dh,r/μcore=350.077×3.7265×10-3/(17.212×10-6)=75794

干度平均值为

χdo=0.49+627 Recore-0.83=0.49+627×75794-0.83=0.54587

由上面的计算可以看到,制冷剂干度从0.3~0.54587~1变化,后还有过热蒸气区。因此很难准确估计每一阶段所占的百分比,只能凭经验估计。在此,取过热蒸气区为20%,于是可以计算出干燥点之前的两相区约为28%,干燥点之后的两相区约占52%。

(1)干燥点之前的两相区,取χ=0.417,则在散热板内孔内,制冷剂气液两相均匀紊流工况的Lockhart-Martinelli数Xtt和关联系数F(Xtt)分别为

Xtt =[(1-χ)/χ]1-W/2(ρl/ρv)0.5(μv/μl)n/2

=[(1-0.417)/0.417]1-0.3/2(1285.86/15.712)0.5(11.446/266.78)0.3/2=7.5

F(Xtt)=(1+2.30/ Xtt2)0.374=(1+2.30/7.5)0.374=1.0151

制冷剂两相流折算成全液相时,在折算流速下的表面传热系数αl为

αL=A[qmr,A(1-χ)Dh/μl]-hqmr,A(1-χ)cP1

= 0.341[350.077(1-0.417)3.7265×10-3/266.78×10-6]-0.3×350.07×(1-0.417)13532.2 W/(m2·s)

= 7966.028 W/(m2·s)

制冷剂两相流的表面传热系数αr为

αr=αLPRl0.296F(Xtt)

=7966.028×3.9680.296×1.0151 W/(m2·s)=12160

(2)过热区制冷剂侧的雷诺数Reeq,r,普朗特数Prv,努塞尔数Nu,表面传热系数av分别为

Reeq,r= (qmr,ADh,r)/μv=(350.077×3.7265×10-3)/(11.446×10-6)=113950

Prv=0.8471

av=(Nu×λv)/Dh,r=(50722×12.034×10-3)W/(m3·k)=1638 W/(m3·k)

(3)干燥点之后的两相区取χ=0.766,则把Xd0=0.5458带入干燥点之前的两相换热公式,计算得ad0=11165 W/(m2·s),于是ar为

ar=av+{1-[(X-Xd0)/(1-Xd0)]1.5}×(ad0-av)

= 1638+{1-[(0.766-0.54587)/(1-0.54587)]1.5}×(11165-1638)W/(m3·k)=7950 W/(m3·k)

最后,平均表面传热系数可为

ār =(12160×28%+7950×52%+1638×20%)W/(m3·k)=7866 W/(m3·k)

5.3.7计算总传热系数及传热面积

如忽略管壁热阻及接触热阻,忽略制冷剂侧污垢热阻取空气侧污垢热阻ra=0.0003

(m3·k)/W,则传热系数k为

k=1/[(1/ār)Aa/Ar+ra+1/aeq,a]= 1/[(1/7866)0.706555/0.113+0.0003+ 1/323.3] W/(m3·k)=238.777 W/(m3·k)

对于对数平均温差为

? tm=(Tal-Ta2)/ln{(Ta1-Te)/(Ta2-Te)}=(27-7.25)/ ln{(27-2)/(7.25-2)}℃=12.655℃

由于板翅式蒸发器的流程较少,而且在流道转弯处制冷剂与空气成顺流流动形式,因此按纯逆流方式计算的对数平均温差偏大。另外,湿工况在增大空气侧表面传热系数的同时也增加了液膜热阻,因此空气侧的实际表面系数低于计算结果。综合两个方面的考虑,传热系数与对数平均温差之积预乘上一个修整因子,ψ=0.65,则所需总传热面积(以外表面为基准)A0为

A0=Qe/(4k)=29311/(4×238.777×12.6555)m2=14.9m2

与前面计算出15.167m2的相对误差不大

5.3.8计算空气侧阻力损失?Pa

空气侧摩擦阻力因子?为

?=5.47RePL0.72hL0.37(lL/hF)0.89PL0.2hF0.23

=5.47× 4300.72× 0.4144550.37×(6.8/7.9)0.891.10.27.90.23

=71.98×10-3

则空气侧阻力损失? Pa为

? Pa=4 ?·WF/Dh,a·ρ·v2a,max

=4×71.98×10-3×0.065/(2.792×10-3)×1.1025×5.872Pa

=278.313 Pa

最后根据空气阻力和风量选择风机。

5.4膨胀阀

丹佛斯(DANFOSS)TDEN型膨胀阀适用于HFC134a制冷剂。其选型方法是根据给定的工况,膨胀阀两端的压力降和蒸发器的负荷,经制冷剂液体过冷度修正后,查该型号的技术手册。

5.4.1确定TDEN型热力膨胀阀两端的压力降根据所给定的工况

系统中制冷剂液体流经管路、管弯头、干燥过滤器、视液镜、电磁阀等部件,其压降之和设为? P1=66kPa多流程供液的蒸发器前需安装液体分配器,其压降设为? P2=65.67kPa。由于整个系统压力平衡,则有

Pe=Pc-? PTXV-? P1-? P2

于是,热力膨胀阀端的压力降? PTXV为

? PTXV= Pc- Pe-? P1-? P2=1681- 349.63-66-65.67=1200kPa=12bar

5.4.2蒸发器负荷的过冷修正

根据丹佛斯(DANFOSS)TDEN型膨胀阀的技术手册规定,当热力膨胀阀前的制冷剂液体过冷度偏离4k时,蒸发器的制冷量必须进行修正。修正方法是将所需制冷量除以下表所给的修正系数得到修正的蒸发器制冷量。

丹佛斯(DANFOSS)TDEN型膨胀阀的制冷剂液体过冷度修正系数

在阀前的制冷剂液体过冷度为? tsc=5℃,修正系数为1.013,则修正蒸发器制冷量Qe,s'为

Qe,s'=29.311kw/1.013=28.9kw

则每只蒸发器的修正制冷量Qe,s″为Qe,s″=28.9kw/2=14.52kw

5.4.3根据? PTXV、te、Qe,s″确定应匹配的热力膨胀阀容量

由于热力膨胀阀的制冷量,必须等于或稍大于修正后的蒸发器制冷量,因而可按?PTXV=12bar,te=5℃,Qe,s″=16.8kw>14.52kw,在丹佛斯(DANFOSS)TDEN型膨胀阀的技术手册的有关参数中,查到TDEN5.8 能够满足整个制冷系统匹配的要求,因此,选用两个TDEN5.8型。

第6章空调系统的性能匹配

汽车空调系统的性能匹配所要解决的问题,是在成本经济预算与运行经济预算,以及汽车动力配置方案允许的条件下,如何使汽车空调系统各组成部件,特别是对系统性能起主要决定作用的压缩机,膨胀阀,冷凝器总成及管系等部件,在额定运行工况(设计工况)匹配得最合理,以使各部件性能以至系统性能,在该工况得以最大限度地发挥,工作最可靠,并且还具有一定的适应最大负荷工况和恶劣运行工况运行能力。

汽车空调系统图

1压缩机;2高压软管;3冷凝器;4 冷却风扇;5 干燥储液器;

6高压软管;7 膨胀阀;8蒸发器;9风机;10吸气管。

6.1压缩机的匹配

从系统匹配和成本经济、运行经济角度考虑,车用空调系统在额定运行工况(通常把该工况作为设计工况)应选配多大容量,多少输入功率,多高转速的车用空调压缩机,这是汽车空调系统设计在完成空调负荷计算后首要解决的问题为此,必须进行车用空调压缩机的选型计算,包括设计工况计算和变负荷工况计算。

6.1.1车用空调压缩机选配的依据

当车身结构确定后,车用空调系统设计的第一个任务,就是进行车厢空调负荷的设计计算。一般空调负荷计算,包括额定工况和最大负荷工况的负荷计算空调负荷计算的结果是车用空调压缩机选配的依据。

额定工况是指有关行业标准所规定的车用空调系统运行工况。如CJ/T134—2001《城市公交空调系统技术条件》规定,城市公交空调客车空调系统的额定运行条件是:冷凝器总成的环境温度为35℃,相对湿度为60%;蒸发器总成进风的干球温度为≤28℃,湿球温度为19.5℃。有时,设计工况也可以按所设计车辆在当地经常运行的条件综合考虑来确定,但须按有关行业标准所规定的车用空调系统运行工况加以校核。额定工况必须确定的参数有:冷凝器总成环境气象参数,蒸发器出口制冷剂过热度,压缩机吸气管路的压力降等。

最大负荷工况是指车用空调系统按额定工况设计好后,在特定运行条件下,所能达到的具有最大制冷能力的运行工况。一般当汽车在环境温度较高的烈日下长时间暴晒后,车用空调系统刚起动时刻的运行工况,就属这一特定运行工况。最大负荷工况的参数也包括上述额定工况的各项参数。

6.1.2压缩机与发动机的传动比及压缩机转速的确定

在非独立式车用空调系统中,压缩机都是由主发动机通过离合器的吸合和带传动系统来驱动。压缩机的转速与主发动机的直接有关,两者之间的传动比除与主发动机的转速有关外,主要取决于压缩机的最高连续转速。传动比的确定,对于非独立式车用空调系统制冷性能的发挥和压缩机工作的可靠性至关重要。汽车发动机的转速范围比较宽,一般在700~

2400r/min之间,汽车在停驶(发动机怠速传动)和低速状态时,发动机转速低空调的转速也低会造成空调系统的制冷能力不足。汽车高速行驶时,发动机和压缩机的转速较高、空调制冷能力强劲、压缩机的耗能也高,对于安排非独立车用空调机组的城市公交空调客车,采用循环离合器控制制冷系统运行时,这一影响尤其明显。因为这类空调客车需要的制冷量较大,一般都是安装一台活塞式车用空调压缩机,由于它受到往复运动结构特点的限制,只能以较大的传动比来提高其转速,主要是防止发动机一旦高速运转时,导致压缩机因转速超出极限范围而损坏。

由上述可知,采用循环离合器控制方式控制制冷系统运行的非独立式车用空调系统,其压缩机在额定空调工况转速的确定,须考虑发动机与压缩机之间的传动方式和它们的传动比。比如,汽车在正常行驶状态下,当发动机转速为1440r/min时,若传动比为1:1.25,则压缩机的转速就可达到1800r/min。

6.1.3压缩机与冷凝器、蒸发器的性能匹配

压缩机作为制冷系统的一个组成部件,其上游部件是蒸发器总成。下游部件是冷凝器总成。它们之间的性能是相互影响的,当蒸发器内制冷剂蒸发温度Te(或压缩机吸气压力Ps)变化时,压缩机的输气量会变化,而压缩机制冷量Qe,c、制冷剂冷凝温度tc都会变化。因此,在选配或设计冷凝器和蒸发器时,应当与所选配的压缩机性能相匹配,并且三者性能要综合考虑,才能充分发挥各个部件的作用。

6.2冷凝器总成的匹配

冷凝器总成,从系统匹配角度来讲,所关心的是冷凝器总成的整个性能,不仅包含冷凝器的换热性能,而且包括冷凝器与冷凝器风机、风道的空气流来匹配性能,冷凝器总成与压缩机、蒸发器总成的匹配性能。

6.3蒸发器总成的匹配

蒸发器总成,从系统匹配角度来讲,所关心的是蒸发器总成的整个性能,不仅包含蒸发器的换热性能,而且包括蒸发器与蒸发器风机、风道的空气流来匹配性能,蒸发器总成与压缩机、冷凝器总成的匹配性能与接流机构(如热力膨胀阀)。制冷剂分配器的匹配性能,从整车空调效果的角度来考虑,甚至还包括蒸发器总成与车室内风道设计,风口布置的匹配性能。这就需要在蒸发器总成的风机选配时,风机的风量确定,不仅要考虑蒸发器总成中风道的阻力特性,好要考虑车室内风道的阻力特性。

6.4热力膨胀阀与压缩机、冷凝器、蒸发器组成的匹配

上面讨论压缩机、冷凝器总成、蒸发器总成三部件匹配时有一个前提条件,即假定热力膨胀阀的容量适应系统在规定工况范围内的运行需要,能够调节进入蒸发器的制冷剂流量所润湿,但若热力膨胀阀的容量匹配不合理的,比如配置的热力膨胀阀容量偏小时,就会出现热力膨胀阀对蒸发器总成的供液不足,此时换热器的总传热系数将下降,除了配置的热力膨胀阀容量偏小这一情况以外,还可能由于充注入系统的制冷剂量太少,或由于液体管道内摩擦产生的压力降过高,或由于膨胀阀阀门和蒸发器的位置比冷凝器高(如在内置式非独立车用空调系统中),使进入膨胀阀的液体中含有制冷剂蒸气而导致对蒸发器的供液不足。当冷凝器的环境温度较低时,也很容易发生车用空调冷凝器中制冷剂冷凝温度下降得很低,致使膨胀阀两端的压差不够大,导致蒸发器供液不足。这些情况最终导致蒸发温度和蒸发压力过低,制冷剂流量大为减小。

由此可知,热力膨胀阀的容量匹配不可忽视,而且热力膨胀阀的容量除与压缩机、冷凝器、蒸发器三部件匹配情况有关外,还与系统中管系的配置,蒸发器的位置等情况密切相关。制冷剂在管路系统与干燥过滤器、视液镜、电磁阀、液体分配器等配件和换热器中的流动阻力,一定要估算得符合实际,才能使热力膨胀阀的容量匹配得合理。

热力膨胀阀容量的匹配方法,须根据有关的标准和所选热力膨胀阀产品的技术要求而定。

第7章风道设计、风机选型及降噪技术

7.1风道设计

经过处理的送风和回风都必须通过风道才能进入和离开车室,而且车内的送、回风量能否达到要求,则完全取决于风道系统的压力分布以及风机在该系统中的平衡工作点。所以风

道布置将直接影响车内的气流组织和空调效果。同时,空气在风道内流动所损失的能量,是靠风机消耗电能予以补偿的,所以风到布置也直接影响汽车空调系(如下图和附图一所示)

7.1.1车空调风管的选择

(1)风管材料及断面选择

风管用材料应表面光洁,质量轻,安装方便,并有足够的强度、刚度、且抗腐蚀、寿命长、价格低廉。

一般汽车空调多用厚度为0.75 ~1.2mm的薄钢板,铝合金,镀锌薄钢板或塑料(聚氯乙烯)板制造。新型汽车空调系统还有采用玻璃纤维板风道。它对空调管道保温、消声起到良好的效果。

汽车空调系统选用的风管,主要有矩形和圆形两种截面。矩形风管高度低,容易与汽车构造配合安装,但加工制作和保温较困难。圆形风管管道阻力小,保温方便。随着城市公交车的大力发展,对城市公交车的要求越来越高。

图(a)所示的冷风道就是为城市而设计的,该公交车一般采用底置式空调,由于底置式空调同时考虑到总布置问题,侧冷风道采用弯曲形式,同时上部与车内水平冷风道接口处断面逐渐变大以降低风速,减小气流损失,在车正前上顶设置一出风口供驾驶用,由于该种冷风道断面较大,加之空调制冷量较大,深受用户欢迎。

图(b)所示的冷风道也是为城市公交车而设计的。考虑到站立乘客较多,该车冷风道在下部设出风口的情况下,在侧面水平方向又设了出风口,这样站立乘客可直接接受冷气,效果较好。

经综合考虑,本设计选用图(b)。

(3)汽车空调风管的风速选择

汽车空调风管的风速应根据系统布置、送风量、风管结构及送风噪声要求等因素而定。表所示为汽车空调风管的风速选择。

汽车空调风管的风速选择

7.1.2汽车风管的保温

为了减小空气在风道输送过程中的冷、热量损失以及防止低温的风道表面温度较高的环境下结露,汽车空调中的风管都要保温。

保温材料目前使用的种类很多。如聚苯乙烯泡沫塑料等,它们的导热系数大多在0.12 (W/m·℃)以内。通过保温层管壁的传热系数与管壁间有空气流动,影响保温效果。

当风道布置在室外时,要做好防雨防潮措施,以及防止室外噪声随风道传入车内的措施。

7.1.3阻力计算

本风道设计有关参数参照相似车型;风道内空气的流动阻力包括摩擦阻力和局部阻力(1)摩擦阻力

力系数λ为0.15,再计算风道的水利半径Rs=A/P=ab/2(a+b)=0.05m,矩形风道当量直径Dv=4Rs=0.2m。工程上用等流量当量直径较为方便。工程设计手册中有线算图,计算时可为参考。

?Pm=λ·l·ρ·v2/(8·Rs)=4.4Pa

(2)局部阻力

a、百叶窗口16个ZA=12.2Pa

b、变径弯头(90℃)2个局部阻力系数ξ为0.91

c、分叉三通(F2/F1=0.8),管段的局部阻力系数ξ为0.2,对应总流速4.5m/s Z=27.45Pa

管道总阻力大约为40Pa,考虑到安全因素,安全因素增加15%则风机所需要

40×1.15=46Pa

再加上蒸发器所需278.313Pa的压力,确定总的所需送风量为4000m3/h。

7.2降噪技术

7.2.1风管内的空气阻力和改进风管结构

对一定的送风系统,风机转速愈小、风压愈低,则风机噪声也愈低;在保证车室换气量的条件下,总送风量不必选过大,以利于降低风管内空气流速和减小风管空气流动阻力,风管内空气流动产生噪声,主要由于边界层产生涡流及其涡流区的压力和流速的变化;另外,气流遇到障碍物和风管内表面粗糙也引起气流噪声。因此,风管内的空气流速不宜选择过大;对风管弯头、三通管接头、变截面过度段、调节风门等应作成流线型、渐缩型或设置导流叶片,以减小气流阻力和避免引起气流的涡流。

7.2.2风管之间的连接结构

在通风系统的吸、排风口及空气分配器与风管之间应设置适当长度的喇叭管,而在空气分配器出风口尽可能增加出风格栅面积或装置导风叶片等,以减小空气动力噪声。

由于风机的振动,当风速和风压变化时,会引起风管振动而产生噪声。为此,除了在风机进、出口设置减振软管外,在风管穿过车壁的部位也应以软管相连接,并避免风管与车壁直接刚性接触,以减少风管振动传给车壁。

7.3风机的选择

风机的选型表

第8章管道布置及要求

8.1管道的布置

当冷凝器位置高于压缩机,而且冷凝器的环境温度高于压缩机的环境温度时,排气管在离开压缩机后先下一段再向上,并且,在排气管中设置单向阀当压缩机的竖向长度超过8m 时,应根据其排气管的竖向长度,在靠近压缩机的管段,则不允许出现呈下凹形状的“液囊”弯管。

8.2管路的设计布置

高压液体管应按可能遇到的最低冷凝压力和相应的最大制冷量进行设计,选择合适的管径,以保证膨胀阀前后一定的压力差。同时,还应避免在水平的管路上弯成向上凸起的“气囊”,低压液体管应能保证冷却盘管各并联通道供液均匀,并且能保证回油。

8.3吸气管

在顶置式大客车非独立空调中,吸气管路都比较长,有的达8m,如果不注意吸气管路的阻力特性影响,使制冷系统的制冷量明显下降。难以达到设计所预期的效果。

由此可知,有的车用空调制造商为了节省吸气管路的制造成本采用较小直径的吸气管道,致使其中制冷剂流动阻力增大,是得不偿失的,也是不可取得,一般来说,在压缩机选型时,压缩机制造商都在压缩机的产品使用说明书中指明了压缩机的吸、排气接管的尺寸,按照其规定设计吸、排气接管比较合理。

在管路设计方面,还要注意系统中的回油,这也是影响系统运行安全可靠方面的问题。除了应严格按照压缩机产品说明书要求的润滑油加注量,加注与制冷剂相匹配的润滑油外在管路设计和布置时,应考虑如何使制冷剂中携带的冷冻油容易返回到压缩机中来。

吸气管路布置的注意事项如下:

(1)在车用空调系统中,一般蒸发器的安排位置都在压缩机之上,应在蒸发器的上部设计成一个倒U形弯,以防压缩机停车时流体流入压缩机而引起压缩机再起动时的液击

关于汽车空调的选型计算(二)

来源:中国论文下载中心 [ 09-09-14 15:40:00 ] 作者:未知编辑:studa090420

(2)为防止由于润滑油加注过多所造成的液击事故,对这类车用空调系统,可在吸气管道出口段安装—油分离器让多余的润滑油留在油分离器中,不至于进入压缩机造成液击。

(3)在系统中只有单台压缩机时,其吸气管道入口处不能装设U形集油弯管,因有了集油弯管,停机后再起动时,会有大量的油进入压缩机,可能产生液击现象。

第9章空调系统的配置要求和试验规范与标准

城市公交客车空调的试验规范与标准,可参考中华人民共和国建设部2001年4月20

日发布,2001年10月1日开始实施的中华人民共和国城镇建设行业标准:CJ/T 134—2001《城市公交空调客车空调系统技术条件》,国家机械工业局在2000年11月6日发布的汽车空调行业标准:QC/T 658—2000《汽车空调整车降温性能试验方法》。

9.1城市公交空调客车的运行特点

城市公交空调客车与城镇间长途运输空调客车相比,有如下不同的运行特点:

(1)城市公交空调客车的车速较慢,一般在20km/h左右。

(2)车站距离较短,车速变化频繁,怠速状态较多。

(3)车门开启频繁,车内乘员的密度和流动性较大。

(4)运行环境恶劣,运行时间较长,有的达18h。

9.2城市公交空调客车制冷系统的配置及其与车身结构匹配的要求

城市公交空调客车的运行特点,要求其制冷系统具有车速慢时,仍有较大的能满足乘员舒适性需求的空调制冷量,因此,CJ/T 134—2001《城市公交空调客车空调系统技术条件》对其制冷系统的工作,要求在制冷系统运行后的30min内,能达到如下性能:

(1)出厂新客车的车内外平均温度差必须大于7℃,在用车的车内外平均温度差必须大于5℃,而且当车厢外环境温度部高于38℃时,车厢内的最高温度不允许超过30℃。

(2)在车辆纵向轴线上,距车辆前、后挡风玻璃各1.5m和车辆中部三个离地板上方1.2m处的位置,所测的温度最大温差不超过3℃。

(3)出厂新客车,在单人与二人座椅纵向中心和多人座椅均分两点所处的纵向垂直截面上,沿垂直方向距坐垫表面上方635mm处与沿水平方向距靠背250mm的交点处,以及同一纵向垂直截面内,距地板上方50mm处,所测定的乘员头部温度应低于其足部温度2~5℃。

(4)风道各出风口的风量应基本均匀,风速应不大于6m/s,也不小于3 m/s。为达到上述制冷效果,必须对城市公交空调客车的空调系统配置及车厢围护结构的隔热性能与密封性能提出更高要求。

在制冷系统配置方面,标准规定必须按照两种计算方法计算,结果中的大值作为配置依据,选择制冷设备的容量。其一时按单位车厢容积装机制冷量计算,非独立式机组每1m3车厢容积需590~630W制冷量,独立式机组每1 m3车厢容积需550~590W制冷量;其二是按额定乘员数人均装机制冷量计算,每个额定乘员需530W制冷量。额定乘员数按车厢内座位数加上每1 m3走道面积站3个乘员计算。蒸发器风机风量匹配则按额定乘员数人均装机冷风量80 m3/h计算。必须注意的是,鉴于各国制冷设备标定容量依据的测试条件不一致,所选择的制冷设备,其标定的容量最大值应不低于按QC/T 656—2000《汽车空调制冷装置性能要求》行业标准测定的额定制冷量的93%,否则仍会达不到制冷系统配置的要求。

所有上述制冷系统的配置还须受以下噪音指标的约束:

(1)在怠速状态时

车内辅助发动机或汽车发动机与压缩机安装处的上方,以及车顶回风口或换气设备处的噪音不大于74dB(A);车外辅助发动机或汽车发动机处的噪音不大于84 dB(A)。

(2)在车速为30时

独立机组的车内噪音不大于80 dB(A);非独立机组的车内噪音不大于84dB(A)。在车厢围护结构的隔热性能方面,空调车的车身结构应采取有效可靠的隔热保温措施,必须选择热导率小[小于0.038W/(m·k)]的隔热材料和隔热结构,在车厢体的关键部位,如车厢顶部(尤其时车厢左右两侧的顶部)、车厢地板(尤其是发动机顶部的地板)和热桥部位等处,加强隔热保温。衡量车厢围护结构隔热保温能力的标准是:在夏季,降温能力达到30min关闭制冷装置后,客车保持原30km/h的车速继续运动,车厢内气温上升到与外界气温相差1℃的时间不小于10min

在车厢围护结构的密封性能方面,必须注意车门门缝、车窗门缝、地板上维护与检查孔板的接缝,以及前围板的接缝等处的密封结构,保证其密封的质量。密封性能应符合国家标准GB/T 12478—1990《客车防尘密封性试验方法》、GB/T 12480—1990《客车防雨密封性试验方法》的规定。

9.3城市公交空调客车采暖系统的配置及其车身结构匹配的要求

在采暖系统的配置方面,要求暖风装置提供的采暖热量,必须使温带型空调客车的车内温度,在升温能力测试开始后30min内达到15℃以上;亚热带型空调客车在升温能力测试开始后30min内车内温度达到12℃以上、驾驶员足下温度达到15℃以上。为此温带型空调客车应按额定乘员数人均采暖热量520W以上来选择采暖设备的容量,按额定乘员数人均暖风量不小于20m3/h来选择暖风机的容量;亚热带型空调客车,应按额定乘员数人均采暖热量460W以上来选择采暖设备的容量,按额定乘员数人均暖风量不小于15m3/h来选择暖风

机的容量。所有采用加热器的采暖系统,都应符合有关的规定,如QC/T 634—2000《汽车水暖式暖风装置》等规定。

对于暖风管道布置及其雨车身结构的匹配,则应达到以下要求:

(1)采暖系统启动后的30min内在车辆纵向轴线上,距车辆前、后的挡风玻璃各1.5m 和车辆中部三个离地板上方400mm处的位置,所测得的最大温差不得超过5℃。

(2)出厂新客车,在单人与二人座椅纵向中心和多人座椅均分两点所处的纵向垂直截面上,沿垂直方向距坐垫表面上方635mm与沿水平方向距靠背250mm的交点处,以及同一纵向垂直截面内,及地板上方50mm处,采暖系统启动后30min内,所测定的乘员头部温度应低于足部温度2~5℃。

(3)暖风管道出风口的风量应基本均匀,最大风量不大于4m/s,且不能直接吹向乘员的身体部位。暖风管道应有隔热层,凡乘员容易触到的暖风管道表面温度和暖风出口温度不得大于50℃。

采暖系统对车身结构隔热保温性能与密封性能的要求,与制冷系统的要求相同。衡量车身围护结构隔热保温能力的标准是:在冬季,升温能力试验进行到第30min,关闭暖风装置后,客车保持原车速(20km/h)继续运行,车厢内温度下降到与外界气温相差1℃的时间不小于10min。

采暖系统所有设备的配置还应受其工作噪音的制约,即在客车停驶、仅采暖系统和通风装置工作时,工作噪音不得大于75dB(A)。

9.4城市公交空调客车通风换气装置的配置

城市公交空调客车由于密封性能较好,为保证车厢内的空气的洁净度和舒适度,在制冷系统和采暖系统都不工作的季节,能向车厢内不断输送新鲜空气,应设置通风换气装置。它可以由安装在车厢顶部的两台通风换气扇组成,也可以通过空调系统中,具有蒸发器风机转速单独控制功能和新风门调节功能的控制系统,与调节机构跟风道系统联合组成。不管哪一种通风换气装置,其配置都应达到如下性能要求:最大装机通风换气量,应大于按额定乘员数人均新风量10m3/h的计算结果。而且在通风换气设备满负荷工作时,车内气流速度不能大于0.5m/s。在停车及发动机不工作时,通风换气装置处的车内噪音不能大于65dB(A)。

9.5城市公交空调客车空调系统的整车性能试验,包括制冷系统、采暖系统、通风换气装置和除霜系统实验。

(1)制冷系统性能试验

试验应在晴天少云、有日光直射、气温不低于30℃、风速小于5m/s的气候条件下进行,在用车(出厂新车使用一年后的城市公交空调客车)可以空车进行试验,出厂新车则应乘坐不小于额定乘员数80%的乘员,并使城市公交空调客车保持在30km/h的速度行驶才能进行。

不管新车还是在用车,车辆在试验前都必须在日光下停车,门窗全开,使车内外温度平衡后才可进行试验。试验开始后,要求车辆必须全部关闭门窗,开启空调机,并全部打开各出风口,独立式空调制冷装置开至最高档,非独立式空调装置的压缩机转速稳定在最高

(1800±100)r/min,风机开最高档,所有可调风口处于最大出风位置。

风量与风速可用带集风罩的风速仪进行测量,应在开机10min后的5min内,记录所有风口的平均出风口风速并计算总出风量。

噪音的测量应在无顶棚的空旷场地上进行,在测量中心点25m半径范围内不应有较大的反射物,测量场地本底噪声不得大于65dB(A)。车外噪声测量中心点距压缩机组中心点5m,距车厢地板高度1m,测点与机组间除本车车身外应无其他遮挡物。车内噪声测试点有三点:在压缩机组中心位置的地板上方1.2m处,回风口中心的车厢地板上方1.2处,客车纵向对称中心平面内的地板上方1.2m处。车内外的测量点重复测量两遍,记录每次测量的结果,取平均值。

降温能力试验时,按前述要求的测点位置布置温度与湿度测点。在空调运转后的前

10min,每隔2min记录一次,以后每隔5min记录一次车内各点及回风口温度,直至30min 结束。与此同时,测量空调机组出风口(最靠近机组出风口的风道出风口)及回风口(距回风口平面距离200mm的纵、横向轴线中心)的干、湿球温度,记录在数据记录表中。

保温能力试验,按前述是在降温能力进行到第30min时关闭制冷装置,并使汽车继续保持原速(30km/h)运动的条件下进行的,每隔2min测量记录一次车内温度,至第40min 为止。

(2)采暖系统性能试验

试验应在环境温度-15~-5℃、风速不得大于5m/s、晴天或阴天的气候条件下进行。试验前汽车必须露天停放,并且门窗全开,使车内外温度平衡。试验时,新车乘员不少于额定乘员数的80%,在用车可以空车进行试验。

风速与风量测量时,应关闭客车门窗,暖风装置开最高档(对于余热式暖风装置,发动机在额定转速下),开机10min后的5min内,记录所有出风口的平均速度,并计算总出风量。

噪声测量时,应停驶客车、关闭所有门窗、暖风装置开最高档(对于余热式暖风装置,发动机在额定转速下),在暖风装置中心位置的地板上方1.2m处,客车纵向对称中心平面内的地板上方1.2m处选择三点,重复测量两次,记录平均值。

升温测量时,应将测量点布置在车辆纵向轴线上,距车辆前、后挡风玻璃各1.5m和车辆中部三个离地板上方400m处的位置上。在用车的车辆处于怠速状态,关闭所有的门窗和除霜门口,独立式暖风装置开至最高档,非独立式暖风装置的发动机最高转速稳定在

1800r/min左右,暖风装置也开至最高档。出厂新车除满足这些外,还应要求车内乘员数不少于额定乘员数的80%,并且客车应保持在201km/h的车速状态下行驶。试验时,在暖风

装置运行后的前10min,每隔2min记录一次,以后每隔5min记录一次车内各点的温度,直至30min 结束。

新车保温能力测量,紧接在升温能力测量后进行,即当升温能力试验进行到第30min 时,将暖风装置关闭,而客车仍继续保持20km/h的车速行驶,每隔2min测量记录一次车内温度,至第40min为止。

(3)通风换气性能试验

通风换气性能试验主要是测定通风换气量、车内气流速度和通风换气装置除的噪声。通风皇权测量时,应把测定布置在换气扇出风口三个面积相等的同心圆环各自的面积等分线,与相互垂直的两条直径线的交点上,总共有12个测点(图12-5)在紧贴换气扇出风口的平面上,或在换气扇出风口临时安装的、断面尺寸与风口相同、长度为500~1000m的短管出口平面上,用风速仪测出各点的风速。然后,取各测点测试数据的算术平均值,作为换气扇的出口风速。单台换气扇的送风量即可由下式求出:

qv=3600pR2qP

式中qv—单台换气扇的送风量(m3/h)

R—换气扇出风口半径(m)

qP—各测点风速的算术平均值(m/s)

对于空调系统中具有蒸发器风机转速单独控制功能和新风门调节功能的通风换气装置,其通风换气量的测量方法,与制冷系统性能测试时风量与风速的测量方法相同。

车内气流速度测量时,应关闭客车门窗,当换气扇启动第10min时,在车辆纵向轴线上,距车辆前、后挡风玻璃各1.5m和车辆中部三个离地板上方1.2m时,开始测量各点车内气流速度,但不要直接接受换气扇出风的影响。

通风换气扇装置除的噪声的测量点,应在距离换气装置中心500m除,测量时,换气装置开最高档。

(4)除霜系统性能试验

除霜系统实验的目的是检查和测试空调客车在严寒条件下使用时,前挡风玻璃除霜装置的技术性能。

除霜系统性能实验应在无日光照射、气温为-15~-10℃、风速不大于5m/s的气候条件下进行。实验车辆应处于良好的技术状态,其除霜装置应调整到最大工作状态,利用采暖热风除霜的暖风装置应工作正常。实验道路应是平坦、硬实、无积雪、车流少的公路。实验仪器除测量范围为-50~50℃、最小为0.5℃的多点温度计、可暂停式秒表、综合气象仪、风速仪、发动机转速表、照相机、描绘除霜图形的特种笔外,还需要造霜用的喷枪、其喷嘴直径为

1.7mm、工作压力为(350±20)kPa,液流量为395ml/min、距喷嘴200mm处形成喷射锥直径为1.7mm、工作压力为(300±50)mm。

实验前后分别用综合气象仪测试大气温度、湿度、气压和风速、风向,取算术平均值作为外界环境平均气候参数,并将数据记录在表中。实验前,需打开客车所有门窗,使车内外温度平衡,还需用含甲醇的酒精或其他类似去污剂,清除前挡风玻璃内外表面上的油污,待干后用清洗剂进一步擦拭,最后再用干棉布擦净。

实验时,在规定的环境温度下,关闭所有门窗,用喷枪以(350±20)kPa的工作压力,使前挡风玻璃整个外表面生成0.44g/cm3的均匀冰霜融化至最低能见度时,客车开始行驶,随着除霜面积的增大,逐步提高行驶速度。行驶过程中,每隔5min在前挡风玻璃内表面,描绘一次除霜面积踪迹图或拍摄照片,记录驾驶区上、中、下部位温度及驾驶员对视野的反应。与此同时,测量各除霜喷口的风速。实验进行40min后或除霜面积达到稳定状态时,即可结束实验。

附图一车外顶置式空调器的主要部件及位置

附图二压焓图

结论

在12m长的公交客车上本次只做了制冷系统的工作,采用了冷暖和一的结构,通过空气混合来调整湿度,根据冷风量了热风量的比例进行混合来达到冬暖夏凉的温度、湿度及空气新鲜度的调节。汽车空调系统大量采用工程塑料。以减轻自重,如加热器壳体、风机壳体、风道等。蒸发器采用了管带式、冷凝器用了平行流式结构,热交换效率高、结构合理、性能先进,为驾驶员和乘员提供舒服的工作环境,能够满足使用要求。

制冷设备的与其采暖设备的相对安装采用组合式,因为结构简单、成本低。

制冷设备设计:a、压缩机压缩机型式分为曲柄连杆式、斜盘式、摇盘式、旋叶式、螺杆式、滚动活塞式、容积窝旋式等。曲柄连杆式压缩机是开发应用最早的,结构可靠,维修方便。摇盘式压缩机结构紧凑,外形尺寸小,质量轻,近年来被广泛采用。本车选用BOCK FKX50/660K型压缩机。b、冷凝器采用全铝管管带式冷凝器,散热效果好、生产率高。c、蒸发器采用全铝管管带式蒸发器,工艺性好,能够达到性能要求。d、膨胀阀为内均压式温式膨胀阀。e、保护装置当制冷系统的工作出现不正常时,压力、温度过高或过低,为了不引起那个部件或设备发生损坏,就需要在系统中安装保护装置。(在本次设计中没有具体选型)

汽车空调系统的性能匹配所要解决的问题,是在成本经济预算与运行经济预算,以及汽车动力配置方案允许的条件下,如何使汽车空调系统各组成部件,特别是对系统性能起主要决定作用的压缩机,膨胀阀,冷凝器总成及管系等部件,在额定运行工况(设计工况)匹配得最合理,以使各部件性能以至系统性能,在该工况得以最大限度地发挥,工作最可靠,并且还具有一定的适应最大负荷工况和恶劣运行工况运行能力。

参考文献

Pilz安全继电器的故障诊断

Pilz安全继电器的故障诊断 安全继电器的硬件结构比较简单,所以其上的状态显示LED也只 有三个,分别是POWER,CH1,CH2。如果用户在使用安全继电器发生问 题没有输出时该怎么办呢 第一,检查接线是否正确。每个型号的安全继电器的接线方式都 是不同的,但接线的理念都是一样。 1.检查工作电压是否正确。正确上电后POWER灯会常亮。 2.检查输入回路的接线。确定安全继电器是按照单通道输入方式 接线还是双通道方式接线,根据用户手册仔细确认输入回路的接线是 否正确。例如X3P,如果是单通道工作方式的话则是短接S21和S22,S31和S32,一个常闭触点置于S11和S12之间。 如果是双通道不检测触点间短路故障工作方式的话则是短接S21和S22,两个常闭触点 分别置于S11和S12,S11和S32之间。 如果是双通道检测触点间短路故障工作方式的话则是短接S11和S12,两个常闭触点分 别置于S21和S22,S31和S32之间。 3.检查复位回路的接线。确定是需要自动复位还是手动复位,根据用户手册仔细确认复位回路的接线是否正确。例如X3P,如果是自动复位方式的话则是短接S13和S14。

如果是手动复位方式的话则是把复位按钮置于 S33和S34之间。 4.检查反馈回路的接线。根据用户手册仔细确认复位回路的接线是否正确。 第二,检查是否是安全继电器本身发生故障。选择自动复位,去除反馈回路。短接输入通道,察看安全继电器是否有输出,即CH1和CH2灯常亮。 第三,如果通过上述的操作可以使安全继电器正常工作的话,那就说明故障并非在安全继电器内部而是在外部。外部故障一般分为这几类: 1.触点发生焊死状况。如果是手动复位方式此时CH1灯会常亮,但CH2灯不亮,按下复位按钮CH1和CH2都会熄灭。如果是自动复位方式CH1和CH2灯都不亮。当解决了这个故障之后需要拍下急停按钮再释放才能使得安全继电器再次工作(如果是手动复位的话还需按下复位按钮) 2.触点间发生短路故障。此时安全继电器的三个状态显示灯POWER,CH1,CH2都会熄灭。 3.输出回路上发生短路故障。此时安全继电器的CH1和CH2灯都会熄灭。

微型汽车空调制冷量的简化计算

引言 随着我国汽车工业的快速发展以及人民生活水平的不断提高,汽车空调已经越来越普及,在欧美普及率甚至达到90%以上,近年来我国的汽车空调配装率也在不断稳步提高。 现代汽车设计由于采用了先进的设计手段,开发周期越来越短,汽车空调系统作为汽车一个比较大而复杂的部件,与汽车的动力、底盘、车身结构、内饰、电控等都有关系,一般在基本确定汽车外形尺寸时就可以开始进行设计,这时就需要先计算其制冷量,因为制冷量的大小直接与空调系统的结构布置方式、空调两器总成的体积等有关,如果计算偏差过大,会造成空调系统与整车不匹配,需要进行多次试验改进,从而可能会影响到整车的开发进度,并增加开发成本。 微型汽车由于与其它车型相比一般动力富余功率都较少,而乘员空间又相对较大,车厢的隔热保温性能也相对差一些,整车价格也比较低廉,故从经济性、客户群等各方面考虑在空调系统计算参数的选择上与其它车型不一样。我们一般常用的制冷量计算方法是通过分别计算影响整车的各热负荷之和,即整车的得热量,来求得整车所需要的制冷量,这个计算过程比较繁琐和复杂,也容易出错,而采用经验公式进行简化计算,就使得整个计算过程变得非常的简单了,计算结果与常规方法也差不多,它是结合我们的实际经验,通过分析计算和试验对乘员数、车内空间、车窗玻璃面积等之间的关系及主要所需(所得)制冷量(热负荷)应占整车制冷量的百分比,通过经验公式来求得整车制冷量,用此方法得出的制冷量与实际需求制冷量差别并不大。 下面分别用两种方法计算一下五菱之光的空调制冷量并作一下对比。 1. 汽车空调的计算温度选择: 我们按表1数值作为微型汽车空调系统的计算温度。 表1 微车空调计算温度 温度 车型干球温度℃ 太阳辐射强度(W/m2 )车内设计温度℃ (空调压缩机1800r/min,车速约40Km/h) 相对湿度(%) 新风量 微型车 35 843 29 50~60 10~20或无 轿车 38 1000 24~27 60 20~30 从上表我们可以看到,微型车的计算温度(车内平均温度)定为29℃,而轿车一般定为24~27,一般大型客车定为27~28,微型车都比它们要高一些,这其实是综合了多种因素并经过很多次试验得出的较经济合理的车内平均温度,因为对微型车来说,如果计算温度定得过高了,乘员就会明显感觉制冷不足;而如果定得过低,势必需要加大压缩机排量才能满足,这样功耗必然增加,并影响到整车的动力性,否则又可能无法实现。 2 计算方法: 2.1 微型车车内与外界热交换示意图: 为便于分析,绘制图1的微型车热交换示意图。 2.2 计算公式: 2.2.1 常规的计算方法:

电动汽车空调系统参数匹配与计算研究.

2009年第6期 电动汽车空调系统参数匹配与计算研究* 闵海涛1 王晓丹1,2 曾小华1 李 颂3 (1. 吉林大学;2. 中国第一汽车集团公司技术中心;3. 空军航空大学) 【摘要】对电动汽车空调系统结构与布置方案进行了分析, 总结出了空调系统制冷负荷与参数匹配计算流 程。以某型号纯电动中型客车为例, 给出了完整的空调系统计算参数。对不同行驶工况下电动客车性能进行的仿真 分析结果表明,采用所匹配的空调系统,该客车在提供足够制冷负荷前提下能够满足动力性能设计要求,但空调系 统的使用将显著降低整车续驶里程。 主题词:电动汽车空调系统参数设计 中图分类号:U469.72+2文献标识码:A 文章编号:1000-3703(2009)06-0019-04 Parameter Design and Computation Study for Air Conditioning System of Electric Vehicle

Min Haitao 1,Wang Xiaodan 1,2,Zeng Xiaohua 1,Li Song 3 (1.Jilin University ;2.China FAW Group Corporation R&DCenter ;3.Aviation University of Air Force ) 【Abstract 】The structure and layout of air -conditioning system (A/C)for electric vehicles were analyzed,the computation flow of cooling load and parameter design for air-conditioning system were summarized in this paper.Taking a medium-duty electric bus as an example,the whole computation parameters of the air-conditioning system were given.The simulation results of the electric bus performance at variable driving conditions indicate that the vehicle ’s dynamic performance could meet the design requirements with A/Cworking,but the vehicle ’s cruising range will reduce definitely with the use of A/Csystem. Key words :Electric vehicle,Air-conditioning system,Parameter design 1前言 对电动汽车空调系统研究结果[1~5]表明,电动空 调通过实现变频控制可有效减少能量消耗,提高系统效率,如在城市循环工况下使用电动空调后整车续驶里程降低了21.3%。本文以某型号纯电动中型客车为例,对电动空调系统进行计算分析,在保证空调系统制冷能力的前提下计算得出所需压缩机轴功率,并应用ADVISOR 和MATLAB 联合仿真方法分析了不同行驶工况下空调系统对整车动力性能和续驶里程的影响。 2空调系统方案设计 纯电动客车的空调系统构成和布置方案如图1

Pilz安全继电器的故障诊断

P i l z安全继电器的故障诊 断 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Pilz安全继电器的故障诊断 安全继电器的硬件结构比较简单,所以其上的状态显示 LED也只有三个,分别是POWER,CH1,CH2。如果用户在使用 安全继电器发生问题没有输出时该怎么办呢 第一,检查接线是否正确。每个型号的安全继电器的接 线方式都是不同的,但接线的理念都是一样。 1.检查工作电压是否正确。正确上电后POWER灯会常 亮。 2.检查输入回路的接线。确定安全继电器是按照单通道 输入方式接线还是双通道方式接线,根据用户手册仔细确认 输入回路的接线是否正确。例如X3P,如果是单通道工作方 式的话则是短接S21和S22,S31和S32,一个常闭触点置于 S11和S12之间。 如果是双通道不检测触点间短路故障工作方式的话则是短接S21和S22,两个常闭触点分别置于S11和S12,S11和S32之间。 如果是双通道检测触点间短路故障工作方式的话则是短接S11和S12,两个常闭触点分别置于S21和S22,S31和S32之间。 3.检查复位回路的接线。确定是需要自动复位还是手动复位,根据用户手册仔细确认复位回路的接线是否正确。例如X3P,如果是自动复位方式的话则是短接S13和S14。 如果是手动复位方式的话则是把复位按钮置于S33和S34之间。

4.检查反馈回路的接线。根据用户手册仔细确认复位回路的接线是否正确。 第二,检查是否是安全继电器本身发生故障。选择自动复位,去除反馈回路。短接输入通道,察看安全继电器是否有输出,即CH1和CH2灯常亮。 第三,如果通过上述的操作可以使安全继电器正常工作的话,那就说明故障并非在安全继电器内部而是在外部。外部故障一般分为这几类: 1.触点发生焊死状况。如果是手动复位方式此时CH1灯会常亮,但CH2灯不亮,按下复位按钮CH1和CH2都会熄灭。如果是自动复位方式CH1和CH2灯都不亮。当解决了这个故障之后需要拍下急停按钮再释放才能使得安全继电器再次工作(如果是手动复位的话还需按下复位按钮) 2.触点间发生短路故障。此时安全继电器的三个状态显示灯 POWER,CH1,CH2都会熄灭。 3.输出回路上发生短路故障。此时安全继电器的CH1和CH2灯都会熄灭。

汽车空调出风口及风道设计的要求规范

汽车空调出风口及风道设计 作者:胡成台 单位:一汽轿车股份有限公司

目录 第1章风道及出风口介绍 (4) 1.1 风道介绍 (4) 1.2 出风口介绍 (4) 1.3 相关法规/标准要求 (5) 1.3.1 国家/政府/行业法规要求 (6) 1.3.2 FCC相关标准要求 (6) 第2章风道及出风口设计规范 (7) 2.1风道及出风口结构 (7) 2.1.1风道结构 (7) 2.1.2出风口结构 (7) 2.1.3出风口及风道实例 (8) 2.1.4材料 (8) 2.2风道及出风口整车布置 (8) 2.2.1风道整车布置 (8) 2.2.2出风口整车布置 (9) 2.3通风性能 (10) 2.3.1 风道中的压力损失 (10) 2.3.2出风量 (10) 2.3.3通风有效面积 (10) 2.4 出风口水平叶片布置方式 (11) 2.4.1叶片数量 (11) 2.4.2叶片尺寸要求 (11) 2.5.3叶片间距 (13) 2.5 出风口垂直叶片布置方式 (13) 2.5.1叶片数量 (13) 2.5.2叶片尺寸要求 (13) 2.5.3叶片间距 (13) 2.6 气流性能 (13) 2.6.1气流方向性 (13) 2.6.2泄漏量 (17) 2.7 出风口手感 (17) 2.7.1拨钮操作力 (17) 2.7.2拨轮操作力 (17) 第3章试验验证与评估 (18) 3.1 设计验证流程 (18) 3.2 设计验证的内容与方法 (18) 第4章附录 (19)

4.1 术语和缩写 (19) 4.2 设计工具 (19) 4.3 参考 (19)

第1章风道及出风口介绍 在整个汽车空调系统中,风道和出风口组成空调的通风系统,担负着将经过处理(温度调节,湿度调节,净化)的气流送到汽车驾驶舱内,以完成驾驶舱内通风,制冷,加热,除霜除雾,净化空气等的功能。 图 1 某车型空调通风系统及周围环境结构爆炸图 1.1 风道介绍 风道连接空调器与出风口,是空调系统中制冷和制热空气的通道。目前空调系统由空调厂商提供,作为空调系统一部分的风道设计,需汽车整车设计部门做匹配设计,车厢内的空气流场与温度场不仅与车厢结构以及空调制冷系统有关,还与空调风道的结构形状密切相关。风道的布置走向、风道占用空间(截面积)以及风道中空气的流速等均影响车厢内的制冷效果,影响系统的经济性和外观造型。 图 2 奔腾B90通风风道 1.2 出风口介绍

位移磁尺选型手册

SDMS 系列磁致伸缩线性位移传感器 z 概述 SDMS 系列磁致伸缩位移传感器是利用磁致伸缩原理开发的高精度位移测量传感器。采用非接触测量方式、产品使用寿命长,环境适应性强;不需要定期标定和维护;产品为绝对量输出,重启无需归零;具有高精度、高稳定性、高可靠性、高重复性的技术特点;支持电流、电压、SSI、Modbus、PROFIBUS 等多种输出方式,广泛应用于石油、钢铁、化工、港口、机械、食品等环境恶劣的工业场合,是高精度位移控制的首选。 z 产品应用示例 钢铁生产的多缸系统的同步控制 轧机行程精密控制 港机自动控制 注塑机械

z性能参数 参数 SDMS系列模拟输出磁尺 SDMS系列数字输出磁尺 供电电压 DC 24V 测量对象 可测1~2个位置量 可测1~3个位置量 量程范围 80mm~5000mm 输出信号 电压 0~5VDC或0~10VDC MODBUS SSI 电流 0~20mA或4~20mA 负载能力 电压信号输出最低负载>5KΩ, 电流信号输出最大负载电阻 600Ω 可组网32台磁尺 点对点 非线性误差 <±0.05%F.S(最小±50μm) 重复性误差 <±0.002%F.S 分辨率 采用 16Bit D/A 转换,0.0015%F.S25um 迟滞 <0.002%F.S. 工作温度 -40~+85℃ 温度系数 <0.007%F.S./℃ z结构尺寸(更新) 图1:航空插头接口磁尺结构尺寸

图2:M16金属电缆接头磁尺结构尺寸 z接线方法 模拟输出 电气连接方式 插脚引线说明 航空插头 电缆线 颜色定义 单磁环 单磁环带调试接口 双位置输出 Pin1 红色 供电电源(+) 供电电源(+) 供电电源(+) Pin2 白色 信号输出(-) 信号输出(-) 信号1输出(-) Pin3 蓝色 信号输出(+) 信号输出(+) 信号1输出(+) Pin4 绿色 NC RS-485信号B 信号2输出(+) Pin5 棕色 NC RS-485信号A 信号2输出(-) Pin6 裸线 屏蔽线 屏蔽线 屏蔽线 Pin7 黑色 供电电源(-) 供电电源(-) 供电电源(-) 数字输出 电气连接方式 插脚引线说明 MODBUS输出 航空插头 电缆线 颜色定义 MODBUS输出 SSI输出 Pin1红色 红色 供电电源(+) 供电电源(+) Pin2白色 NC Pin3蓝色 NC Pin4绿色 RS-485信号B Pin5棕色 RS-485信号A Pin6裸线 屏蔽线 屏蔽线 Pin7黑色 供电电源(-) 供电电源(-) 注意事项: 1.传感器供电电源要求:输出电压+24VDC±10%,对每个传感器的供电电流必须大于150mA; 2.传感器的屏蔽电缆走线必须避开大功率机电设备、高压电缆线及有强电磁辐射的场所等; 3.电缆的屏蔽网线必须保持完好无断线,并接到后续设备的地端。

pilz样本选型手册

公司形象 自动化 元件——系统——服务 皮尔磁是一个领先的创新的自动化技术公司。皮尔磁的解决方案为人、机器和环境提供四重安全——技术上的、生态上的、个人的和能效上的安全。 The 4-fold safety

元件 自动化 元件——系统——服务 皮尔磁是一个领先的创新的自动化技术公司。 皮尔磁的解决方案为人、机器和环境提供四重安全——技术上的、生态上的、个人的和能效上的安全。 这些包括创新的产品,如传感器、控制和驱动技术以及面向自动化和安全的完整服务 ?PNOZ 功能安全继电器 ?可配置安全控制系统PNOZmulti 选型指南 ?新一代紧凑型安全继电器 PNOZsigma 选型指南?PNOZmulti Mini 简介?PNOZsigma 简介?PNOZmulti 简介 ?S 系列电子监控继电器 简介? PNOZ 安全继电器 简介 The 4-fold safety

系统 自动化 元件——系统——服务 皮尔磁是一个领先的创新的自动化技术公司。 皮尔磁的解决方案为人、机器和环境提供四重安全——技术上的、生态上的、个人的和能效上的安全。 这些包括创新的产品,如传感器、控制和驱动技术以及面向自动化和安全的完整服务 The 4-fold safety

? 元件 行业应用 自动化 元件——系统——服务 ?控制与信号设备PIT 选型指南 ?2012 新品汇编 ?用于包装机械的现代控制理论?用于压机行业的安全自动化?铁路行业解决方案 ?风电行业解决方案?包装机械解决方案? 压机行业解决方案 The 4-fold safety

整车空调系统冷负荷计算书

整车空调系统冷负荷计 算书 -CAL-FENGHAI.-(YICAI)-Company One1

B项目空调系统设计计算报告 编制: 批准: 日期:06.12.30

目录 一、汽车空调热负荷计算 (2) 1.空调系统原理图 (2) 2.汽车空调热负荷 (3) 边界条件的确定 (3) 热平衡关系的建立 (4) 空调热负荷计算 (5) 空调系统制冷量的确定 (11) 二、制冷剂循环流量 (11) 1.压焓图状态点的确定 (11) 2.制冷剂循环流量 (12) 三、所选压缩机与汽车动力匹配计算 (12) 四、冷凝器能力计算 (14) 五、蒸发器能力计算 (14) 六、送风量的计算 (15)

B22空调计算报告 一、 汽车空调热负荷计算 1.空调系统原理图 汽车空调系统采用蒸汽压缩式制冷原理。B22空调系统主要由压缩机、冷凝器、贮液干燥器、热力膨胀阀、蒸发器、高低压管组成,其原理为:低温低压液态制冷剂进入蒸发器,在一定压力下吸热气化,变成低温低压气态制冷剂,然后被压缩机抽吸压缩,成为高温高压气态制冷剂,再经过冷凝器放热,冷凝成低温高压液态制冷剂,然后经过热力膨胀阀,制冷剂恢复到低温低压状态,重新流入蒸发器吸热气化,从而完成一个制冷循环。 制冷循环示意图如下: 冷凝器 蒸发器 热力膨胀阀 压缩机图1 制冷循环示意图 根据奇瑞企业标准Q/《整车空调系统环境实验及其评估方法》,对汽车空调系统进行环境模拟试验,试验结果应满足以下要求: 1) 怠速工况:环境温度40℃±1℃、相对湿度50%±2RH 、日照1KW/m 2、迎面风速10km/h 、空档位/P 档、鼓风机最大档、全冷(LO )、吹面方向、内循环、测试时间 45min 、车内无人,满足条件后开始试验,车内平均温度(室内头部温度点)不高于38℃; 2) 40 km/h 工况:环境温度40℃±1℃、相对湿度50%±2RH 、日照1KW/m 2、迎面风速40km/h 、4档位/D 档、鼓风机最大档、全冷(LO )、吹面方向、内循环、测试时间 45min 、车内1人,满足条件后开始试验,车内平均温度(室内头部温度点)不高于28℃;

(完整版)汽车空调系统匹配计算

摘要 汽车空调的普及,是提高汽车竞争能力的重要手段之一。随着汽车工业的发展和人们物质生活水平的提高,人们对舒适性,可靠性,安全性的要求愈来愈高。国内近年来,汽车生产厂家越来越多,产量越来越大,大量中高档车需要安装空调。因此,对汽车空调的研究开发特别重要。 本论文针对吉利LG—1空调系统匹配设计,对普通轿车空调系统的设计开发原理和特点进行了比较系统的阐述. 第一章概论 1.1 汽车空调的作用及其发展 汽车工业是我国的支柱产业之一,其发展必然会带动汽车空调产业的发展。汽车空调作为空调技术在汽车上的应用,它能创造车室内热微环境的舒适性,保持车室内空气温度、湿度、流速、洁净度、噪声和余压等在热舒适的标准范围内,不仅有利于保护司乘人员的身心健康,提高其工作效率和生活质量,而且还对增加汽车行始安全性具有积极作用。 就世界上汽车空调技术发展的历史来看,其发展的速度也是惊人的。1927年就诞生了较为简单的汽车空调装置,它只承担冬季向乘员供暖和为挡风玻璃除霜的任务。直到1940年,由美国Packard公司生产出第一台装有制冷机的轿车。1954年才真正将第一台冷暖一体化整体式设备安装在美国Nash牌小汽车上。1964年,在Cadillac轿车中出现了第一台自动控温的汽车空调。1979年,美国和日本共同推出了用微机控制的空调系统,实现了数字显示和最佳控制,标志着汽车空调已进入生产第四代产品的阶段。汽车空调技术发展至今,其功能已日趋完善,能对车室进行制冷,采暖,通风换气,除霜(雾),空气净化等。我国空调产业发长速度虽然较快,但是目前国内车用空调系统生产基本上仍是处于引进技术与开发、研究并举的阶段。 1.2 汽车空调的特点 汽车空调使用的特殊性,决定了它在结构、材料、安装、布置、设计、技术要求等方面与普通空调,如建筑物空调,有着较大的差别: 1)在动力源处理上,车用空调压缩机只能采用开启式的结构型式,这就带来空调系统轴封要求高,制冷剂容易泄漏的问题。 2)作为空调的对象,汽车车室容积狭小,人员密集,其热、湿负荷大,气流分布难以均匀,要求所选配的车用空调机组制冷量要大,能降温迅速。 3)当车用空调装置消耗汽车主发动机的动力时,必须考虑其对汽车动力也操纵性能的影响,也必须考虑车速变化幅度大或变化频繁,给空调系统制冷剂流量控制、制冷量控制、系统设计带来的影响。 4)汽车本身结构非常紧凑,可供安装空调设备觉得空间极为有限,不仅对车用空调装置的外形、体积和质量要求较高,而且对其性能和选型也会带来影响。 5)汽车是运动中的物体,对汽车空调系统各组成部件的振动、噪声、安全、可靠等方面的技术要求严格。6)车用空调装置的结构、外形和布置,必须考虑其对汽车底盘、车身结构件及汽车行驶稳定性、安全性的影响。 第二章课题的目的及现实意义 2.1 课题主要目的 本空调系统的国产化开发是按照浙江吉利轿车的要求进行系统仿制,本着通用性和互换性的原则而进行的。本系统参照于日本威驰轿车空调系统,适用于小型轿车空调系统的研发。 压缩机总成的装配位置与原装系统相同,重新设计压缩机支架及涨紧机构,仍采用V型皮带轮。 风机、干燥器、电磁阀及各部件,位置和型号与威驰轿车原装系统选配相同。 管路走向及固定方式与原装基本相同,对接口尺寸按我公司标准做相应的修改。

(技术规范标准)汽车空调技术课程标准

《汽车空调技术》课程标准 一、概述 (一)课程性质 本课程是汽车检测与维修技术专业核心课程之一。它是融合制冷、供暖、机电和计算机技术为一体,专业化突出,实践性很强的综合课程。其功能是培养本专业的学生达到汽车电工岗位要求的专门职业能力,同时培养学生逻辑思维能力及独立分析问题和解决问题的能力。 (二)课程基本理念 本课程以工作任务为核心,以岗位职业要求为指导,通过必备知识的掌握、操作技能的训练、故障分析与诊断以及典型案例分析等理实一体化教学活动来组织实施本课程的教学。 (三)课程设计思路 课程框架结构:按照“以能力为本位,以职业实践为主线,以项目课程为主体的模块专业课程体系”的总体设计要求,打破学科课程的设计思想,紧紧围绕工作任务完成的需要来选择和组织课程内容,突出工作任务与知识的联系,让学生在职业实践活动的基础上掌握知识,力求使课程内容与职业岗位能力要求相一致,以提高学生的职业适应能力。项目内容选取的依据是本专业所对应的岗位群要求,以汽车电工技术岗位为载体,尽量使工作任务具体化,针对性强,并且符合本专业所特有的逻辑关系来编排模块。 学分和学时分配:4学分,建议课时为64学时,其中理论28学时,实践34学时。 对学生选课的建议:必修. 课程名称:汽车空调技术 课程框架结构

二、课程目标 明确课程在知识与技能、过程与方法、情感态度与价值观等方面的一致性,并且具有专业特色的课程总体目标,包括知识教学目标、技能教学目标、素质教学目标等。 (一)总目标 通过以工作任务为核心的教学活动,使学生掌握汽车空调技术的基本知识和基本技能,促进学生职业素养的养成,为培养高素质汽车后服务专门人才奠定良好基础。 (二)具体目标 1.素质教学目标

关于汽车空调的选型计算

关于汽车空调的选型计算(二) 来源:中国论文下载中心 [ 09-09-14 15:40:00 ] 作者:未知编辑:studa090420 目前已知进口干度为0.3,出口过热,因此平均干度 χdo=(0.3+1.0)/2=0.65 由此,可计算其余参数的平均值。动力黏度μcore的平均值为 μcore=[χ/μr+(1-χ)/μ1]-1=[0.65/11.446+(1-0.65)/266.78] -1=17.212 kg/(m·s) 每一散热板制冷剂质量流量 qmr,eq'= qmr/11=0.042/11=3.8182×10-3 kg/s 散热板内孔的制冷剂质量流速qmr,A为 qmr,A= qmr,eq'/(1/4·π·D2h,r)=0.0038182/[3.1416/4× (3.7265×10-3)2] kg/(m2·s)= 350.077kg/(m2·s) 雷诺数Recore为 Recore= qmr,A·Dh,r/μcore=350.077×3.7265×10-3/(17.212×10-6)=75794 干度平均值为 χdo=0.49+627 Recore-0.83=0.49+627×75794-0.83=0.54587 由上面的计算可以看到,制冷剂干度从0.3~0.54587~1变化,后还有过热蒸气区。因此很难准确估计每一阶段所占的百分比,只能凭经验估计。在此,取过热蒸气区为20%,于是可以计算出干燥点之前的两相区约为28%,干燥点之后的两相区约占52%。 (1)干燥点之前的两相区,取χ=0.417,则在散热板内孔内,制冷剂气液两相均匀紊流工况的Lockhart-Martinelli数Xtt和关联系数F(Xtt)分别为 Xtt =[(1-χ)/χ]1-W/2(ρl/ρv)0.5(μv/μl)n/2 =[(1-0.417)/0.417]1-0.3/2(1285.86/15.712)0.5(11.446/266.78)0.3/2=7.5 F(Xtt)=(1+2.30/ Xtt2)0.374=(1+2.30/7.5)0.374=1.0151 制冷剂两相流折算成全液相时,在折算流速下的表面传热系数αl为

汽车空调系统匹配计算11

吉利LG—1空调系统设计计算 3.1 汽车空调的工作原理 图3.1 汽车空调系统工作原理 1—压缩机 2—排气管 3—冷凝器 4—风扇 5、7——高压液管 6—干燥储液器8—膨胀阀 9—低压液管 10—蒸发 器 11—鼓风机 12—感温包 13—吸气管 3.2对微弛空调系统进行数据采集 本系统为仿制系统,外形尺寸于原装系统基本相当。 散热板及翅片示意图,由于为仿制所以测量尺寸不够精准,所以其各部分数据均需要验算。 1、蒸发器设计 散热板: 宽Wt=58mm,高Ht=2.5mm,铝板厚δt=0.5mm。可得: 内部流道尺 寸 hH=Ht—2δt=1mm Wh=Wt—2δt=57mm 翅片:宽度Wf=58mm,高度Hf=8mm,厚δt=0.1mm。翅片角度αl=36o,间距Lf=2mm。 2、冷凝器设计 冷凝器选用平行流式,散热层多孔扁管和翅片结构尺寸: 翅片宽度16mm,高度8mm,厚度0.135mm,翅片间距1.5mm,百叶窗角度27℃,扁管外壁面高度2mm,宽度16mm,分4个流层,扁管数目依次是14-9-7-5。取迎面风速4.5m/s。

3.其他部分由于本身没采用进口件,而且对于本公司来说主要是选配。所以没有仿制微弛。 空调系统设计计算 3.3 空调系统热负荷计算 1.空调系统冷负荷计算 本系统设计主要是估算冷负荷,以便压缩机的选配和两器的设计,本设计中主要是针对压缩机的选配,我们采用较容易确定的太阳辐射热QS和玻璃渗入热QG,他们的总合占系统的70%。即可得总负荷,为了安全再取k=1.05的修正系数。轿车一般的工况条件: 冷凝温度tc=63°,蒸发温度te=0°, 膨胀阀前制冷剂过冷温度△tsc =5°, 蒸发器出口制冷剂气体过热度△tsh=5,压缩机吸气温度ts=10°, 室外温度ti=35°, 室内温度t0=27°,轿车正常行驶速度ve=40km/h ,压缩机正常转速n=1800r/min. 太阳辐射热的确定 故而,机组制冷量取Q0=4000W。即可 压缩机的选配 大部分汽车空调压缩机由发动机驱动,压缩机的转速与发动机呈一定的比例,在很大的范围内同步变化,再加上其固定是通过支架与发动机刚性的连接,工作条件非常的差,因此对汽车空调压缩机有比家用空调压缩机更高的要求。

Pilz安全继电器的故障诊断

P i l z安全继电器的故障 诊断 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

Pilz安全继电器的故障诊断 安全继电器的硬件结构比较简单,所以其上的状态显示 LED也只有三个,分别是POWER,CH1,CH2。如果用户在 使用安全继电器发生问题没有输出时该怎么办呢 第一,检查接线是否正确。每个型号的安全继电器的接 线方式都是不同的,但接线的理念都是一样。 1.检查工作电压是否正确。正确上电后POWER灯会常 亮。 2.检查输入回路的接线。确定安全继电器是按照单通道输入方式接线还是双通道方式接线,根据用户手册仔细确认输入回路的接线是否正确。例如 X3P,如果是单通道工作方式的话则是短接S21和S22,S31和S32,一个常闭触点置于S11和S12之间。 如果是双通道不检测触点间短路故障工作方式的话则是短接S21和S22,两 个常闭触点分别置于S11和S12,S11和S32 之间。 如果是双通道检测触点间短路故障工作方式的话则是短接S11和S12,两个常闭触点分别置于S21和S22,S31和S32之间。 3.检查复位回路的接线。确定是需要自动复位还是手动复位,根据用户手册仔细确认复位回路的接线是否正确。例如X3P,如果是自动复位方式的话则是短接S13和S14。

如果是手动复位方式的话则是把复位按 钮置于S33和S34之间。 4.检查反馈回路的接线。根据用户手册仔细确认复位回路的接线是否正确。 第二,检查是否是安全继电器本身发生故障。选择自动复位,去除反馈回路。短接输入通道,察看安全继电器是否有输出,即CH1和CH2灯常亮。 第三,如果通过上述的操作可以使安全继电器正常工作的话,那就说明故障并非在安全继电器内部而是在外部。外部故障一般分为这几类: 1.触点发生焊死状况。如果是手动复位方式此时CH1灯会常亮,但CH2灯不亮,按下复位按钮CH1和CH2都会熄灭。如果是自动复位方式CH1和CH2灯都不亮。当解决了这个故障之后需要拍下急停按钮再释放才能使得安全继电器再次工作(如果是手动复位的话还需按下复位按钮) 2.触点间发生短路故障。此时安全继电器的三个状态显示灯 POWER,CH1,CH2都会熄灭。 3.输出回路上发生短路故障。此时安全继电器的CH1和CH2灯都会熄灭。

汽车空调课程标准

[ 《汽车空调系统维修》课程标准 课程编号: 课程总学时:30 课程类别:必修课 { 必修课开课对象:汽车检测与维修技术专业 执笔人: 审核人: 批准人: 编写日期:2010年11月 \ -

《汽车空调系统维修》课程标准 课程总学时:30 课程类别:必修课 必修课开课对象:汽车技术服务与营销专业、汽车检测与维修技术专业 一、课程性质 《汽车空调系统维修》是汽车检测与维修技术专业的专业课程之一,在培养学生职业能力和职业素养成方面占重要地位。按照典型工作岗位对专业能力的需求,参照汽车维修职业资格标准,与行业企业合作,基于职业分析构建了汽车运用技术专业课程体系。体系中共有专业学习领域 12 个,我们按照职业成长的逻辑规律确定专业课程排序,使前后续课程衔接得当。《汽车空调系统维修》课程安排在第三学期,是继《汽车电工电子技术基础》课程之后开设的,为后续课程《汽车电子电器设备构造与维修》、《汽车使用性能与检测》等打下坚实的基础。 通过本课程的学习,使学生掌握空调系统检修必须的知识和技能,重点培养学生独立排除空调系统常见故障的能力,同时培养学生遵纪守法、诚实、守信、善于沟通与合作的品质,树立良好的环保、节能、安全和为客户服务的意识,学生毕业后完全能够胜任汽车空调系统检修以及相关行业的工作。 ~ 二、课程教学基本要求 基于职业能力的培养,本课程应承担的任务具体为: 1.能熟练掌握汽车空调系统的基本结构和工作原理; 2.能熟练使用各种空调检测仪器和仪表; 3.能正确检修空调制冷系统、暖风系统、配气系统及控制系统各总成或部件; 4.具备对汽车空调进行故障诊断能力; 5.具有自我学习新技术与独立检修空调常见故障的能力; 6.具有理论与实践相结合,不断提高、不断创新的素质; 》 7.具有良好的环保意识、安全责任意识、纪律观念和团队精神。 三、课程标准实施指导思想 本学习领域培养学生具备以下三种能力: 1.专业能力 1)能够熟练掌握汽车空调各系统的作用、组成、结构和工作原理; 2)能够正确使用各种汽车空调检测仪器、仪表和工具;

城市公交客车空调系统匹配的若干问题

JINGYI 城市公交客车空调系统匹配的若干问题 广州精益汽车空调有限公司欧阳勇2003年9月 引言 随着社会经济的迅速猛发展,城市化进程的加快,城市交通阻塞的问题日益成为倍受关注的社会焦点问题。大量的研究和国内外城市化过程的经验表明,发展公共交通是缓解和解决城市交通供需矛盾的关键措施。在相当长的时间内优先发展城市公交是我国解决经济发展的中心工作,城市公交客运和公交客车也获得了难得的发展机遇,人们对公交客车的舒适性,节能环保的追求也变得愈来愈强烈。当经过一天紧张劳作的人们踏上归途,走入舒适的车厢内时一切疲劳都消失怠尽。 由于对公共客车运行特点了解不足,目前一些公交客车空调系统的设计欠佳运行不良,出现了一系列亟待解决的问题如冷却效果不佳、降温慢、启动时熄火、加速困难、爬坡时动力不足等。根据我们长期以来对广州、上海、重庆等城市公交空调客车运行状况的监测和研究,就一些影响其动力特性和冷量输出特性的重要因素进行了总结,与各位代表共同探讨。 一、空调客车的基本特征和要求 空调客车是城市公交发展具竞争力的重要特征,由于公交车主要面对的是城市大众,这就要求现代公交空调车辆在乘座的舒适性,载客容量、上下方便,节能环保等方面能够满足人们不断发展的需求,公交车辆有以下特点: 1.载客容量大,上下客频繁。公交车辆存在着载客的高峰期和非高峰期不同的载客状态,高峰时期的载客量可达到平时额定载客量的两倍; 2.起停频繁,站点多; 3.时速慢,平均时速在20kw/h左右;

4.绝热密封较差; 由于以上特点,因此公交客车空调系统的配置时应具备:冷量大、风量足、噪声低、低速状态冷量输出好、耗电少、有空气杀菌消毒功能。 二、空调系统正确设计匹配的原则 1.发动机的要求和选择 发动机应具备合理的动力性。城市公交车常处在超载、低速状态下运行,发动机与整车匹配应能保证各档位的动力因素,保证车辆在城市立交及其它坡道路段行驶时的爬坡能力,并保证有足够的起步加速能力。此外还须有足够大的低速扭矩,即选配低转速、大扭矩,特别是低速段扭矩大的发动机是比较适合用作公交空调客车(非独立机组)的动力装置。对于山地城市选用单独的辅助发动机为空调动力(独立机组)是较好的选择。 在选配空调系统时应分析发动机外特性曲线及空调系统的功耗的匹配情况,发动机外特性曲线反映了发动机的转速与发动机动力性能的关系。它是当发动机节气门开至最大时,所得到的总功率特性也称为发动机的外特性。代表了发动机的最高动力特性。 从发动机外特性曲线图一上可 机燃烧不良,转速降低使得每个 工作循环的时间增长,燃气与汽 缸壁接触时间也增长,绝热效率 ηe下降,由于冷却而产生的能 量损失就更大,因而导致扭矩略 为减小。转速由n2不断增加时, 由于进气行程时间缩短,气体流 速高,阻力增大,充气量也较少,而且摩擦阻力又增大,故扭矩Te随之减小。

Pilz安全继电器的故障诊断

Pilz 安全继电器的故障诊断 安全继电器的硬件结构比较简单,所以其上的状态显示LED 也只有三 出时。如果用户在使用安全继电器发生问题没有输个,分别是POWER,CH1,CH2 该怎么办呢?不同第一,检查接线是否正确。每个型号的安全继电器的接线方式都是 的,但接线的理念都是一样。 1.检查工作电压是否正确。正确上电后灯会常亮。POWER 线还检查输入回路的接线。确定安全继电器是按照单通道输入方式接2.例如是双通道方式接线,根据用户手册仔细确认输入回路的接线是否正确。常闭一个和S22,S31和S32,S21X3P ,如果是单通道工作方式的话则是短接 S12之间。触点置于S11和,和S22如果是双通道不检测触点间短路故障工作方式的话则是短接S21 S32之间。和两个常闭触点分别置于S11和S12,S11 如果是双通道检测触点间短路故障工作方式的话则是短接 ,和S12两个常闭触点分别置于S21和S22,S31和之间。S32S11 检查复位回路的3.确定是需要自动复接线。根据用位还是手动复位, ,如果X3P 户手册仔细确认复位回路的接线是否正确。例如 。S14和是自动复位方式的话则是短接S13 S34之间。如果是手动复位方式的话则是把复位按钮置于S33和 根据用户手册仔细确认复位回路检查反馈回路的接线。4. 的接线是否正确。第二,检查是否是安全继电器本身发生故障。选择自动复位,去除反馈回路。短接输入通道,察看安全继电器是否有输 CH1出,即和CH2灯常亮。第三,如果通过上述的操作可以使安全继电器正常工作的话,那就说明故障并非在安全继电器内部 而是在外部。外部故障一般分为这几类:CH1灯不亮,按下复位按钮CH2CH11.触点发生焊死状况。如果是手动复位方式此时灯会常亮,但灯都不亮。当解决了这个故障之后需要拍下急停按钮和和CH2CH1CH2都会熄灭。如果是自动复位方式 再释放才能使得安全继电器再次工作(如果是手动复位的话还需按下复位按钮) 都会熄灭。POWER,CH1,CH22.触点间发生短路故障。此时安全继电器的三个状态显示灯 灯都会熄灭。CH2和CH1输出回路上发生短路故障。此时安全继电器的 3.

汽车空调系统的认识(教案)

汽车空调系统的认识 授课班级:09汽车 授课地点:09汽车教室 课型:新授课 课时安排:1课时 教学目标: 知识目标:1 正确描述空调系统的基本知识、基本组成 2 简单描述暖风系统的类型、组成 3 正确描述制冷系统的组成和主要组成件的结构 能力目标:1 理解空调制冷的物理原理 2 能简单描述空调的制冷过程,及工作原理 3 能简单描述空调的暖风工作过程,及工作原理 情感目标:培养学生对汽车电器的兴趣 教学重点:空调系统的组成及其个部件的名称 教学难点:空调系统的工作原理 教学方法:“讲授法”、“演示法” 教学背景:学生在学习完汽车电器的电源系和起动系后,对汽车电器学习的基本方法有了初步的认识,对认识电路有了较大的提高。在学习电动部件有一定的基础。在此基础上,教学学生比较容易接受。 教学过程: 一、课程导入 向学生提问:夏天从游泳池上岸,身上感到凉爽。用酒精擦拭皮肤,会感觉到冰凉。是什么原因产生的现象。这是因为液体的蒸发带走了热量。这就给我们了一个启发,利用液体的蒸发可以吸收周围环境的热量。为此我们制作一个装置,将带有开关的容器在一个绝热良好的盒子内,容器中装有常温下容易挥发的液体,将开关打开时,容器内的易挥发液体便开始蒸发,同时吸收绝热盒子内的热量,吸收了热量的液体转化为气体,从开关排出。盒子内的温度便会低于盒外的温度。如果容器内的易挥发液体能得到不断的补充,冷却的效果便会持续下去。

二、新课教学 1、制冷循环 从刚才的实验我们可以看出,制冷过程中的热量转移是靠液体的状态变化实现的,我们将这种液体称为制冷剂。 为了使前述的制冷装置的制冷过程持续下去,就必须不断的向容器补充制冷剂,从开关放出的制冷剂也应加以反复利用。为此,有必要制作一套装置使制冷剂能够在装置中循环,不断地将热量带走。 根据前述物质的沸点与压强的关系,降低压强可以使物质的沸点降低,使其更加容易蒸发而吸收热量;提高压强可以使物质的沸点升高,使其更加容易转化为液体而放出热量。为此,将前述装置从开关放出的气体制冷剂回收回来,使其进入一台压缩机,提高压强,再通过一个称为冷凝器的装置,经强制冷却放出热量变为液体,并将这种液体制冷剂暂时存放在一个储液罐中以备再次使用。 高压的液体通过一个小孔,可以使其迅速膨胀而压强降低,在种情况下,液体由于压强的降低而非常容易汽化而吸热。因此,将储液罐中的制冷剂通过一个小 孔(膨胀阀)放出,让其进入一个称为蒸发器。由于制冷剂的压强下降,所以很

汽车冷负荷计算方法

1 汽车空调的计算温度选择 按表1 数据作为微型汽车空调系统的计算温度(即车内平均温度)。从上表我们可以看到,微型车的计算温度在环境温度为35℃时定为27℃,而一般轿车在环境温度38℃时定为24℃~27℃ ,一般大中型客车定为27℃ ~28℃ ,可看到微型车车内温差都比它们要高,这其实是综合了多种因素 并经过很多次试验得出的较经济 合理的车内平均温度。因为对微 型车来说,如果计算温度定得过 高了,乘员就会明显感觉制冷不 足;而如果定得过低,势必需要 加大压缩机排量才能满足,这样 功耗必然增加,并影响到整车的 动力性,否则又很可能无法实现。 2 计算方法 2.1 微型车车内与外界热交换示意图 为便于分析,绘制图1 的微型车热交换 示意图。 2.2 计算公式 2.2.1计算方法 考虑到汽车空调工作条件都很恶劣,其 热负荷与行车时间、地点、速度、行使 方向、环境状况以及乘员的数量随时发 生变化,以及要求在短时间内降温等特 殊性,按照常规方法来计算制冷量的计 算公式为: Q 0=kQ T =k(Q B + Q G + Q F +Q P + Q A +Q E + Q S )) ⑴ 式中:Q 0———汽车空调设计制冷量,单位为W ; k ———修正系数,可取k=1.05~1.15,这里取k=1.1 Q T ———总得热量,单位为W ; Q B ———通过车体围护结构传入的热量,单位为W ; Q G ———通过各玻璃表面以对流方式传入的热量,单位为W ; Q F ———通过各玻璃表面以辐射方式直接传入的热量,单位为W ; Q P ———乘员散发的热量,单位为W ; Q A ———由通风和密封性泄露进入车内的热量,单位为W ; Q E ———发动机室传入的热量,单位为W ; Q S ———车内电器散发的热量,单位为W ; 从公式中我们也可以看出它是通过分别计算各部分得热量求得总需求制冷量的。 3 计算示例 以五菱之光微型客车空调系统的制冷量计算为例,设计条件和工况见表3: (1)整车乘员7 人,各部分参数见下表: (2)查文献[2],取水平面和垂直面的太

相关文档
最新文档