空气动力学实验风洞流场性能验证

空气动力学实验风洞流场性能验证
空气动力学实验风洞流场性能验证

MS82风洞试验技术研究(负责人林麒)

MS82 风洞试验技术研究(负责人:林麒) 8月27日下午地点:4层临4-10 时间 编号 报告题目 报告人单位 主持人 13:30 MS82-1700-I 运输机后体舱门开启流动特性试验研究 胡汉东中国空气动力研究与发展中心 杨希明 13:50 MS82-0056-O 一种改进的内埋武器高速风洞弹射投放实验方法 宋威中国航天空气动力技术研究院 14:00 MS82-0690-O 大长细比模型高速风洞试验支撑干扰分析 秦 汉 中国航天空气动力技术研究院 14:10 MS82-1330-O 翼身融合构型飞机跨声速风洞试验支撑干扰问题研究林榕婷中国商飞北研中心 14:20 MS82-1859-O 小展弦比飞翼低速大迎角支架干扰试验研究 王延灵航空工业空气动力研究院 白鹏 14:30 MS82-1860-O 风洞节流对其高亚声速特性影响试验研究 秦红岗中国空气动力研究与发展中心 14:40 MS82-2136-O 倾转四旋翼无人机风洞虚拟飞行初步验证 聂博文国防科技大学 14:50 MS82-2647-O 高速风洞中大型飞机常用支撑形式干扰特性研究 李 强 中国空气动力研究与发展中心 15:00 MS82-2681-O 基于映像涡系法的闭口矩形实壁风洞洞壁干扰因子计算 马洪雷中国航空工业空气动力研究院 岳连捷 15:10 MS82-2761-O 弹性体模型风洞试验支撑系统虚拟振动试验研究 张 戈 中国航空工业空气动力研究院 15:20 MS82-1850-O 导弹滑块电缆罩气动特性风洞测力试验优化研究 朱中根西安现代控制技术研究所 15:30 15:40 MS82-0819-O 并联级间分离自由飞风洞试验技术及相似律推导 薛 飞 中国航天空气动力技术研究院 8月28日下午地点:4层临4-9 时间 编号 报告题目 报告人单位 主持人 13:30 MS82-1670-I 风洞动态试验中的仿真技术应用 赵俊波中国航天空气动力技术研究院 陈德华13:50 MS82-2868-O 不同收集口角度下风洞流场的数值模拟与试验研究高 娜 中国航空工业空气动力研究院 14:00 MS82-0603-O 基于RBF 神经网络的大迎角耦合振荡气动力建模 卜凡楠厦门大学 14:10 MS82-3570-O 端壁附面层抽吸对压气机叶栅分离影响的仿真研究王东中航发动力所 王铁进14:20 MS82-1760-O 结冰风洞中SLD 模拟方法及其实验验证研究 符 澄 中国空气动力研究与发展中心 14:30 MS82-2393-O 进气道试验中管道效应对湍流度的影响研究 徐彬彬中国空气动力研究与发展中心低速所 14:40 MS82-2994-O 结冰条件下大型民机操稳特性研究与风洞虚拟飞行验证 朱正龙中国空气动力研究与发展中心低速所 14:50 MS82-2986-O 螺旋桨噪声特性风洞试验研究 谭 啸 中国航空工业空气动力研究院 吴佳莉15:00 MS82-3159-O 地效飞机近波浪水面气动特性风洞试验模拟 高立华中国空气动力研究与发展中心 15:10 15:20 MS82-2365-O 可压缩混合层增长率的试验方法研究 王铁进 中国航天空气动力技术研究院

空气动力学实验之二元翼型测压实验

空气动力学实验之 二元翼型测压实验 班级 姓名 实验日期 指导教师

一、实验目的 1.了解低速风动的基本结构和熟悉风洞实验的基本原理。 2.熟悉测定物体表面压强分布的方法。 3.复习巩固空气动力学的相关知识。 3.测定NACA0012翼型的压力分布并计算其升力系数Cy ,掌握获得机翼气动特性曲线的实验方法。 二、实验设备及工作原理简介 1.测定翼型表面压力 在翼型表面上各测点垂直钻一小孔,各孔成锯齿状分布,小孔底与埋置在模型内部的细金属管相通,小管的一伸出物体外,然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,上表面为1号-14号,下表面为15号-27号,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。 2.压力系数的计算 通过测压,可以得到翼型在给定迎角下的压力分布,(采用无黏流理论)根据伯努利方程: 2 22 121∞∞+=+v p v p i ρρ 可得压力系数q p p C p ∞-= ,其中2 2 1∞∞=v q ρ 本实验利用水排测压得 h g p p p ?=-=?∞ρ

3.升力系数计算 根据计算得出压力系数Cp,利用Matlab做出压力系数Cp与测压点分布位移X的图像,并分别拟合上下表面的压力分布曲线,通过对上下表面的压力分布曲线的所夹面积进行积分,其值除以弦长L可得出翼型的升力系数Cy。在不同的迎角α下,可分别求出翼型的升力系数,由此绘制翼型NACA0012的升力系数分布图,再与标准升力系数图比较,分析实验结果。 三.实验步骤 1.检查实验设备并进行人员分工。 2.记录实验环境下的温度与大气压。 3.安装翼型模型,并调整迎角为 ?0。 4.调整多管压力计液柱的高低,记下初读数0 h。 5.开风洞调到所需的风速,本实验对应的来流风速为25m/s。 6.当多管压力计稳定后,记下液柱末读数i h。 7.关闭风机等待测压液柱回复,依次将翼型迎角调整到 ? 1? 3? 5和? 7重复实验。 8. 关闭风洞,整理实验场地,将记录交老师检查。 9. 整理实验数据,写好实验报告。 四.实验数据及处理 1.实验环境数据: 实验室温度(C?)大气压强(Pa)空气密度(kg/3m) 12 98010 1.225

汽车空气动力学

随着高速公路的发展,燃油价格的上涨以及越发严格法规的颁布,对汽车的动力性、经济性、操纵稳定性和舒适性提出了越来越高的要求,这使得汽车空气动力学的研究成为汽车行业的重点研究方向之一。采用计算流体力学方法对其性能进行预测,相比风洞试验可以节约资金,缩短新车型开发周期。面对这种形势,本文针对车身设计提出了一种通过空气动力学性能分析来确定造型的工业设计方法,并对汽车三维外流场进行了数值模拟。本文首先阐述了轿车外流场数值模拟的整个过程,包括几何、物理模型的建立、湍流模型的选取、边界条件的添加等。所分析的模型选择某豪华轿车1:2实车模型,对实车模型作了如下简化:忽略车身外部突起物如后视镜、刮雨器等部分;没有考虑车轮影响;对车身底部做了简化,没有模拟车底真实的几何形状。为了节省计算耗费,只取实车模型沿纵向对称面的一半。利用FLUENT进行模型分析,得出车身表面压力分布图、压力场的流态显示,并计算了相应的阻力系数,从而较好地模拟了轿车的外流场,确定了车身空气动力学特性,并对模型在不同的边界条件下和不同的湍流模型下进行了比较和分析,为数值模拟的实用化做了一些有益的尝试。本文还详细论述了基于空气动力学的车身造型设计方法,以及其两条技术路线,积极探索空气动力学在车身造型中的具体应用,为车身设计提供了新的思路。最后得出结论,汽车空气动力特性的数值模拟可以辅助汽车设计师,在设计初步完成之后,对其进行流场的数值模拟,对设计提出改进意见,争取达到美学与空气动力性完美结合的程度。 汽车空气动力学主要是应用流体力学的知识,研究汽车行驶时,即与空气产生相对运动时,汽车周围的空气流动情况和空气对汽车的作用力(称为空气动力),以及汽车的各种外部形状对空气流动和空气动力的影响。 自从世界上有了第一辆汽车以后,德国就在航空风洞中进行了车身外形实验研究。后来德国人贾莱·克兰柏勒提出前圆后尖的水滴状最小空气阻力造型设计方案,从而找到了解决形状阻力的途径。美国人W.Elay 于1934年用风洞测量了各种车身模型的空气阻力系数。法国人J.Andreau则提出了汽车表面压差阻力的概念,并研究了侧风稳定性。2O世纪40年代,另一位法国人L.Romani对诱导阻力进行了研究。6O年代初,英国人white通过风洞实验提出了估算空气阻力系数的方法。到7O年代,汽车空气动力学才真正成为一门独立学科。我国是在8O年代才较为系统地研究汽车空气动力学的。 目前世界上许多公司都在汽车空气动力学研究方面进行探索与竞争,并且大都实力雄厚、各有建树。美国几乎各大汽车公司都有自己的飞机制造子公司。通用有休斯飞机公司,克莱斯勒有湾流公司。苏联的伏尔加有一个27m2的风洞,最高风速1 20km/h。法国雷诺已经开展了计算机空气动力学的研究。西德大众最近也购得CDCgo00型计算机,其目的之一可能就是汽车空气动力学的摸拟。现在世界上计算空气动力学一流水平当属美国NASA。NASA在飞行器计算空气动力学方面拥有一流的学术、研究和应用水平,并且在不断更新其巨型机。许多高超音速空气动力试验无法进行,就用计算机进行摸拟。 我国汽车工业由于近年来开始生产轿车才开始了汽车空气动力学的研究。当前的主要任务应该是抓住太好时机,建立起我国自已的汽车空气动力学研究,试验、设计的综合系统,争取国家及有关高等院校科研单位的支持,建立相应的开放实验室,争取第一流的专家及广泛的国际交流。开放实验室主要进行汽车空气动力学的计算机摸拟、外形的空气动力学优化设计及相关的并行软、硬件,计算数学的研究。其中轿车的空气动力学摸拟与优化必将太大加快新车型的开发速度,以提高产品在世界市场的竞争力,并为我国产品参与世界市场竞争创造一个开放的高水乎研究环境。在空气动力学的研究、应用的世界范围的角逐

空气动力学拉法尔结构实验

空气动力实验 报告 拉阀尔喷管沿程M数分布试验及 二维斜激波前后气流参数测量试验 北京航空航天大学流体力学研究所 2008年8月

拉法尔喷管沿程M 数分布试验指导书 一. 实验目的: 了解暂冲式超音速风洞的基本工作原理,掌握拉伐尔喷管产生超音速的流动特性,根据沿拉法尔喷管各截面静压的测量值,确定沿喷管的M 数分布。 二. G1超音速风洞系统工作原理: 图1为G1超音速风洞系统原理图,G1超音速风洞是由气源和洞体两大部分组成。 气源部分由空气压缩机、油水分离器、单向阀、纯化器和储气罐组成。特别需要指出的是,气体经拉阀尔喷管到实验段是一个膨胀加速过程,气体到达实验段时的温度和密度会很低,此时若空气中含有水分和油的话,水汽就会凝结从而影响试验的精确性,而油分会增加这种凝结的危险性。所以油水分离器是超音速风洞致关重要的一个装置。 G1超音速风洞洞体部分由调压阀、稳定段、拉阀尔喷管、实验段、第二喉道和扩压段组成。 1. 调压阀:由于压缩空气不断的从储气罐中流出,气罐内的压力就要不断地下降,为了保证稳定 段内的总压P 0不变,使用调压阀调节气流的流通面积,使其逐步开大来满足稳定段总压的恒定。 2. 稳定段:经调压阀进入稳定段的气流是及不均匀的,气流中有许多旋涡存在。稳定段的作用就 是对这些不均匀气流进行调整。由于稳定段的截面尺寸是风洞洞体中最大的,因此气流进入稳定段后流速降低,另外稳定段内还装有蜂窝器和阻尼网,其作用是粉碎气流中的大旋涡从而使气流均匀。 3. 拉阀尔喷管:拉阀尔喷管是超音速风洞产生超音速气流的关键部件,见图1,它是一个先渐缩后 渐扩的管道装置,喷管的最小截面称为喉道,在喉道处气流达到音速。对于定常管流,流过任一个截面的流体质量都是相等的,即,)(常数C vA =ρ,式中密度ρ、速度v 和截面A 处于流 管同一截面内,对C vA =ρ式取对数,再微分,得: 0=++ A dA v dv d ρρ , (2-1) 由定常一维流动的欧拉运动方程: ρ/dp vdv -= (2-2)

分子生物组(PCR)检测程序性能验证标准操作程序

1目的 确立分子生物组检测程序性能验证标准操作规程,使检测程序性能验证操作规范化。2适用范围 采用基因扩增检验方法检测的所有项目。 3职责或责任人 3.1组长负责组织本组工作人员具体实施,并审核报告; 3.2本组工作人员负责对适用范围内的检测程序进行验证操作,并撰写报告; 3.3技术主管负责监督本规程的实施; 3.4质量主管参与对检验程序有效性的评价及指导; 3.5检验科主任负责批准检测程序的实施。 4内容 定量检测方法和程序的分析性能验证内容至少应包括精密度、正确度、线性、测量和/或可报告范围、抗干扰能力等。定性检测项目验证内容至少应包括测定下限、特异性、准确度(方法学比较或与金标准比较)、抗干扰能力等。 4.1正确度 指该检测程序测定的结果与真实值或参考值接近的程度。 4.1.1验证方法:本组采用对照试验,将卫计委临床检验中心或湖北省临床检验中 心的能力验证/室间质评的质控品、或已获认可的实验室的标本作为样品,以 所用的检测程序对进行定量分析,分析结果与质控品靶值或比对实验室检测 值进行比较,误差在可接受范围即可接受。 4.1.2样品数量:至少5份,包括正常和异常水平或不同常见基因突变型; 4.1.3频率:至少每年2次; 4.1.4判定标准:对于定性试验,阴阳性应该一致;对于定量试验,应有≥80%的 结果符合要求,卫计委临床检验中心能力和湖北省临床检验中心验证评价界 限靶值分别为0.4和0.5,实验室间结果比对合格标准是偏倚<±7.5%。 4.2特异性 指在可能其它成分(如其他病原体、内源物质等)存在的条件下,采用的方法能 正确测定待测物的特性。对于核酸检测的特异性,主要是指核酸扩增过程中的特 异性。 4.2.1验证方法:取一份阴性标本,加入其他常见病原体高浓度核酸样本,进行10 次独立的检测。 4.2.2判断标准:观察并记录检测结果为阴阳性的差异。 4.3精密度

风洞试验

风洞实验 科技名词定义 中文名称:风洞实验 英文名称:wind tunnel testing 定义:在风洞中进行模拟飞行器在大气中运动时的空气动力学现象。 应用学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 流体力学方面的风洞实验指在风洞中安置飞行器或其他物体模型,研究气体流动及其与模型的相互作用,以了解实际飞行器或其他物体的空气动力学特性的一种空气动力实验方法;而在昆虫化学生态学方面则是在一个有流通空气的矩形空间中,观察活体虫子对气味物质的行为反应的实验。 目录

编辑本段原理 风洞实验的基本原理是相对性原理和相似性原理。根据相对性原理,飞机在静止 风洞实验 空气中飞行所受到的空气动力,与飞机静止不动、空气以同样的速度反方向吹来,两者的作用是一样的。但飞机迎风面积比较大,如机翼翼展小的几米、十几米,大的几十米(波音747是60米),使迎风面积如此大的气流以相当于飞行的速度吹过来,其动力消耗将是惊人的。根据相似性原理,可以将飞机做成几何相似的小尺度模型,气流速度在一定范围内也可以低于飞行速度,其试验结果可以推算出其实飞行时作用于飞机的空气动力。[1] 编辑本段优点 风洞实验尽管有局限性,但有如下四个优点:①能比较准确地控制实验条 风洞实验 件,如气流的速度、压力、温度等;②实验在室内进行,受气候条件和时间的影响小,模型和测试仪器的安装、操作、使用比较方便;③实验项目和内容多种多样,实验结果的精确度较高;④实验比较安全,而且效率高、成本低。因此,风洞实验在空气动力学的研究、各种飞行器的研制方面,以及在工业空气动力学和其他同气流或风有关的领域中,都有广泛应用。 编辑本段要求

风洞试验与数值模拟

风洞试验与数值模拟 ――北京大学在数值模拟方面的技术进展 一.科学研究的方法: 人类在认识自然、认识科学的过程中,曾经创造出了两种方法,即:理论研究和实验研究。理论研究得出的结论,要经过严格的论证,这是十分必要的,但在工程实践中却难以应用。实验研究,结论清晰、直观,也就是俗话说的“看得见,摸的着”,但它的局限性太大,因而应用范围有限。 上世纪四十年代,电子计算机的横空出世,改变了人类的生活和思想。随着近年来计算机软硬件技术的突飞猛进,以前大量无法解决的工程实际问题,已经可以用新的计算方法来加以解决了。因此,第三种科学研究的方法发展出来了,那就是计算科学的方法(或称为数值模拟、数值计算)。它不仅具有理论研究的严谨性,又具有实验研究的直观性,更加具备极其广泛的应用范围。如今,计算科学在科学研究中所占的比重越来越大,并必将成为今后科学技术发展的主流。 二.什么是“风洞试验”: 风洞,从外观上看酷似一座洞,它是通过产生出可人工控制的气流,对试验模型周围的气体的流动进行模拟,并可量度气

流对物体的作用,以及观察流动现象的一种管道状试验设备。 而风洞试验,是实验研究工程问题的一种方法。它是依据运动的相对性原理,将试验原型同比缩小的模型固定在风洞中,人为制造气流流过,获取各测试点的试验数据,并以此寻找出工程问题的解决方案。 风洞试验主要针对相似模型进行测力试验、测压试验和布局选型试验。 三.风洞试验在“挡风抑尘墙”工程实践中的局限性: “挡风抑尘墙”的作用就是降低露天堆场上方的风速,以达到抑尘效果。这是属于流体力学范畴的一类问题。流体力学是物理学的一个分支,是主要研究流体(包括气体和液体)与其中的物体相互作用的一门科学。 研究流体力学的方法同样有理论研究和实验研究。 在理论研究中,以理论流体力学的基本控制方程组和基本定律为出发点,采用适当的前提假设(如空气的不可压缩性假定),经过严格的数学推导,求解出方程中的未知量(如压力,速度等)。 鉴于理论流体动力学的基本控制方程组及其边界条件的强烈的非线性特性,只能在几种简单的情况下得到方程组的解析解,在复杂的情况下(如三维流场,复杂外形等)就无法获得解析解,这就决定了理论研究方法在“挡风抑尘墙”研究中具有很多的局限性,工程实践中很难采用这种方法。

标准飞机模型空气动力测量实验指导书

《低速风洞标准飞机模型测力实验》 实验指导书 空气动力学与风洞实验室 2007年6月

低速风洞标准飞机模型测力实验 一.实验目的: 标准飞机模型测力实验是测量作用在标准飞机模型上的空气动力和力矩,为确定飞机气动特性提供原始数据。本次实验仅做标准飞机模型纵向实验,即实验时侧滑角β=0?。改变攻角,测量纵向三个分量(升力、阻力和俯仰力矩)系数C L、C D和M Z随攻角α的变化规律。 二.实验设备及其工作原理简介: 1)风洞:是产生人工气流的设备,本次实验所用风洞为开口回流式风洞,如下图所示。 其主要组成部分为实验段、扩压段、拐角和 导流片、稳定段、收缩段以及动力段。 实验段截面为椭圆面,其入口长轴为102cm,短轴为76cm,出口处长轴为107cm,短轴为81cm;实验段全长2m;实验段的最大流速为40m/s;紊流度为0.3%;实验段模型安装区内,速压不均匀度'3%。其上游收缩段的收缩比为8.4。 D1风洞采用可控硅控制无级调速;配置有尾撑式α—β机构及内式六分量应变天平。2)六分量应变天平:是是一种专用的测力传感器。用于测量作用在模型上的空气动力 的大小。所谓六分量是指该天平能测量升力、阻力、侧力、俯仰力矩、偏航力矩和滚转力矩。它由应变片、弹性元件、天平体和一些附件组成。 应变天平是一种将机械量转变为电量输出的专用设备。它是运用位移测量原理,利

用天平的变形来测量外力大小。将应变片贴在天平弹性元件上,弹性元件上的应变与外力大小成比例,应变片连接组成测量电桥,接入测量线路中,即可测出力的大小。应变天平在测量过程中的参量变化过程如下: → →ε ? → ? V U R → P? 其中: P—天平弹性元件上承受的气动力。 ε—在气动力P的作用下弹性元件上的应变。 ?—贴在弹性元件上的应变片在弹性元件 R 产生应变ε的情况下产生的电阻增量。 ?而引起的 ?—由应变片产生的电阻增量R U 测量电桥产生的输出电压增量(mV)。 ?—检测仪器所指示的读数增量(V)。 V 右图为一六分量应变天平测量电桥示意图。图中 标有号码处为粘贴有电阻应变片的天平元件。例 如号码1、2、3、4为天平升力元件的四个电阻 阻值相等的应变片,它们构成了一个全桥电路。 当天平升力元件受载后,在电桥AC端将会有电 压信号?U输出,该信号?U将被引入信号放大器。 3)信号放大器(GDA—10): 其功用是将来自于天平各分量电桥的微小电压输出放大到能被计算机接受的电压值。 4)A/D模数转换数据采集板:由于计算机只能处理数字信号,而天平各分量的输出信号是模拟信号,因此须先用A/D模数转换数据采集板将天平输出的模拟信号转换成数字信号,方能由计算机对采集的信号数据进行处理。 5)计算机:通过已有程序软件对标准飞机模型的测力进行过程控制、数据采集和后处理。 6)标准飞机模型:机翼面积S=0.0184688(m2);翼弦b=0.09133(m);翼展l=0.2875(m);

定性试验性能验证报告

AAA医院性能验证报告 性能验证报告 (定性类) 单位名称:AAA医院 科室名称:检验科 实验室:临床微生物与病原学实验室 验证人员: 审核人: 批准人: 验证日期:2012年8月10日—2012年9月10日

检测方法分析性能验证报告 1.方法名称:细菌鉴定 1.1.仪器名称:VITEK 2全自动微生物鉴定/药敏分析系统 1.2.试剂名称: GN鉴定卡、GP鉴定卡、YST鉴定卡 1.4.1 在进行实验前,根据作业指导书由仪器责任人和仪器工程师共同对仪器进行全面的保养、维护和核查,以使仪器达到一个良好的工作状态。 1.4.2 试剂耗材准备 无菌比浊管、无菌棉签、比浊仪、定量加样器、载卡架等。 1.4.3标本的准备 菌种的复苏:根据鉴定卡要求结合实验室现有菌种储备,选用菌株如下:

1.4.4 菌悬液制备 1.4.4.1 比浊仪校准:采用标准比浊管0.5麦氏进行测定,连续测定三次,要求每次结果在控。 1.4.4.2 选取洁净比浊管,加入适量的无菌盐水,挑取新鲜菌落2-3个,充分研磨,混匀。 1.4.4.3 比浊:按照标准操作规程。配制浓度0.5~0.63麦氏的菌悬液。 1.4.4.4上机操作。 1.4.4.5 上机完成时将剩余细菌悬液转种至血平板,过夜培养,检查其纯度。 1.5.结果 1.5.1 正确度验证结果:2010年,参加全国卫生部质控共3次,参加山东省临检中心质控共2次。共鉴定细菌26例,其中革兰阳性细菌占7例,鉴定正确7例,正确度为100%;革兰阴性细菌占15例,鉴定正确15例,正确度为100%;未检出致病菌占1例,正确度为100%。真菌4例,正确度为100%。 1.5.2 符合率验证结果: 对标准菌株上机鉴定,比较细菌鉴定的百分率及其生化反应的符合率,见表1。 1.5.2 重复性验证结果: 留取部分标准菌株及临床分离株,隔日重新上机,比较两次鉴定结果,见表2。 1.6结果判读 符合率试验:最好试验结果和预期结果完全符合;要求鉴定菌种正确,生化反应不符合项数不超过一项。 重复性试验:要求两次鉴定完全相同;差异生化反应项数不多于一项。

空气动力学试验指导书

空气动力学实验指导书 零质量射流形成机理实验 一实验目的 1)学习和了解零质量射流的流场结构和形成机理 2)学习和掌握粒子图像激光测速仪的测试技术 二实验仪器和设备 1)零质量射流发生装置 由信号发生器、功率放大器、扬声器或压电陶瓷片、共振空腔和射流出口组成,实验中可研究驱动信号的波形、频率、射流出口形状对零质量射流形成的影响等。信号发生器具有波形任意给定,相位、频率、幅值精确可调的特点,输出信号经功率放大器放大来驱动扬声器振动膜或压电陶瓷片产生有规律的振动,将共振空腔内的空气吸入和挤出射流出口形成一系列涡环,从而产生单方向的射流。共振空腔和射流出口的几何参数设计和振动膜振动的规律决定了零质量射流的流场特性。可针对不同的教学目的设计制作两到三种形式的零质量射流发生器,以期获得最佳的实验效果。 2)二维粒子图像激光测速仪 由高分辨率的PIV-CCD(1K×1K)、图象采集板、同步器、50mJ的双脉冲激光器、片光发生组件、激光传输导臂、基于Windows NT操作平台的控制和测试软件组成。为了使该测速仪适合测试零质量射流流场,需要更换和购置的设备有:消球差变焦光学MICRO-CCD镜头(F-Mount);数字示波器用来实时监视和测量驱动信号波形和相位并配合同步器进行锁相位流场测试实验;激光传输导臂可以灵活的传输和改变激光片光的入射点以及片光的扩散角,并可空间旋转片光平面以满足瞬态流场测试的需要。 三实验原理与方法 应用现代先进的瞬态流场测试技术粒子图像激光测速系统(PIV)可以在极短的时间内(可小于1个微秒)“冻结”流场结构;测得零质量射流的非定常瞬态流场,以及不同时刻流场的发展和演化过程。验证和演示零质量射流由一系列涡环组成,涡环之间的相互诱导作用是形成零质量射流的机理。 四实验步骤 1)开启零质量射流激振器; 2)开启脉冲激光器,调整激光片光平面在射流出口的中心位置上; 3)在射流出口附近播撒烟雾粒子; 4)调整CCD相机的聚焦平面在激光平面上以得到清晰的粒子图像;

方法学验证方法

方法学验证方法 内容提要:(方法学验证的应用、依据、类型、一般参数、要求) 验证应用:方法验证是对测定方法的评价,是建立新方法的研究内容和依据。 (新建方法、已建立方法的修订验证、已建方法的复现) 验证依据:方法应用领域对方法验证要求的“指导原则” 验证类型:全部验证Fall validation、部分验证Partial validation、交叉验证cross validation ●Full validation:第一次新建方法;一个已建方法,但增加分析对象(精密、回收)。 ●Partial validation:(已建方法的部分改变) 1)分析方法改变(检测器改变); 2)生物样品(抗凝剂改变); 3)基质改变(血-尿); 4)前处理方法改变; 5)生物样品种属改变(rat大鼠-mouse小鼠); 6)仪器改变工作软件改变; 7)稀有生物样品,取样量有限。 ●Cross validation:样品分析在不同场所或实验室进行时,不同实验室需进行加样生物样品或 实际样品分析,建立实验室间的重现性数据。当分析数据由不同检测技术产生时 LC-MS vs ELSD 需交叉验证 部分验证:准确度,精密度(都做) 交叉验证:加样准确度,实际样品分析(任一) 一般参数: 精密度precision: 同一匀质样品的一组测量值,彼此符合的程度。 1)SD 标准偏差 standard deviation 2)%RSD 相对标准偏差relative SD, CV 变异系数 n>8 标准差 SD=开方(求和(xi-x均值)/(n-1)) %RSD=SD/x均值×100% ●日内精密度(intraday precision):同一次测定,7~10份,按方法做。测定,SD值,RSD 限度(生物制品5%,药品2%)。 ●日间精密度(interday precision):不同一次测定,7~10份,按方法做。测定,SD值,RSD 限度(生物制品15%,药品5%)。 准确性accuracy: ●结果与真值的接近程度,表示分析方法测定的正确性,通常用回收率实验表示(加样回收率)。

风洞特种实验技术

风洞特种实验技术综述 摘要:风洞特种实验技术主要包括:动力模拟试验、多体干扰与分离试验、风洞尾旋试验、风洞模型自由飞试验、铰链力矩试验、结冰试验等。本文对这些实验技术进行概念性综述。 关键词:风洞特种实验技术概念综述 一动力模拟试验[1] 1动力模拟试验的目的 对于航空喷气发动机,不论是涡喷式、涡扇式还是冲压式,其前部都配置进气道,而后部配置尾喷管.这样进气道前面的进气流和尾喷管后面的尾喷流,都会对飞行器的外部绕流产生干扰影响,从而改变飞行器的气动特性———即通常称为“发动机进排气动力影响”。 2动力模拟试验的实验技术的概念 发动机动力模拟风洞试验技术,就是要在风洞试验中,实现其发动机进气和排气流动效应的模拟,以便测定出发动机进排气流对飞行器的气动影响量 .随着目前大推力发动机被广泛采用,动力对飞行器性能的影响更显示出重要性.动力模拟试验已成为飞行器研制中必不可少的风洞试验项目. 二多体干扰与分离试验 1多体干扰与分离试验的重要性[2] 多体干扰与分离动力学是亚轨道飞行器、重复使用跨大气层飞行器和通用再入飞行器研制中的一个关键技术问题,关系到演示验证能否成功 2多体干扰与分离试验的实验技术[3] 试验模型是某典型构型的可重复使用航天飞行器,由助推器以及再入体两部分组成。利用风洞上下投放机构实现两模型间的相对运动,采用两台天平对模型的气动力进行测量,同时利用纹影仪记录模型分离过程中的激波干扰情况。结果结果表明:试验系统设计合理,能准确模拟物体间分离过程,并能精确测量多体干扰的气动力特性,激波干扰清晰可见。 三风洞模型自由飞试验[4] 1风洞模型自由飞试验的意义 它为新型气动布局飞机稳定性与操纵性研究、飞行控制律验证与优化、大迎角过失速机动能力实现、推力矢量以及垂直起降技术发展、主动流动控制技术的发展起到了重要的推进作用。 2水平风洞模型自由飞试验技术 水平风洞模型自由飞是通过远程控制实现飞机模型在风洞试验段无系留六自由度自由飞行的试验技术,可为缩比模型提供在风洞中模拟全尺寸真机飞行运动的仿真试验环境。 3 水平风洞模型自由飞试验平台的关键技术 关键技术包括:动力相似模型设计加工技术;动力模拟技术;舵机运动控制技术;模型姿态实时精确测量技术;飞行控制系统设计与集成技术。 四风洞尾旋试验[5] 1 立式风洞 立式风洞是一种具有垂直试验段的低速风洞。风扇垂直向上抽气,并使上升气流产生的浮力恰好平衡自由飞模型的重量。对于飞机的尾旋研究,大量的和基本的尾旋和改出尾旋特性的试验研究都在立式风洞中进行。

空气动力学

空气动力学 科技名词定义 中文名称:空气动力学 英文名称:acerodynamics;aerodynamics 定义1:流体力学的分支学科,主要研究空气运动以及空气与物体相对运动时相互作用的规律,特别是飞行器在大气中飞行的原理。 所属学科:大气科学(一级学科);动力气象学(二级学科) 定义2:研究空气和其他气体的运动以及它们与物体相对运动时相互作用规律的科学。 所属学科:航空科技(一级学科);飞行原理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片

同名书籍 空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 目录

编辑本段 1.动量理论 推导出作用在风机叶轮上的功率P和推力T(忽略摩擦阻力)。 由于受到风轮的影响,上游自由风速V0逐渐减小,在风轮平面内速度减小为U1。上游大气压力为P0,随着向叶轮的推进,压力逐渐增加,通过叶轮后,压力降低了ΔP,然后有又逐渐增加到P0(当速度为U1时)。 根据伯努力方程 H=1/2(ρv2)+P (1) ρ—空气密度 H—总压 根据公式(1), ρV02/2+P0=ρu2/2+p1 ρu12/2+P0=ρu2/2+p2 P1-p2=ΔP 由上式可得ΔP=ρ(V02- u12)/2 (2) 运用动量方程,可得作用在风轮上的推力为: T=m(V1-V2) 式中m=ρSV,是单位时间内的质量流量 所以:T=ρSu(V0-u1) 所以:压力差ΔP=T/S=ρu(V0-u1) 由(2)和(3)式可得: u=1/2[(V0-u1)] (4) 由(4)式可见叶轮平面内的风速u是上游风速和下游风速的平均值,因此,如果我们用下式来表示u。 u=(1-a)*V0 (5) a 称为轴向诱导因子,则u1可表示为: u1=(1-2a)*V0 (6)

CNAS GL038 2019 临床免疫学定性检验程序性能验证指南

CNAS-GL038 临床免疫学定性检验程序性能验证指南Guidance of Verification of Qualitative Measurement Procedures used in the Clinical Immunology 中国合格评定国家认可委员会

前言 本文件由中国合格评定国家认可委员会(CNAS)制定,是对CNAS-CL02:2012《医学实验室质量和能力认可准则》和 CNAS-CL02-A004:2018《医学实验室质量和能力认可准则在临床免疫学定性检验领域的应用说明》中有关临床免疫学定性检验程序进行性能验证实验所做的具体解释和指导,供医学实验室和评审员参考使用。 本文件为首次发布。

临床免疫学定性检验程序性能验证指南 1 范围 本指南适用于申请认可或已获认可的医学实验室对临床免疫学(定性)检验程序进行性能验证实验活动,也可供评审员在现场评审过程中参考使用。 本指南主要适用于医学实验室使用的临床免疫学定性检验方法,其他专业领域使用的定性检验程序/方法可参考使用。 临床免疫学定性检验程序,也称临床免疫学定性检验方法,在本指南中统一称为临床免疫学定性检验程序(以下简称“检验程序”),包括纯定性免疫检验、半定量(滴度)的免疫检验和以定量方式报定性结果的免疫检验等各项检验活动。 本文件适用于医学实验室采用的经确认的检验程序。 2 规范性引用文件 下列文件对于本指南的应用是必不可少的。凡是注明日期的引用文件,仅该版本适用于本指南。凡是未注明日期的引用文件,其最新版本(包括所有的修改部分)适用于本指南。 WS/T 416-2013《干扰实验指南》 WS/T 494-2017《临床定性免疫检验重要常规项目分析质量要求》 WS/T 505-2017《定性测定性能评价指南》 WS/T 514-2017《临床检验方法检出能力的确立和验证》 3 术语和定义 对于本标准,GB/T 29791.1-2013(ISO 18113-1:2009,IDT)中的定义适用。下列术语和定义适用于本指南。 3.1 5%~95%浓度区间 C 5~C 95 interval 临界值附近的分析物浓度,在此区间之外的检测到的浓度结果始终为阴性 (浓度C 95 )。 注:C5即仅有5%被检样本可被判断为阳性时的分析物浓度,C95即有95%被检样本可被判断为阳性时的分析物浓度。 3.2诊断准确度标准 diagnostic accuracy criteria

空气动力学试验指导书-南京航空航天大学精品课程

空气动力学实验指导书 大攻角飞行器侧向力产生机理实验 一实验目的 1)大攻角细长旋成体前体非对称涡系及其侧向力控制,是航空航天领域中的重要而经典的研究课题。作为飞行器设计和流体力学专业的学生,学习和了解本学科的前沿课题是十分必要的。通过实验,了解细长旋成体在大攻角时侧向力的变化特性,特别是要明白侧向力产生的物理机制以及如何控制侧向力等重要问题。 2)学习和掌握风洞模型测力实验 二实验仪器和设备 1)1米低速风洞回流风洞 细长旋成体模型的试验,是在南京航空航天大学空气动力学系非定常回流低速风洞进行。该风洞是国内首座非定常风洞,通过水平并列旁路加上非定常流动控制机构实现试验段的非定常流场。在作为定常风洞使用时具有低湍流度(0.05%)、低噪声(75dB)等特点。开口实验段为矩形1.5×1米,实7验段长度1.7米,湍流度0.5‰,最大风速是30米/秒,最低稳定风速为0.5米/秒。风洞整体布局见图-1。 2)模型姿态角控制系统 模型姿态角控制系统由系统底盘、水平圆盘转台、弯刀支架、齿轮减速箱、步进电机和驱动器以及控制计算机组成。由步进电机通过齿轮减速箱驱动圆盘转台、弯刀支架做旋转运动,两者的旋转中心与天平的校心重合。该系统可分别和同时改变迎角α和侧滑角β,其控制精度优于2′,迎角α可做360o旋转,侧滑角β变化范围在-8o~30o。内置式天平通过天平杆固定在弯刀支架上,如图-2所示。 3)细长旋成体模型(小模型,用于1米低速风洞试验) 低速风洞测力模型的前段为尖拱型的锥柱体,长细比为2,后段为等直径段圆柱体(D=62mm),模型全长L=700mm,长细比L/D=11.3,模型采用硬铝材料加工。模型采用尾支撑方式,模型后段内部装有外径为24mm的六分量测力天平及天平尾撑杆,并通过弯刀支架安装在圆盘转台上,转台由步进电机驱动可做360o水平旋转,用来改变模型的攻角。 4)压力传感器 在模型X/D=3.2,周向角φ=±120o处开了两个内径为1mm的静压孔。在模型内部装

空气动力学

基于空气动力学的车身设计方法 14车辆卓越雷方龙1408032214 现如今工业技术急速进步,为汽车工业发展创造了良好的契机,汽车变得越来越普及、越来越高速,由此车身空气动力学曲线问题得到诸多研究人员的热点关注。 众所周知,车速越快阻力越大,空气阻力与汽车速度的平方成正比。如果空气阻力占汽车行驶阻力的比率很大,会增加汽车燃油消耗量或严重影响汽车的动力性能。据测试,一辆以100km/h速度行驶的汽车,发动机输出功率的80%将被用来克服空气阻力,减少空气阻力,就能有效地改善汽车的行驶经济性。如图1为空气流动对汽车的各方面影响。 图1 自卡尔·本次在1886年发明生产出世界上第一辆汽车起,汽车已有了百年的发展历史。从汽车造型角度而言,自最初的马车型汽车(无空气动力学阶段),到现如今的复合型汽车(空气动力学高度化阶段),车身空气动力学曲线发展收获了显著的成效[1]。车身空气动力学一方面重要影响着汽车的各式各样关键性能,好比动力性能、安全性能、环保性能以及经济性能等,另一方面也重要影响着汽车的外观转变及审美发展潮流。随着社会经济发展,人们生活水平日益改善,人们对于出行必备交通工具汽车的性能要求愈来愈高,汽车生产商对于车辆的气动特征也越来越关注,气动性能的好坏以转变成汽车行业竞争的关键因素。 汽车在行驶中由于空气阻力的作用,围绕着汽车重心同时产生纵向,侧向和垂直等三个方向的空气动力量,对高速行驶的汽车都会产生不同的影响,其中纵向空气力量是最大的空气阻力,大约占整体空气阻力的80%以上。

一、在研究汽车空气动力学的过程中的三种方法。 (1)、理论研究方法理论研究方法通过抓住所分析问题的主要影响因素,抽象出合理的简化理论模型,并根据总结出来的相关物理定律和有关介质性质的试验公式来建立描述介质运动规律的积分或微分方程。然后利用各种数学工具及相应的初始、边界条件解出方程组,通过对解分析来揭示各种物理量的变化规律,包括将它与实验或观察资料对照,确定解的准确度和适用范围。 (2)、数值计算研究方法由于数学发展水平的局限,理论研究只能建立较为简单的近似模型,无法完全满足研究更复杂更符合实际的气流的要求。于是近年来出现了依托快速电子计算机进行有效数值计算的方法CFD,其中包括有限元法、有限差分法等,它属于汽车计算机辅助空气动力学CAA的设计范畴,并已成为与理论分析和实验并列或具有同等重要性的研究方法。其优点是能够用来预测或解决一些理论及实验无法处理的复杂流动问题,取代部分实验环节,省时省工。但它要求事前对问题的物理特性有足够的理解,提炼出较精确的数学方程及相应的初始、边界条件等。但这些都离不开试验和理论方法的支持,并且数值方法通常无法直接反映同类问题中有普遍指导意义的结论或规律。 (3)、试验研究方法试验研究方法在空气动力学研究中占有重要地位,如风洞试验法、道路试验法。它使人们能在与所研究问题相同或相近条件下进行观测,提供建立运动规律及理论模型的依据,检验理论或计算结果的准确性、可靠性和适用范围,其作用是不可替代的。但试验方法受限于试验手段、设备和经费等物质条件,甚至有些问题尚无法在实验室中进行研究。 理论、数值计算和试验三种方法相互促进,彼此影响,取长补短从而推动汽车空气动力学的不断发展。 二、轿车外形设计的两种方法 (1)、局部最优化方法。基本思路是在满足功能、工艺学、人机工程学、安全法规以及美学造型等方面的要求下设计出汽车车身造型,然后再进行空气设计程序。此方法的优点是:操作简单,在流线型较差的车上有较好的效果。通过对原始模型仿真,从结果中得出某细节修改的模型,再重新进行仿真分析。像这样循环反复,最终达到自己预期的目标。这种方法在现实设计中运用广泛。 (2)、整体最优化方法。整体最优化是基于空气动力学原理,在汽车造型设计初期获得极佳的气动特性的理想外形,接着再根据功能结构需求,调整集合的局部外形,使其满足人机工程学、国家安全法规等各个必要因素的汽车[1]。所以,对于这种汽车的空气动力学设

高速列车空气动力学动模型试验

高速列车空气动力学动模型试验 T约翰逊 摘要 AEA技术轨道动模型试验台是一个用来研究与评价高速列车在明线和隧道通过发射方式使列车模型沿150m长的测试轨道运行的装置,最高速度为305km/h。两平行轨道允许两列列车模型同时相向发射,以此来模拟列车交会效应。该装置适用于明线上的空气压力、隧道压力波,以及轨道间和平台上滑流空气速度的测量。 本文简要介绍了建造该试验台的原因,以及为了确保模型测试结果能够代表实车情况所需的技术要求,描述了该试验装置的工作原理,并且提供一些以前用该装置已经完成的研究案例插图。概述了该试验平台被引入研究铁路新的空气动力学要求的实用性。最后,介绍了该试验台未来在加快高速列车空气动力学领域发展的能力。 关键词:空气动力学,建模,测试,高速列车,压力,空气速度,隧道 引言 在20世纪80年代初,英国铁路研究组织认为需要一个移动的模型试验装置来研究铁路隧道空气动力学。原因是实车测试花费很大(现在依然是),需要复杂的规划,并且测试周期很长,属于劳动力密集型。此外,环境条件是不可控的,比如在恶劣的天气条件下,往往会使一天的测试失效,或者至少会对分析结果增加不确定性。最后,对于已经造好的列车和建好的基础设施的测试是有限的,限制了研究“可能性”设计潜力。尽管英国铁路组织在列车空气动力学方面所做的研究成果正在快速增加,但是完全排除实车测试的必要性只依靠理论研究和数值计算依然不能够充分研究空气动力学问题。 建立铁路空气动力学模型试验的技术要求:模型试验的雷诺数和马赫数必须足够的接近实车标准,以确保模型试验结果能代表实车情况。雷诺数确保了比例效应不重要,当列车进入隧道时,马赫数确保了压力波,表现在同一阶段作为其全尺寸当量。根据英国铁路研究人员丰富的风洞试验经验,众所周知,如果模型比例大于1/30时,雷诺数的影响将是很小的。列车马赫数,(即列车速度除以在空气中的声速),如果模型使用实车速度,那么其马赫数和实车也是相符合的(忽略外界对声速的影响)。最后,该试验装置列车模型比例为1/25(如果需要,可以更大),行驶速度为200km/h。最初的试验台是1988年建立的一个单一的发射轨道。 动模型(MMR)的发展始于1991年,最初欧洲和英国都是通过提高列车速度来推动其发展。MMR一个主要的扩展能力1992年完成的可以研究列车通过2个不同的分离轨道的二次发射轨道。达利和约翰逊在1999年对MMR未来的发展进行了详细的报道。

实验室检测方法的确认及验证

内容 三、食品微生物检测 方法的确认与证实 二、食品微生物检验的外部 质量控制和内部质量控制 一、涉及食品微生物 检验的质量控制规范 食品微生物检验的质量控制

一、涉及食品微生物检验的质量控制规范 质量 手册 程序性文件 作业性文件 格式文件(质量控制、表格、报告……) 原 则 一类活动 一项活动 证据 证实 文件 支持文件 纲领性文件 实验室质量管理体系架构图 一级文件 二级文件 三级文件 标准、规范、规程、指南、要求、 操作规程、通行 惯例等

ISO 7218:2007 Microbiology of food and animal feeding stuffs —General requirements and guidance for microbiological examinations SN/T 0330-2012 出口食品微生物学检验通则(IDT ISO 7218:2007 ) GB 4789.1-2010 食品安全国家标准食品微生物学检验总则 CNAS CL09-2012 检测实验室能力认可准则在微生物检测领域的应用说明 ISO 11133 Microbiology of food and animal feeding stuffs — Guidelines on preparation and production of culture media. Part 1 : General guideline on quality assurance for the preparation of culture media of culture media in the laboratory Part 2:Practical guidelines on performance testingof culture media SN/T 1538-2005 & 2007 培养基制备指南(MOD ISO 11133) GB 4789.20 食品安全国家标准食品微生物学检验培养基和试剂质量控制方法(MOD ISO 11133)(征求意见稿) WS/T 232-2002 商业性微生物培养基质量检验规程

相关文档
最新文档