循环码(7,3)码

循环码(7,3)码
循环码(7,3)码

循环码(7,3)码

(生成多项式1)(234

+++=x x x

x g )

摘要:本报告详细给出了循环码的定义以及由生成多项式求解生成

矩阵和系统生成矩阵的过程,并在Matlab 环境下写出了循

环码的编码器和解码器代码,实现了编码和译码功能。分析和讨论了 此码发现错误、纠正错误的能力,并讨论了其与线性分组码、Hamming 码等信道编码的区别与联系。

关键字:循环码 编码 译码 检错 纠错 Matlab

信道编码:信道编码又称差错控制编码或纠错编码,它是提高信

息传输可靠性的有效方法之一。一类一类信道编码是对传输信号的码型进行变换,使之更适合于信道特性或满足接收端对恢复信号的要求,从而减少信息的损失;另一类信道编码是在信息序列中人为的增加冗余位,使之具有相关特性,在接收端利用相关性进行检错或纠错,从而达到可靠通信的目的。

1.1、循环码

循环码是线性分组码中一个重要的分支。它的检、纠错能力较强,编码和译码设备并不复杂,而且性能较好,不仅能纠随机错误,也能纠突发错误。

循环码是目前研究得最成熟的一类码,并且有严密的代数理论

基础,故有许多特殊的代数性质,这些性质有助于按所要求的纠错能

力系统地构造这类码,且易于实现,所以循环码受到人们的高度重视,在FEC 系统中得到了广泛应用。

1.1.1、循环码定义

定义:一个线性分组码,若具有下列特性,则称为循环码。设码字 )(0121c c c c c n n ???=-- (1.1.1) 若将码元左移一位,得

()

)(10121--???=n n c c c c c (1.1.2)

()

1c

也是一个码字。

由于(k n ,)线性分组码是n 维线性空间n V 中的一个k 维子空间,因此()k n ,循环码是n 维线性空间n V 中的一个k 维循环子空间。 注意:循环码并非由一个码字的全部循环移位构成。

1.1.2、循环码的特点

循环码有两个数学特征: (1)线性分组码的封闭型;

(2)循环性,即任一许用码组经过循环移位后所得到的码组仍为该许用码组集合中的一个码组。

即若()0121a a a a n n ???--为一循环码组,则

()1032---???n n n a a a a 、()2143----???n n n n a a a a 、……还

是许用码组。也就是说,不论是左移还是右移,也不论移多少位,仍

然是许用的循环码组。

表1.1-1列出了某(7,3)循环码的全部码组。

码组 信息位

监督位

码组

信息位

监督位

编号 编号

10000000510011102001110161010011301001117110100

14

1

1

1

1

8

1

1

1

1

6

a 5

a 4

a 3

a 2

a 1

a 0a 6

a 5

a 4

a 3

a 2

a 1

a 0

a

表1.1-1(7,3)循环码组 以3号码组(0100111)为例,左移循环一位变成5号码组(1001110),依次左移一位构成的状态图如图1.1-2所示。

1110100

0100111

0111010001110110011101010011

1101001

3号 5号

2号

4号

8号 7号 6号

图1.1-1(7,3)循环码中的循环圈

可见除全零码组外,不论循环右移或左移,移多少位,其结果均在该循环码组的集合中(全零码组自己构成独立的循环圈)。

1.1.3、码多项式

为了用代数理论研究循环码,可将码组用多项式表示,循环码

组中各码元分别为多项式的系数。长度为

n

的码组

()0121a a a a A n n ???=--用码多项式表示则为

012211)(a x a x a x a x A n n n n +???++=---- (1.1.3)

式中,x 的幂次是码元位置的标记。 若把一个码组左移i

位后的码组记为

),,,,(121)(i n i n i n i n i a a a a A -+-----???=,其码多项式为

i n i n n i n n i n i a x a x a x a x A -+-------++???++=122

11)()( (1.1.4) )()(x A i 可以根据)(x A x i 按模1+n x 运算得到,即 )1mod()()()(+≡n

i i x x A x x A (1.1.5)

)()1)(()()

(x A x x Q x A x i n i ++= (1.1.6)

式中,)(x Q 为)(x A x i 除以1+n x 的商式,而)()

(x A i 等于)(x A A i

?被

1+n x 除得之余式。

以码组1011100为例,若将此码左移两位,则由式(1.1.6)可得 )()1)(()()

2(723462x A x x Q x x x x x ++=+++

易有其余式为x x x x x A i +++=456)()( ,对应的码组为1110010,它与直接对码组进行循环左移的结果相同。

码多项式之间可以进行代数运算,在二元码中遵循模2运算的规则。根据线性码的封闭性,任意两码字经模运算后仍为本码组中的码字。

1.1.4、生成多项式

(n,k )循环码码组集合中(全“0”码除外)幂次最低的多项式(n-k )阶称为生成多项式)(x g 。它是能整除1+n

x 且常数项为1的多项式,具有唯一性。集合中其他码多项式,都是按模(1+n

x )运算下)(x g 的倍式,即可以由多项式)(x g 产生循环码的全部码组。

假设信息码多项式为)(x m ,则对应的循环码多项式为

)()()(x g x m x A = (1.1.7) 式中,)(x m 为次数不大于1-k 的多项式,共有k

2个(k n ,)循环码组。

考查表1.1-1,其中4=-k n 阶的多项式只有编号为2的码组(0011101),所以表中所示(7,3)循环码组的生成多项式

1)(234+++=x x x x g ,并且该码组集合中的任何码多项式)(x A 都

可由信息位乘以生成多项式得到

)1mod()()()(0121+++???++=--n

k k x x g m m m m x A (1.1.8)

式中,)(0121m m m m k k ???--为信息码元。 对于(7,k )循环码,17+x 的因式分解为

)1)(1)(1(12

3

3

7

+++++=+x x x x x x (1.1.9) 由该式可以构成表1.1-2所示几种(7,k )循环码。

表1.1-2 (7,3)循环码的生成多项式

从表1.1-2中可以看出,即使n,k 均已确定,也可能由多种生成

多项式供选择,选用的多项式不同,产生出的循环码组也不同。

1.1.5、生成矩阵

根据各码组集合中生成多项式的唯一性,可以构造生成矩阵G 。由于g (x )的次数为k n -,则)(,),(),(1x g x x xg x g k -???都是码多项式,

(7,k) g(x)

(7,1) (7,3) (7,4) (7,6)

)1)(1(323++++x x x x )1)(1()1)(1(323

++++++x x x x x x

113

2

3

++++x x x x 或

1+x

而且线性无关,因此以这k 各多项式对应的码组作为k 行就能构成该循环码的生成矩阵,因此循环码的生成矩阵多项式可以写成

??????

?

???????=

-)()()()(1x g x g x x g x x G k (1.1.10) 以生成多项式1)(2

3

4

+++=x x x x g 构造)(x G ,相应的矩阵形式为

??

??

?

?????+++++++++=??????????=1

)()()()(2343

4524562x x x x x x x x x x x x g x g x x g x x G (1.1.11)

则G 为g(x)升幂排列时的G 为

????

?

?????=101110001011100010111G (1.1.12)

对式(1.1.12)作线性变换,整理成典型形式的生成矩阵

????

?

?????=101110011100100111001G (1.1.13)

若信息码元与式(1.1.13)相乘,得到的就是系统循环码。

1.1.6、监督多项式与监督矩阵

如前所述,在(n ,k )循环码中,由于g(x)能除尽,因此1+n

x 可

分解成g(x)和其他因式的乘积,记为

)()(1x h x g x n

=+

即可写成

)(1)(x g x x h n +=

(1.1.14) 由于g(x)是常数项为1的r 次多项式,所以h(x)必为k 次多项式。称h(x)为监督多项式或一致校验多项式,与式(1.1.10)给出的G(x)相对应,监督矩阵多项式可表示为

??????

????????=

-)()()()(***1x h x xh x h x x H r (1.1.15) 式中,)(*

x h 式h(x)的逆多项式。

由式(1.1.14)可知,前述生成多项式的g(x)的一致校验多项

式为1)(2

3++=x x x h ,所以其一致校验矩阵(监督矩阵)为

?

??

??

????

???=1011000

0101100

00101100001011)(X H (1.1.16)

1.1.7、系统循环码

循环码也可以构成为系统循环码。为方便系统码的构造,将消息多项式和码式都记为高位在前,即),,,,(0121m m m m m k k ???=--的消息多项式为m(x),

1

1

10)(--+++=k k x m x m m x m

又设码式的高幂次部分等于m(x),即

)

()()(1

11110x p x m x x c x c x c x c c x c k n n n k n k n k n k n +?=++++++=---+-+--- k n r x p -=

其中p(x)称为校验位多项式,由于码式是生成式的倍式,所以

))

((mod 0)()()()(x g x g x a x m x x p k

n ==+-

))()(mod ()(x g x m x x p r

?-= 因此循环码的系统码码式为 ))]((mod )([)()(x g x m x x m x

x c r

r

-= (1.1.17)

将循环码的系统码构造步骤总结为

(1)多项式乘))(()(x m x x m x r

r =

(2)多项式求模(余式) )())())(mod ((x p x g x m x r

=

(3)多项式减)()())((x c x p x m x r =- 如果令)(x m 为单项式1

+r x ,1,,1,0-=k i

r x p x p x g x a x

i i r

()()(1

i

r i

i x x p x c ++=)()( 那么容易看到,)(x c i 对应的向量i c ,1,,1,0-=k i 是线性无关的,从而得到循环码系统码的生成矩阵s G 为

?

????

??

?????=------1000100011

,11

,10,11

,111101,00100r k k k r r s p p p p p p p p p G

(1.1.18)

故由式(1.1.18)可以求得前述(7,3)循环码系统码的生成矩阵为

??

??

??????=101110011100100111001s G

1.1.8、循环码的编码

1. 利用生成多项式g(x)实现编码:

如上所述,但循环码的生成多项式g(x)确定时,码就完全确定了。现在讨论生成多项式g(x)给定以后,如何实现循环码的编码问题。 若已知 g(x)=g n-k x n-k +g n-k-1x n-k-1+...g 1x+g 0 并设信息元多项式 m(x)=m k-1x k-1+m k-2x k-2+...m 1x+m 0

要编码成系统循环码形式,即码字的最左边k 位是信息元,其余n-k 位是校验元,则要用x n-k 乘以m(x),再加上校验元多项式r(x),这样得到的码字多项式c(x)为 c(x)=x n-k m(x)+r(x)

=m k-1x n-1+m k-2x n-2+...m 0x n-k +r n-k-1x n-k-1+...r 1x+r 0 其中 r(x)=r n-k-1x n-k-1+...r 1x+r 0 c(x)一定是g(x)的倍式,即有

c(x)=x n-k m(x)+r(x)=q(x)g(x) c(x)=x n-k m(x)+r(x)=0. mod g(x)

注意到g(x)为n-k 次多项式,而r(x)最多为n-k-1次多项式,必有 r(x)=x n-k m(x), mod g(x) (1.1.19) 即r(x)必是x n-k m(x)除以g(x)的余式。

式(1.1.19)指出了系统循环码的编码方法:首先将信息元多项式

m(x)乘以x n-k 成为x n-k m(x),然后将x n-k m(x)除以生成多项式g(x)得到余式r(x),该余式就是校验元多项式,从而得到码字多项式

c(x)=x n-k m(x)+r(x)。

综上所述,系统循环码的编码问题,可以归结为两个多项式的除法运算,即将x n-k m(x)除以生成多项式g(x)得到余式r(x)的运算,因此研究多项式除法的电路实现是必要的。

由前面得叙述以求得循环码的生成矩阵等,故对于生成式为

1)(234+++=x x x x g 的(7,3)循环编码器,其编码原理图如

图1.1-2。

B

C D

+

+

+

1

2

+

1-3拍

4-7拍

M

A

A

图1.1-2(7,3)循环码编码器原理图 在Matlab 上运行代码如下: clear;clc;

G=[1 0 0 1 1 0 1;0 1 0 1 1 1 0;0 0 1 0 1 1 1 ]; msg=randint(20,3,[0 1]);

code=mod(msg*G,2); %编码及加入噪声 noise=randerr(20,7); code1=mod(code+noise,2);

for i=1:20

t=code1(i,:);

t=decode(t); %调用decode函数

nmsg(i,:) = t;

end

err=mod(nmsg+msg,2);

n=sum(sum(err))/1000; %误码率计算

disp(n);

1.1.9、循环码的译码

当码字c通过噪声信道传送时,会受到干扰而产生错误。如信道产生 y=c+e

上式也可以写成多项式形式 y(x)=c(x)+e(x)

译码器的任务就是从y(x)中得到e ,然后求得估值码字

c =y(x)+e (x),并从中得到信息组m (x)。

循环码的译码可按以下三个步骤进行:

①接收到的y(x)计算伴随式式s(x);

②根据伴随式s(x)找到对应的估值错误图样e (x);

③计算c =y(x)+e (x),得到估值码字c (x)。若c (x)=c(x),则译码正确,否则,若c (x)≠c(x),则译码错误。

译码器实现的复杂程度,往往是一个纠错码能否使用的关键。利用循环码的循环特性,经常会使其译码运算变得简单,这也是循环码

受到关注和重视的重要原因。

对于本报告讨论的(7,3)循环码,其译码器原理图如图1.1-3。

+D0D1D2D3

++

&

+

7级移位寄存器

M=1信号使各存储单位清零

输入Y(x)M

输出C(x)

图1.1-3(7,3)循环码译码器原理图

对此译码器,其Matlab上运行代码如下:

%译码器代码

function m=decode(code)

H = [1 1 0 1 0 0 0;1 1 1 0 1 0 0 ;0 1 1 0 0 1 0 ;1 0 1 0 0 0

1 ];

S=mod(code*H',2);

for i=1:7

if S==H(:,i)'

code(i)=~code(i);

break;

end

end

m=code(1:3)

1.1.10、循环码检错与纠错能力

由于循环码是一种线性分组码,所以其纠检错能力与线性分组码

相当。而线性分组码的最小距离可用来衡量码的抗干扰能力,那么一个码的最小距离就与它的纠检错能力有关。

定理: 对于任一个(n,k )线性分组码,若要在码字内

(1) 检测e 个错误,要求码的最小距离1+≥e d ; (2) 纠正t 个错误,要求码的最小距离12+≥t d ;

(3) 纠正t 个错误同时检测e (

t ≥)个错误,则要求

1++≥e t d ;

循环码的译码分检错译码与纠错译码两类。在无记忆信道上,对码字c ,差错图案e 和接收向量r 的多项式描述为

)()()

(x e x c x r += (1.1.20)

定义)(x r 的伴随多项式为)(x s

1

12210))

((mod )()(--++++==r r x s x s x s s x g x r x s (1.1.21)

由于)),((mod 0)()()(x g x g x a x c ==所以

))()(mod ()(x g x e x s = 由此可见,0)(≠x s 则一定有差错产生,或说满足

0))()(mod (≠x g x e 的差错图样)(x e 产生,它满足

0))()(mod (=x g x e 。

循环码的检错译码即是计算)(x s 并判断是否为0。

1.2、讨论

线性分组码、Hamming码、循环码的联系与区别

线性分组码是同时具有分组特性(码字和消息长度恒定)和线性特性(消息相加后的编码等于各自编码后相加)的纠错码,它是整个纠错编码中很重要的一类码,也是讨论各种码的基础。汉明码是一种典型的线性分组码,同时,循环码也属于线性分组码。

汉明码是1950年由汉明(Hamming)提出的,它性能良好,既具有较高的可靠性,又具有较高的传输率,而且编译码电路较为简单,易于工程实现;但汉明码的编码效率比较低,它每4个比特编码就需要3个比特的冗余校验比特,而且它只能纠正单个的错误。

循环码是线性分组码中一个重要的子类。其代数结构完全建立在有限域基础上,具有很多有用的性质,易找到有效的编译码方法。循环码的循环结构使码字的设计范围大大增加,同时大大简化了编译码结构。它的检、纠错能力较强,编码和译码设备并不复杂,而且性能较好,不仅能纠随机错误,也能纠突发错误,是目前研究得最成熟的一类码。

2.1、参考文献

(1)陈运主编《信息论与编码》(第2版)——电子工业出版社;(2)孙丽华主编《信息论与纠错编码》——电子工业出版社;(3)王秉钧、王少毅、韩敏编著《通信原理及其应用》——国防工业出版社;

(4)刘卫国主编《MATLAB程序设计与应用》(第二版)——高等教

育出版社。

基于MATLAB的循环码实验报告

课程名称:信息论与编码 课程设计题目:循环码的编码和译码程序设计指导教师: 系别:专业: 学号:姓名: 合作者 完成时间: 成绩:评阅人:

一、实验目的: 1、通过实验了解循环码的工作原理。 2、深刻理解RS 码构造、RS 编译码等相关概念和算法。 二、实验原理 1、RS 循环码编译码原理与特点 设C 使某 线性分组码的码字集合,如果对任C c c c C n n ∈=--),,,(021 ,它的循环 移位),,,(1032)1(---=n n n c c c c C 也属于C ,则称该 码为循环码。 该码在结构上有另外的限制,即一个码字任意循环移位的结果仍是一个有效码字。其特点是:(1)可以用反馈移位寄存器很容易实现编码和伴随式的计算;(2)由于循环码有很多固有的代数结构,从而可以找到各种简单使用的译码办法。 如果一个 线性码具有以下的属性,则称为循环码:如果n 元组 },,,{110-=n c c c c 是子空间S 的一个码字,则经过循环移位得到的},,,{201)1(--=n n c c c c 也 同样是S 中的一个码字;或者,一般来说,经过j 次循环移位后得到的 },,,,,,,{11011)(---+--=j n n j n j n j c c c c c c c 也是S 中的一个码字。 RS 码的编码系统是建立在比特组基础上的,即字节,而不是单个的0和1,因此它是非二进制BCH 码,这使得它处理突发错误的能力特别强。 码长:12-=m n 信息段:t n k 2-= (t 为纠错符号数) 监督段:k n t -=2 最小码段:12+=t d 最小距离为d 的本原RS 码的生成多项式为:g(x)=(x-α)(x -α2)(x -α3)…(x -αd -2) 信息元多项式为::m(x)=m0+m1x+m2x2+…+mk -1xk-1 循环码特点有: 1)循环码是线性分组码的一种,所以它具有线性分组的码的一般特性,且具有循环性,纠错能力强。 2)循环码是一种无权码,循环码编排的特点为相邻的两个数码之间符合卡诺中的邻接条件,即相邻数码间只有一位码元不同,因此它具有一个很好的优点是它满足邻接条件,没有瞬时错误(在数码变换过程中,在速度上会有快有慢,中间经过其他一些数码形式,即为瞬时错误)。 3)码字的循环特性,循环码中任一许用码经过牡环移位后,所得到的码组仍然是许用码组。

输煤系统调试方案

1 概述 1.1系统简介 华电新疆发电有限公司昌吉热电厂2×330MW热电联产工程1号锅炉由上海锅炉厂有限公司设计制造。型号为SG-1180/17.5-M4004,锅炉为亚临界、自然循环汽包炉,单炉膛、一次中间再热、燃烧器摆动调温、平衡通风、四角切向燃烧、紧身密闭、固态排渣、全钢架悬吊结构。设计采用0号轻柴油点火,燃用烟煤。锅炉以最大连续负荷(即BMCR工况)为设计参数。锅炉主要参数见表1。 本期工程燃煤主要由神华公司屯宝煤矿、哈密煤业硫磺沟矿及本地煤矿供给,采用公路运输进厂。 工程建设单位为华电新疆发电有限公司昌吉热电厂,由西北电力建设工程监理有限责任公司昌吉热电厂工程监理部负责监理,新疆电力设计院负责设计,华源电力安装公司负责安装,新疆电力科学研究院负责启动调试。 表1 锅炉主要参数 1.2电厂内输煤系统 带式输送机从卸煤设施到锅炉房原煤斗的运煤胶带机规格为:带宽B=1000mm,带速V=2.0m/s,额定出力Q=600t/h。 1.3储煤场、煤场设施 本期工程设一座斗轮堆取料机煤场作为汽车来煤场。设置一台堆料能

力600 t/h,取料能力600 t/h的斗轮堆取料机,用于将缝隙式汽车卸煤沟来煤或场外皮带来煤堆至煤场及将煤场贮煤取入系统。配带宽B=1000mm 的单路煤场带式输送机。 1.4 输煤设备 输煤系统采用带式输送机,带式输送机系统从C3、C1A/B皮带机开始,到主厂房煤仓间结束。共扩建6路11条输送皮带机以及一台斗轮堆取料机。输煤系统带式输送机设有以下保护信号:双向拉绳开关、堵煤检测装置、料流检测器、两级跑偏开关和速度检测装置。在输煤集控操作台上设置两个可使系统急停的硬接点旋钮,可在任何时间停止输煤设备运行。煤仓层C6A/B皮带机采用电动双侧犁式卸料器向各原煤斗配煤。煤仓层及各转运站的除尘、清扫方式采用喷雾和机械除尘及水力冲洗清扫相结合的清扫方式。 1.5运煤系统辅助设施 1.5.1除铁设施 本工程运煤系统中设有三级除铁方式。第一级设在C1A/B带头部和煤场C3带前部为带式除铁器;第二级设在进入碎煤机室的C4A/B胶带机头部为带式除铁器;第三级设在出碎煤机室后C5A/B胶带机中部,采用电磁盘式除铁器,自动交替运行工作方式;除铁器型号均与系统输送机带宽匹配。 1.5.2原煤取样设施 本工程在C5A/B带中部各设置了入炉煤取样装置,在重车衡之前设置了入厂煤样装置,对煤质进行分析化验,以确保入炉、入厂煤的煤质和燃煤的经济性。 1.5.3本工程筛煤机采用9轴滚轴筛煤机,额定出力为600 t/h。碎煤机采用HCSC4型环锤式碎煤机,额定出力为400 t/h。以及叶轮给煤机、犁式卸煤器等。 2 调试目的 通过各带式输送机试转以及其他输煤设备的调试,对施工、设计和

约翰逊计数器

环形计数器是由移位寄存器加上一定的反馈电路构成的,用移位寄存器构成环形计数器的一般框图见图23-5-1,它是由一个移位寄存器和一个组合反馈逻辑电路闭环构成,反馈电路的输出接向移位寄存器的串行输入端,反馈电路的输入端根据移位寄存器计数器类型的不同,可接向移位寄存器的串行输出端或某些触发器的输出端。 图23-5-1 移位寄存器型计数器方框图 23.5.1 环形计数器 23.5.1.1 电路工作原理 图23-5-2为一个四位环形计数器,它是把移位寄存器最低一位的串行输出端Q1反馈到最高位的串行输入端(即D触发器的数据端)而构成的,环形计数器常用来实现脉冲顺序分配的功能(分配器)。 假设寄存器初始状态为[Q4Q3Q2Q1]=1000,那么在移位脉冲的作用下,其状态将按表23-11 中的顺序转换。 当第三个移位脉冲到来后,Q1=1,它反馈到D4输入端,在第四个移位脉冲作用下Q4=1,回复到初始状态。表23-11中的各状态将在移位脉冲作用下,反复在四位移位寄存器中不断循环。

由上述讲讨论可知,该环形计数的计数长度为N=n。和二进制计数器相比,它有2n-n个状态没有利用,它利用的有效状态是少的。 23.5.1.2 状态转换图和工作时序 表23-11中是以1000为初始状态的,它所对应的状态转换图见图23-5-3。如果移位寄存器中的初始状态不同,就会有不同的状态转换图。图23-5-4给出了四位环形计数器可能有的其它几种状态转换图。 图23-5-3 状态转换图 (a) (b) (c) (d) 图23-5-4 四位环行计数器其它的状态转换图 图23-5-4(a)、(b)、(c)三个状态转换图中各状态是闭合的,相应的时序为循环时序。当计数器处于图23-5-4(d)所示的状态0000或1111时,计数器的状态将不发生变化。这两个状态称为悬态或死态。 四位环形计数器可能有这么多不同的循环时序,是我们不希望的,只能从这些循环时序中选出一个来工作,这就是工作时序,或称为正常时序,或有效时序。其它末被选中的循环时序称为异常时序或无效时序。一般选图23-5-3的时序为工作时序,因为它只循环一个“1”,不用经过译码就可从各触发器的Q端得到顺序脉冲输出,参看图23-5-5。

7,3循环码

****************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年秋季学期 计算机通信课程设计 题目:(7,3)循环码编译码软件设计 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 随着计算机通信的日益发展,传输数据的场合越来越多。串行数据的差错检验是保证数据传输正确的必要手段,而循环码是差错码中最常用的一种编码。 循环码是线性分组码中最重要的一种子类,它除了具有分组码的线性外,还具有循环性,其码字结构一般用符号(n,k)表示,其中,n是该码组中的码元数,k是信息码元位数,r=n-k是监督码元位数。循环码具有许多特殊的代数性质,这些性质有助于按照要求的纠错能力系统地构造这类码,能简化译码算法,并且目前发现的大部分线性码与循环码有密切关系。已有循环码编译码系统大多以标准逻辑器件(如中小规模TTL系列、CMOS系列)按传统数字系统设计方法设计而成,其主要缺点是逻辑规模小、功耗大、可靠性低。随着大规模、超大规模集成电路的发展,以及电子设计自动化水平的提高,这种制约正在被逐渐消除。 本文通过C 语言平台运行所编写的程序,观察了在输入信息码情况下输出对应的编码结果以及相反的译码功能。通过多组的对比验证了该(7,4)循环码的编译码程序的正确性。最后,在程序运行的过程中进步分析循环码的编译码原理,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。 关键词:循环码;编码;译码;程序仿真

目录 前言 (1) 1、目的及意义 (2) 2、设计原理 (3) 2.1循环码的介绍 (3) 2.1.1循环码的定义 (3) 2.1.2循环码的特点 (3) 2.1.3循环码的多项式表示 (4) 2.1.4(n,k)循环码的生成多项式 (4) 2.1.5循环码的生成矩阵和一致校验矩阵 (6) 2.2循环码编码原理 (8) 2.2.1多项式除法电路 (8) 2.3循环码译码原理 (9) 3、设计结果及分析 (11) 3.1程序运行结果 (11) 3.2运行结果理论分析 (14) 3.3软件可行性分析 (15) 4、总结 (16) 附录 (17) 参考文献 (22)

国家电力投资集团公司火电工程设计优化指导意见

集团公司火电工程设计优化指导意见 为在火电厂设计中引入核文化理念,进一步提高集团公司火电工程设计水平,全面提升火电厂全生命周期效益最大化,有效落实“安全可靠、成熟先进、造价合理、节能环保”的原则,集团公司结合当前国家火电产业政策及火电装备技术情况,对火电工程设计优化提出如下指导意见。 一、优化选择机组参数,确保具有竞争优势 (一)纯凝发电机组应选择66万千瓦和100万千瓦超超临界机组。当采用W火焰锅炉时,可选择超临界机组。 煤源稳定地区超超临界机组主机参数选择28MPa/600℃/620℃,其它地区选择28MPa/600℃/610℃,新疆等低煤价地区当采用66万千瓦机组,可选择25MPa/600℃/600℃。 煤源稳定的高煤价地区,经集团公司同意可采用超超临界二次再热系统,主机参数选择31MPa/600℃/620℃/620℃。 (二)热电联产机组应选择背压机组或35万千瓦超临界抽凝机组。选择背压热电联产机组,应结合单机容量优先采用高温高压及以上参数。 常住人口50万以下城市,采暖型供热机组宜选择背压机组;常住人口50万以上城市,优先选择背压机组,也可选择2×35万千瓦抽凝机组。当选择2×35万千瓦抽凝机组,

采暖期热电比应不低于80%。 二、准确提供煤质资料基础数据 (三)火电厂设计煤种和校核煤种的煤质资料须经二级单位确认后,才能作为主、辅机招标和工程设计的依据。设计煤种和校核煤种的煤质数据及常规化验分析项目应符合集团公司《火电工程设计控制标准》中的规定。 (四)设计煤种应为机组投运后主要燃用煤种,校核煤种应起到对锅炉及其辅机设备具有校核的作用,与设计煤种应有一定差异,但偏差值不应超过附表1的规定。 设计煤种和校核煤种采用多煤种时,煤样来源不宜超过3个矿区。进行混合煤样常规分析时,应对单煤样和混合煤样分别进行化验分析,然后按规定的各单煤样收到基混合比加权计算工业分析、发热量、元素分析各项成分及参数以核对混合煤样的准确性。 三、合理选择高效低耗、成熟先进设备 (五)应根据厂址所在地区水资源状况合理选择湿冷机组或空冷机组。空冷机组优先选择表面式凝汽器间接空冷机组,严寒地区防冻不能满足要求时可选择直接空冷机组。 深入开展宽负荷和深度调峰机组研究,供热电厂应进行设臵储热设施作为调峰手段的研究。 (六)锅炉BMCR(锅炉最大连续出力)工况的蒸发量应与汽轮机VWO(阀门全开)工况的主蒸汽流量一致。对66万千瓦和100万千瓦机组,汽轮机VWO工况的主蒸汽流量宜为

六位计数器

六位计数器 六位计数器 本文介绍一种使用单片机制作的双向多功能6位计数器,其面板框图如图1所示。该计数器电路原理如图2所示。它极大地方便了需要交替或者同时使用加数功能和减数功能的场合,例如:在某些生产线上,一方面进行合格品的自动累加计数,另一方面又要扣除从检验岗位返回的不合格品的数字,完成这种功能,通常需要使用两只计数器,还要经过计算才可以得到结果;现在只需要使用本文介绍的计数器就能够同时完成加数和减数的工作,而且即时得到结果的数字。现将该计数器介绍如下。 1.计数信号输入 具有两个计数信号输入端口,可以同时或者分别输人加数信号与减数信号。当输人其中一种信号时,另一个信号输入端无需任何设置,就让它悬空即可。 两个输人端口使用了内部带“斯密特”特性的端口,如果两个端口同时输人信号的话,程序会自动判断,判断原理如下:11=无输人;10=减数输人;01=加数输人;00=同时输人。 由于输人端口本身具有“斯密特”性能对计数信号的输人无疑具有较好的抗干扰能力。只要输人基本的0~3.5 V直流脉冲或者电平信号,电路都可以正常响应。 提示:

输人信号可以使用红外线、光敏、机械开关和其它电子开关产生的开关脉冲,严禁脉冲最大电压超过DCSV。 最方便的是,无需使用有源的输人脉冲,只需要把输人端口对地线短接一次,就可以输人一个计数信号,因为本电路已经配置好输人端口为高电平状态。图2中单片机SP和6P的两个端口分别接与+5V 端相连的两只4.7k iZ电阻的另一端。 程序智能处理两个端口来的输人信号: 11和00均为不处理,00虽然是两个端口同时输人,但是因为它们是相反性质,因此,互相抵消,屏幕数字保持不变。 01:需要把显示值增加一个字,> 999999或者=用户设置的超限值,则加数控制输出会出现高电平。 10:需要把显示值减少一个字,到达000000时,减数控制输出会出现高电平。 2.控制输出: 具有两个很灵活应用的控制输出端口,其应用组合功能远远高于普通控制输出端口。 如果屏幕显示为000000,则OUTL输出高电平,这就是减计数的最终控制输出信号;如果屏幕显示为用户设置值,则OUTH输出高电平,这就是加计数的最终输出控制信号。 如果屏幕既不是000000,也不是用户的设置值,就都输出L电平。 3.操作按键

crc校验码 详细介绍看懂了就会了

循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 编辑本段 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x的最高次幂为R的生成多项式G(x)转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 【例】假设使用的生成多项式是G(x)=x^3+x+1。4位的原始报文为1010,求编码后的报文。 解: 1、将生成多项式G(x)=x^3+x+1转换成对应的二进制除数1011。 2、此题生成多项式有4位(R+1),要把原始报文C(x)左移3(R)位变成1010000 3、用生成多项式对应的二进制数对左移3位后的原始报文进行模2除,相当于按位异或: 1010000

基于的循环码的编译仿真

Equation Chapter 1 Section 1 Harbin Institute of Technology 信息论与编码实验报告基于MATLAB的(7,4)循环码的编译仿真 院系:电子与信息工程学院 姓名:周才发 学号:13S005051 班级:通信二班 哈尔滨工业大学

基于MATLAB的(7,4)循环码的编译仿真 (电子与信息工程学院13S005051 周才发序号:15) 1、循环码简介 随着社会经济的迅速发展和科学技术的全面进步,计算机事业的飞速发展,以计算机与通信技术为基础的信息系统正处于蓬勃发展的时期。随着经济文化水平的显着提高,人们对生活质量及工作软件的要求也越来越高。在计算机通信信息码中循环码是线性分组码的一个重要子集,是目前研究得最成熟的一类码。它有许多特殊的代数性质,它使计算机通信以一种以数据通信形式出现,实现了在计算机与计算机之间或计算机与终端设备之间进行有效的与正确地信息传递,它使得现代通信的可靠性与有效性实现了质的飞跃。它是现代计算机技术与通信技术飞速发展的产物,在日常生活通信领域、武器控制系统等领域都被广泛应用。 纠错码(error correcting code),在传输过程中发生错误后能在收端自行发现或纠正的码。仅用来发现错误的码一般常称为检错码。为使一种码具有检错或纠错能力,须对原码字增加多余的码元,以扩大码字之间的差别,即把原码字按某种规则变成有一定剩余度(见信源编码)的码字,并使每个码字的码之间有一定的关系。关系的建立称为编码。码字到达收端后,可以根据编码规则是否满足以判定有无错误。当不能满足时,按一定规则确定错误所在位置并予以纠正。纠错并恢复原码字的过程称为译码。检错码与其他手段结合使用,可以纠错。 纠错编码又称信道编码,它与信源编码是信息传输的两个方面。它们之间存在对偶的关系。应用信道译码直接对一些自然信息进行处理,可以去掉剩余度,以达到压缩数据的目的。为了使一种码具有检错或纠错能力,必须对原码字增加多余的码元,以扩大码字之间的差别,使一个码字在一定数目内的码元上发生错误时,不致错成另一个码字。准确地说,即把原码字按某种规则变成有一定剩余度的码字,并使每个码字的码元间有一定的关系。关系的建立称为编码。码字到达收端后,用编码时所用的规则去检验。如果没有错误,则原规则一定满足,否则就不满足。由此可以根据编码规则是否满足以判定有无错误。当不能满足时,在可纠能力之内按一定的规则确定错误所在的位置,并予以纠正。纠错并恢复原码字的过程称为译码;码元间的关系为线性时,称为线性码;否则称为非线性码。检错码与其他手段结合使用,可以纠错。检错反馈重发系统(ARQ系统)就是一例。 循环码是线性分组码的一种,所以它具有线性分组码的一般特性,此外还具 有循环性。循环码的编码和解码设备都不太复杂,且检(纠)错能力强。它不但可以检测随机的错误,还可以检错突发的错误。(),n k循环码可以检测长为n k-或更短的任何突发错误,包括首尾相接突发错误。循环码是一种无权码,循环码编排的特点是相邻两个数码之间符合卡诺图中的邻接条件,即相邻两个数码之间只有一位码元不同,码元就是组成数码的单元。符合这个特点的有多种方案,但循环码只能是表中的那种。循环码的优点是没有瞬时错误,因为在数码变换过程中,在速度上会有快有慢,中间经过其它一些数码形式,称它们为瞬时错误。这在某

循环码编译码matlab程序

循环码编译码matlab程序 循环码编码程序 function [ C ] = cyclic_encoder( Si ) %C为循环编码的输出编码结果 %对x^8+1进行模2因式分解得到:x^8+1=(x^3+x^2+x+1)*(x^5+x^4+x+1) y=size(Si,2);%y表示Si的列数,即输入码元的个数 M=ceil(y/5);%将信息码元分成M帧,一帧5个信息码元 n=8;%循环编码的一帧码长 k=5;%信息位的个数 r=n-k;%监督位的个数 gx=[1,1,1,1];%(8,5)循环码的生成多项式g(x)=x^3+x^2+x+1 Ai=zeros(1,8*M);%Ai用来存放所输入的码元经过循环编码后的码字 Axi=zeros(1,8);%Axi用来表示循环编码后的一帧的编码输出码字 mi=zeros(1,5);%mi用来存放每一帧的信息码元 for i=1:M for j=1:5 mi(j)=Si(j+(i-1)*5); end Axi(4:8)=mi(1:5); Axi=circshift(Axi',-r)';%实现(x^(n-k))*m(x),其中m(x)的系数由mi决定 [qx,rx]=deconv(Axi,gx);%实现((x^(n-k))*m(x))/g(x),得到商q(x)和余数r(x) Axi=Axi+rx;%实现Axi(x)=Axi(x)+r(x),得到的Axi就是循环编码的编码输出码字 Ai(8*i-4:8*i)=Axi(1:5); Ai(8*i-7:8*i-5)=Axi(6:8); end %for循环是为了实现模2相加,使循环编码的输出码字Ai中只有0,1 for i=1:8*M if rem(abs(Ai(i)),2)==0 Ai(i)=0; else Ai(i)=1; end end C=Ai;%循环编码的输出码字C=Ai end

crc循环冗余码的计算

CRC循环冗余码的计算 三、循环冗余码(CRC) 1.CRC的工作方法 在发送端产生一个循环冗余码,附加在信息位后面一起发送到接收端,接收端收到的信息按发送端形成循环冗余码同样的算法进行校验,若有错,需重发。 2.循环冗余码的产生与码字正确性检验例子。 例1.已知:信息码:110011 信息多项式:K(X)=X^5+X^4+X+1 生成码:11001 生成多项式:G(X)=X^4+X^3+1 (r=4) 求:循环冗余码和码字。 解:1)(X5+X4+X+1)*X4的积是 X9+X8+X5+X4 对应的码是1100110000。 或者 G(X)的模是4,所以在信息码的后面加4个0得1100110000 2)积/G(X)(按模二算法)。 由计算结果知冗余码是1001,码字就是1100111001。 __________1 0 0 0 0 1 ←Q(X) G(x)→1 1 0 0 1)1 1 0 0 1 1 0 0 0 0←F(X)*Xr 1 1 0 0 1 , 1 0 0 0 0 1 1 0 0 1 1 0 0 1←R(X)(冗余码) 例2.已知:接收码字: 1100111001 多项式:T(X)=X^9+X^8+X^5+X^4+X^3+1 生成码: 11001 生成多项式:G(X)=X^4+X^3+1 (r=4) 求:码字的正确性。若正确,则指出冗余码和信息码。 解:1)用接收码字除以生成码,余数为0,所以码字正确。

1 0 0 0 0 1←Q(X) 1 1 0 0 1 )1 1 0 0 1 1 1 0 0 1←F(X)*Xr+R(x) G(x) 1 1 0 0 1 , 1 1 0 0 1 1 1 0 0 1 0←S(X)(余数) 2)因r=4,所以冗余码是:1001,信息码是:110011 四、海明码 ●对于16位的数据,需要(47)个校验位才能构成海明码。 在某个海明码的排列方式D9D8D7D6D5D4P4D3D2D1P3D0P2P1中,其中D i(0≤i≤9)表 示数据位,P j(1≤j≤4)表示校验位,数据位D8由 (48) 进行校验。 (47) A、3 B、4 C、5(2的k次方>=16+k) D、6 (48) A、P4P2P1 B、P4P3P2C、P4P3P1 D、P3P2P1 D9 D8 D7 D6 D5 D4 P4 D3 D2 D1 P3 D0 P2 P1 h14 h13 h12 h11 h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 D8位对应h13,然后算:8+4+1=13,所以要第四位(p3)第八位(p4)第一位(p1)来校验 了。 答案就是:p4p3p1

循环码的编码方法研究

摘要本文对循环码的编码方法进行了深入的分析和探讨,循环码具有很高的可靠性,在通信、军事等领域应用非常广泛。关键词循环码编码中图分类号:G202文献标识码:A 0 引言循环码是线性分组码最重要的子集。它除了具有线性分组码的一般性质外,还有许多特殊的性质,这些性质有助于按照要求的纠错能力系统地构造这类码,并且简化译码算法。循环码还有易于实现的特点,很容易用带反馈的移位寄存器实现其硬件。正是由于循环码具有码的代数结构清晰、检纠错能力强、编译码易于实现,具有很高的可靠性等特点,因此在通信、军事等领域应用非常广泛。 1 循环码的相关概念 1.1 循环码的特性表1给出了(7,3)循环码的所有码字,我们可以直观的看出循环码具有如下特性:(1)封闭性。(线性性):任何许用码组的线性和还是许用码组。(2)循环性:任何许用的码组循环移位后的码组还是许用码组。表1 (7,3)循环码 1.2 循环码的码多项式用码多项式来表示来表示循环码,可以方便的利用代数理论对其进行研究。若许用码字为C = (,,…,):,码多项式可表示为:C(x) = … c1x c0其中:对于二元码组,多项式的每个系数是0或者1; x仅是码元位置的标志,并不关心x的取值。利用码多项式可以方便的表示循环移位特性。若C(x) 是一个长为n的许用码字,则xi C(x) (左乘xi)在按模xn 1运算下,亦是一个许用码字,也就是:xiC(x) = Ci(x) (模xn 1),正是C(x) 代表的码组向左循环移位次的结果。 1.3 循环码的生成多项式和生成矩阵循环码的生成多项式g(x)是一个常数项为1,且能除尽xn 1的r = n - k次多项式;循环码中其它码多项式都是g(x)的倍式。由生成多项式可以表示出生成矩阵G(x)为: 1.4 循环码的监督多项式和监督矩阵利用循环码的特点来确定监督矩阵H, 由于循环码中是的因式,因此可令:h(x) == xk hk-1xk-1 … h1x 1,这里称为监督多项式。与G(x)相对应,监督矩阵表示为: 其中:h*(x)是h(x)逆多项式,h*(x) = xk h1xk-1 h2xk-2 … hk-1x 1。 2 循环码编码的具体实现方法 2.1 利用生成矩阵编码 2.1.1 求解生成多项式根据g(x)的特性,g(x)是xn 1的一个r次因式。因此,先对xn 1进行因式分解,找到它的r次因式。以(7,3)循环码为例进行分析: 第一步:对x7 1进行因式分解得:x7 1 = (x 1)(x3 x2 1)(x3 x 1) 第二步:构造生成多项式g(x),即找r = n - k = 4次因子。不难看出,这样的因子有两个,即: (x 1)·(x3 x2 1) = x4 x2 x 1 (x 1)·(x3 x 1) = x4 x3 x2 1 2.1.2 编码由g(x)得到生成矩阵为: 循环码是线性码的一种,根据线性码编码的特点,生成矩阵确定,码组也就确定了。 C = mG 其中,C是编码之后的码字,m是信息码元序列,G是生成矩阵。 2.2 利用监督矩阵编码由h*(x)得到监督矩阵为: 根据线性码编码的特点,监督矩阵确定,码组也就确定了。 HCT = 0其中,C是编码之后的码字,H是监督矩阵。 2.3 循环码的系统码编码方法设要产生(n,k)循环码,m(x)表示信息多项式,编码步骤如下: (1)用xn-k乘m(x)。根据码多项式的特点,左乘xn-k实际上是把信息位左移位(n-k),即在信息码后加上(n-k)个“0”。例如,信息码为110,它相当于m(x) = x2 x。当n-k = 7-3 = 4时, xn-k·m(x) = x6 x5,它相当于1100000。而希望的到得系统循环码多项式应当是C(x) = xn-k·m(x) r(x) (2)求r(x)。由于循环码多项式C(x)都可以被g(x)整除,也就是: == (3)求C(x),C(x) = xn-k·m(x) r(x) 例如,对于(7,3)循环码,若选用g(x) = x4 x2 x 1,信息码110时,则: = ,求得r(x) = x2 1,这时的编码输出为:1100101。 3 结论本文深入系统地分析了循环码的编码技术。随着数字技术的高速发展,循环码纠错技术已经广泛应用于各种通信系统中。其编码和译码都可以通过简单的反馈移位寄存器来完成,实现简单,纠错能力强 ,可以降低误码率,保证数据传输的可靠性,大大提高通信质量。

浅谈火力发电厂运煤系统控制及联锁

浅谈火力发电厂运煤系统控制及联锁 【摘要】本文针对2×135MW机组火力发电厂运煤系统控制及联锁提出一些见解。 【关键词】运煤系统;控制;流程;联锁。 引言 随着火力发电厂运煤系统自动化程度越来越高,运煤系统控制基本上实现了无人值守,集中或者就地控制。本文就以新疆阿勒泰地区A火力发电厂为例,浅谈火力发电厂运煤系统控制及联锁。 1.概述 A电厂项目为新建工程,本期工程装机容量为2×135MW凝汽式汽轮发电机组配2×440t/h超高压、一次中间再热燃煤锅炉。运煤设备运行班制为三班制,每班运行3.3 小时。厂内设3个地下煤斗串联为系统上煤,运煤系统设筛碎、除铁、中部采样、电子皮带秤、动态循环链码效验装置等。 2.运煤系统控制范围 带式输送机;振动给煤机;电动挡板三通管;滚轴筛;环锤式碎煤机;除铁器;电动犁式卸料器;电子皮带秤;运煤系统保护一次元件(包括双向拉绳开关、两级跑偏开关、速度检测器、料流检测器、纵向撕裂保护装置、堵煤检测器、防闭塞装置及煤仓高低料位计);排水泵;煤场抑尘自动控制系统 3.运煤系统控制及联锁要求 运煤程控系统参加联锁的设备包括带式输送机、振动给煤机、电动挡板三通管、滚轴筛、环锤式碎煤机、电动犁式卸料器等。 运煤系统集中和就地两种控制方式的设定是由设置在各设备就地控制箱或MCC上的远方/就地选择开关完成的。此外,在就地控制箱或就地MCC上还设有启、停按钮及信号灯等。只有当选择开关设置为远方时,运煤程控室才能控制该设备,当选择开关设置为就地时,只能就地控制该设备。选择开关的状态信息用干接点送至运煤程控的PLC系统中,以便操作员随时了解现场情况。 当采用自动运行方式时,上位工控机显示器上显示所有运煤工艺流程,选择运煤流程后,PLC系统自动检测该流程相关的设备,在该流程所有设备均处于可控情况下,操作人员在上位工控机上发出“启动”命令来启动该流程,否则,PLC 系统内部联锁应能防止任何设备的启动。在需要停止该流程时,操作人员在上位工控机上发出“停止”命令,PLC系统按正常清除顺序停止。

8位可逆循环计数器

一、概述 随着科技的日益进步,计数器得到了越来越广泛的应用,发展的也越快。在数字系统中使用的最多时序逻辑电路要算是计数器了。计数器不仅能用于对时钟脉冲计数,还可以用于分频、定时、产生节拍脉冲和脉冲序列以及进行数字运算等。本次实验的思路主要是设计一个8位可逆循环计数器,该计数器加计数到最大值(11111111)时输出一个周期的高电平信号(表示计数器达到最大值)并自动变为减计数,减计数到最小值(00000000)是输出一个周期的高电平信号(表示计数器达到最小值)并自动变为加计数。如此循环往复。要求设计层次化。实验中用到的器件主要包括74LS191D、7段显示器、555组成的多谐振荡电路和多个门电路。 二、方案论证 为了实现本实验的主要内容,首先要利用555定时器制成一个多谐振荡电路作为时间脉冲为同步十六进制加/减计数器74LS191D提供时间信号,并且要将多谐振荡电路的频率设为HZ,即周期为秒。因为要实现计数器加到最大值(11111111)(或最小值(00000000))时输出一个周期的高电平信号,故需要加入多个门电路和灯泡,同时要求加数器数器自动变为减数器(或减数器自动变为加数器)故利用T触发器实现该功能,并能够实现循环往复的功能。其原理框图如图1所示。 图1 电路的原理框图脉冲信号 直流稳压电源滤波、整波 555时钟信号脉冲 电路 74LS191D十六 进制计数器 74LS191D十六 进制计数器 数码管显示 输出一个周期的 高电平信号 计数器自动的由加数器转换为减数器或相反

三、电路设计 1.直流稳压电源电路 直流稳压电源包括电源电容电阻;其组成电路如图2所示。 图2 直流稳压电源电路 2. 时钟信号脉冲电路 555定时器是一种多用途的数字—模拟混合电路,利用它能极方便的构成多谐振荡器,且成本低,只需外接几个电阻、电容,就可以实现多谐振荡来产生时钟信号用来计时。 电容C2通过R3和R4开始充电,充到1/3Vcc时,输出上升为高电平,电容继续充电,直到2/3Vcc时,输出又降为低电平,电容向R3放电,放到1/3Vcc时,又开始充电,一直循环,就形成了脉冲。充电的时间T1=R1C ln2,放电时间T2=(R1+R2)C ln2,所以一个周期的时间为T=T1+T2=(R1+2R2)C ln2。令C2=C3=10uF,T=1s,所以f=1Hz。在此我们设置R1=44k,R2=50k即可达到输出频率为1s的脉冲信号。由此组成的555多谐振荡电路如图3所示。 图3 时钟信号脉冲电路

计算机网络原理 循环冗余码

计算机网络原理循环冗余码 循环冗余校验码(CRC:Cyclic Redundancy Code)借助于循环码来实现校验。循环码不同于奇偶校验码,它有两个显著特点:一是循环码适合于用代数方法分析码的结构,并可以用代数方法设计各种实用的、有较强纠错能力的码,并且无需很长的码长;二是由于码的循环特性,所需的编、译码设备比较简单,易于实现。因此循环码在实际中得到广泛应用。1.CRC的工作方法 在发送端产生一个循环冗余码,附加在信息位后面一起发送到接收端,接收端收到的信息按发送端形成循环冗余码同样的算法进行校验,若有错,需重发。 2.循环冗余码的产生与码字正确性检验例子。 例1.已知:信息码:110011 信息多项式:K(X)=X5+X4+X+1 生成码:11001 生成多项式:G(X)=X4+X3+1(r=4) 求:循环冗余码和码字。 解:1)(X5+X4+X+1)*X4的积是X9+X8+X5+X4对应的码是1100110000。 2)积/G(X)(按模二算法)。 由计算结果知冗余码是1001,码字就是1100111001。 G(x) 11001 10000 1001 ×X r 例2.已知:接收码字:1100111001 多项式:T(X)=X9+X8+X5+X4+X3+1 生成码:11001 生成多项式:G(X)=X4+X3+1(r=4) 求:码字的正确性。若正确,则指出冗余码和信息码。 解:1)用字码除以生成码,余数为0,所以码字正确。 G(x) 11001 11001 11001 ×X r+R(x) S(x) 2)因r=4,所以冗余码是:11001,信息码是110011 3.循环冗余码的工作原理 循环冗余码CRC在发送端编码和接收端校验时,都可以利用事先约定的生成多项式G(X)来得到,K位要发送的信息位可对应于一个(k-1)次多项式K(X),r位冗余位则对应于一个(r-1)次多项式R(X),由r位冗余位组成的n=k+r位码字则对应于一个(n-1)次多项式T(X)=Xr*K(X)+R(X)。 循环码又被称为(n-k)循环码,这是因为此码共n位,其中前k位为数据位,后(n-k)位为冗余位。其组成如表所示。其中r代表冗余位,m代表原始数据。 ●全部奇数个错误 ●全部双字位错误

实验6 循环码的软件编、译码实验

实验六循环码的软件编、译码实验 一、实验目的 (1)通过实验了解循环码的工作原理。 (2)了解生成多项式g(x)与编码、译码的关系。 (3)了解码距d与纠、检错能力之间的关系。 (4)分析(7.3)循环码的纠错能力。 二、实验要求 用你熟悉的某种计算机高级语言或单片机汇编语言,编制一(7,3)循环码的编、译码程序,并改变接受序列R(x)和错误图样E(x),考查纠错能力情况。 设(7,3)循环码的生成多项式为:g(x)=x4+x3+x2+1 对应(11101)(1)按编、译码计算程序框图编写编、译码程序 (2)计算出所有的码字集合,可纠的错误图样E(x)表和对应的错误伴随式表。 (3)考查和分析该码检、纠一、二位错误的能力情况。 (4)整理好所有的程序清单,变量名尽量用程序框图所给名称,并作注释。 (5) 出示软件报告. 三、实验设计原理 循环码是一类很重要的线性分组码纠错码类,循环码的主要优点是编、译码器较简单,编码和译码能用同样的反馈移存器重构,在多余度相同的条件下检测能力较强,不检测的错误概率随多余度增加按指数下降。另外由于循环码具有特殊的代数结构,使得循环码的编、译码电路易于在微机上通过算法软件实现。 1、循环码编码原理 设有一(n,k)循环码,码字C=[C n-1…C r C r-1…C0],其中r=n-k。码字多项式为: C (x ) = C n-1x n-1+ C n-2x n-2+… +C1x+C0。 码字的生成多项式为: g(x)= g r-1x r-1+g r-2x r-2+…+g1x+g0 待编码的信息多项式为:m(x)=m K-1x K-1+…+m0 x n-k.m(x)=C n-1x n-1+…+C n-K x n-K

电子皮带秤循环链码校验装置详细介绍

电子皮带秤循环链码校验装置详细介绍循环链码是一种新型模拟载荷试验装置。它主要由标准质量循环码块组成的码块链条、链码托辊及支架、主辅升降系统、称重传感器、位移传感器、校验累计器及控制系统组成,如图10-10所示。 循环链码是由数百个标准质量码块连接成的闭合链条(见图10-11),标准质量码块为精密铸钢件,用数控机床加工,其主要性能指标为:适应带宽范围:≤3m; 适应带速范围:≤4m/s; 适应皮带机倾角: 0°耀18°; 适应皮带机槽型角: 0°耀35° 输送量测量范围: <10000t/h; 码块链条数量: 1耀6; 码块链条长度:通常为21m; 每米质量: 10kg/m,20kg/m,30kg/m, 40kg/m,50kg/m等; 每米质量误差:优于±0.05%; 升降系统行程: 800耀1400mm; 升降系统功率: 5耀10kW根据具体参数 由设计确定; 信号传输距离:≤1000m; 校验皮带秤的总不确定度:优于0.1%; 防护等级: IP54。

图10-10 循环链码结构示意图 1、支架; 2、码块链条; 3、皮带秤的承载器; 4、称重传感器; 5、升降系统; 6、皮带; 7、地面;8、检验累计器;9、位移传感器;10、电控箱 图10-11 在皮带上方的两条标准质量循环码块 试验时,启动皮带机,操作升降系统工作使码块链条在下降状态,部分码块自动降落在安装承载器称量长度及其附近的皮带上,码块随着皮带的移动循环通过称量长度,码块的重量作用在称量长度上,皮带秤累计器得到循环链码通过承载器的累计重量。与此同时,检验累计器也累计循环链码作用在称量长度的重量,因模拟载荷检验装置本身的总不确定度优于0.1%,将检验累计器的累计值与皮

自动循环计数器

自动循环计数器 一、设计目的 1、熟练掌握计数器的应用。 2、加深对加减循环计数和显示电路的理解。 二、设计任务 1、用集成计数器实行3~9自动循环计数。 2、电路能实现3~9加法和3~9减法循环计数。 3、输出用数码显示。 三、设计思想 1、译码驱动显示部分:计数输出结果送至译码输出显示部分。 2、控制部分:实现加或减循环计数功能由控制部分完成。 3、计数部分:完成BCD码3~9的可逆加或减循环计数。 系统方框图如下: 四、单元电路的设计、参数计算、器件介绍: (一)译码驱动显示部分 1、采用74LS48 TTL BCD—7 段译码器/内部输出驱动。 2、译码驱动、显示电路的设计 DBCA为8421BCD码输入端,a—g为7段译码器输出端。LT灯测试输入使能端。

(二)控制部分及循环加减计数部分 1、采用74LS191 TTL 4为同步加/减计数器。 2、控制部分及循环加减计数部分的设计74LS191功能管脚如图所示 3、主要逻辑功能 (1)同步指数功能 当LD’=0时,CP来时,并行输入数据d3~d0被置入。 (2)计数功能取CT’=0 LD’=1 当U’/D=0时,对应CP脉冲上升沿,十六进制加法计数。 当U’/D=1时,对应CP脉冲上升沿,十六进制减法计数。(3)保持功能

当CT’=LD’=1时,计数器保持原来的状态不变。 74ls21:就是双4输入与门,全0出1,有0出0 74ls32:4输入端或门,有1出1,全0出0 74ls74,:双上升沿D触发器 引出端符号 1CP、2CP 时钟输入端 1D、2D 数据输入端 1Q、2Q、输出端 CLR1、CLR2 直接复位端(低电平有效) PR1、PR2 直接置位端(低电平有效)状态图如下 五、总体电路设计图、工作原理及器件清单 1、3~9可逆自动循环加或减计数器总体电路如图所示。

简述简易循环码编译码器设计

简述简易循环码编译码器设计 摘要通信系统可靠性要求系统可靠地传输消息,而信道编码旨在解决可靠性问题。循环码属于线性代码,具有严密的代数理论基础,具有良好的错误检测和纠正功能。循环码编译电路大多用移位寄存器和模2构成的线性时序网络来完成。基本电路简单,容易实现,但在体积和功能扩展上受到了限制而不能发挥更大的作用。本设计充分运用单片机的软件功能进行编码及译码纠错,可有效克服来自通信信道的干扰,保证数据通信的可靠及系统的稳定,使误码率大幅度的降低。只要改变软件算法,即可适用于不同微机、不同字长的需要。 关键词信道编码;循环码;单片机;编译码;可靠 前言 信息在有线或无线信道传输时,受外界干扰或信噪比恶化的影响,信息的传递容易发生错误,需要有效检测出错状况,进行纠错,保证信息传输的质量。前向纠错编码技术在发送端引入冗余可以实现检错和纠错,一种广泛应用前向纠错码循环码它是线性分组码中最重要的一种类别码,不光具备分组码的线性性质,还具有自身的循环性[1]。现阶段国内外基于循环码编译码方法的研究都取得了很大的进展,例如循环码在卫星通信与移动通信方面中起到很重要的作用。采用单片机编程的方法可以实现循环码编译码,成本小,通过软件升级可以适配多种码型。 1 循环码编译码原理 1.1 循环码特点 循环码隶属于线性代码,具有嚴密的代数理论基础,良好的错误检测和纠正功能,具有如下特点[2]:循环码具有线性码的封闭性,意味着线性码中的任何两个码组总和仍为这种码中的一个码组。两个信息码组之间的长度差一定是后一个信息码组的权重,码的最小距离等同于码的最小权重。循环码还具有循环的性质,任一码组不管是从按左到右还是从右到左方向循环移位,仍为该码中的一个码组。 1.2 编码原理 设信息元多项式表达式: 编码步骤可以归纳如下: ⑴用信息集合m(x)乘以信息集得到,这种运算操作其实就是在信息码后添加上(n-k)个“0”。

相关文档
最新文档