氮杂环卡宾

氮杂环卡宾
氮杂环卡宾

N?Heterocyclic Carbene-Palladium(II)-1-Methylimidazole Complex-Catalyzed Direct C?H Bond Arylation of(Benz)imidazoles with Aryl Chlorides

Zheng-Song Gu,?Wen-Xin Chen,?and Li-Xiong Shao*,?,?

?College of Chemistry and Materials Engineering,Wenzhou University,Chashan University Town,Wenzhou,Zhejiang Province 325035,People’s Republic of China

?College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang Province321004,People’s Republic of China *Supporting Information

INTRODUCTION

C2-arylated(benz)imidazoles are frequently found in various pharmaceuticals,biologically active compounds and materials.1 Recently,the transition metal-catalyzed direct C?H bond arylation of(benz)imidazoles has been noticed as a potentially more e?cient and convenient alternative for the straightfor-ward synthesis of such compounds.2However,during the past years,the scope of the arylating reagents is limited to the more active aryl iodides and bromides.3To the best of our knowledge,only very few examples on the palladium-catalyzed direct C2-arylation of(benz)imidazoles using aryl chlorides in the presence of phosphine ligands were reported to date, despite their lower cost and more easy availability.4Therefore, despite that some progress has been made in the direct C2-arylation of(benz)imidazoles,the research for e?cient methods using the more applicable,while less active,aryl chlorides as the arylating reagents is still in great demand.5 Previously,we have reported that a well-de?ned N-heterocyclic carbene-Pd(II)-1-methylimidazole[NHC-Pd(II)-Im]complex 1can easily activate aryl chlorides in traditional C?C couplings such asα-arylation of carbonyl compounds,6Suzuki?Miyaura coupling,7Mizoroki?Heck reaction,8Hiyama reaction9and C?N coupling.10Furthermore,in a very recent communication,we found that NHC-Pd(II)-Im complex1can also e?ciently catalyze the direct C?H bond arylation of(benzo)oxazoles using aryl chlorides as the arylating reagents.11These results thus prompted us to further investigate its application in activating aryl chlorides toward the direct C2-arylation of (benz)imidazoles.Herein,we report these results in detail.■RESULTS AND DISCUSSION

Initially,1-methylbenzimidazole2a(0.49mmol)was chosen as the model substrate for the reaction with chlorobenzene3a(2.0equiv)in the presence of NHC-Pd(II)-Im complex1(2.0mol

%)under various conditions.For example,in the?rst round, toluene/H2O(2.0mL/0.5equiv)was chosen as the solvents to evaluate the e?ect of bases.The best result was achieved using

KO t Bu as the base to give the desired product4a in89%yield (Table1,entry6),while in the presence of other bases such as

K2CO3,KOH,K3PO4·3H2O,LiO t Bu and NaO t Bu,almost no product could be detected(Table1,entries1?5).The replacement of solvents from toluene/H2O to THF/H2O and

dioxane/H2O resulted in product4a only being isolated in48 and40%yields,respectively(Table1,entries7and8).In addition,in the presence of other solvents such as DMSO/ H2O,DMF/H2O,CH3CN/H2O and DME/H2O,no desired product could be detected(Table1,entries9?12). Furthermore,after careful investigations,it was found that the amount of H2O dramatically a?ected the reaction.That is,the introduction of0.5equiv of H2O was found to be necessary for such transformation.For instance,only18%yield of product4a was obtained when dry toluene was used as the solvent(Table 1,entry13).When1.0equiv of H2O was added,a signi?cantly higher yield(84%)was achieved(Table1,entry14).However, when the amount of H2O was increased to3.0equiv,the yield of4a drastically decreased to5%(Table1,entry15).These results thus encouraged us to further investigate the e?ect of H2O.

It is known that KO t Bu will be partially hydrolyzed to KOH

and HO t Bu under the above reaction conditions.Therefore, three more control experiments were carried out:(1)the combination of KO t Bu(1.5equiv),KOH(0.5equiv)and HO t Bu(0.5equiv)was introduced instead of KO t Bu(2.0

Received:May9,2014

Published:May28,2014

?2014American Chemical https://www.360docs.net/doc/2218353387.html,/10.1021/jo5010058|https://www.360docs.net/doc/2218353387.html,.Chem.2014,79,5806?5811

equiv)and H 2O (0.5equiv),and product 4a was obtained in a comparable yield (84%)(Table 1,entry 6and Scheme 1,eq 1);(2)the combination of KO t Bu (1.5equiv)and HO t Bu (0.5equiv)was introduced,and product 4a was also formed in a comparable yield (82%)(Table 1,entry 6and Scheme 1,eq 2);(3)the combination of KO t Bu (1.0equiv)and HO t Bu (1.0equiv)was introduced,and a similar yield of product 4a was observed (84%)(Table 1,entry 14and Scheme 1,eq 3).On the basis of these results,although the real function of H 2O was unclear at this stage,it could be inferred that when a combination of toluene and H 2O was used as the solvent,HO t Bu derived from the hydrolysis of KO t Bu might play an important role in such transformation.12We next explored the scope of the C2-arylation of 1-methylbenzimidazole 2a with a variety of aryl chlorides 3under the identical optimal experimental conditions.Under the suitable conditions,the procedure proved to be general on all substrates tested (Table 2).It seems that the substituents on the aryl chlorides 3a ?ected the reactions to some extent.For example,for the reaction involving sterically hindered 2-methylphenyl chloride 3d ,good yields are obtained by simply

increasing the catalyst loading,although only moderate yield can be obtained under the optimal reaction conditions (Table 2,entries 3and 4).For electron-rich aryl chlorides such as 4-methoxyphenyl chloride 3e and 4-dimethylaminophenyl chloride 3g ,slightly higher catalyst loading or elevated temperature is necessary for the achievement of higher yields (Table 2,entries 5and 6;entries 8and 9).In addition,heteroaryl chlorides such as 2-chloropyridine 3k and 2-chlorothiophene 3l could be used,giving rise to the desired products 4k and 4l in acceptable yields,respectively (Table 2,entries 13and 14).The reaction was further investigated using a variety of benzimidazoles 2and aryl chlorides 3as the substrates under the optimal conditions.As can be seen from Table 3,all 1-methylbenzimidazoles 2,regardless of electron-rich substituents such as 5,6-Me 2(2b ),5-Me (2c ),5-MeO (2e )or electron-poor substituents such as 5-F (2d )attaching on the phenyl groups,could react with aryl chlorides 3smoothly to give the desired C2-arylated products 4in good to high yields (Table 3,entries 1?17).In addition,it seems that for the reactions involving electron-poor 5-F-benzimidazole 2d ,better yields can be achieved under identical conditions (Table 3,entries 11?15).1-Benzylbenzimidazole 2f was also suitable for this reaction to give the corresponding products 4ad ?4ag in good yields (Table 3,entries 18?21).Encouraged by the above results using benzimidazoles as the substrates,the optimal conditions were then expanded to the

Table 1.Optimization for Complex 1Catalyzed Direct C ?H Bond Arylation of 1-Methylbenzimidazole 2a with Chlorobenzene 3a

entry a solvent base yield (%)

1toluene/H 2O K 2CO 3ND

2toluene/H 2O KOH ND

3toluene/H 2O K 3PO 43H 2O ND

4toluene/H 2O LiO t Bu ND

5toluene/H 2O NaO t Bu <5

6toluene/H 2O KO t Bu 89

7THF/H 2O KO t Bu 48

8dioxane/H 2O KO t Bu 40

9DMSO/H 2O KO t Bu ND

10DMF/H 2O KO t Bu ND

11CH 3CN/H 2O KO t Bu ND

12DME/H 2O KO t Bu ND

13toluene KO t Bu 18

14b toluene/H 2O KO t Bu 8415c toluene/H 2O KO t Bu 5

a If not otherwise speci ?ed,all reactions were carried out using 2a (0.49mmol),3a (2.0equiv),base (2.0equiv),1(2.0mol %)in organic solvents (2.0mL)and H 2O (0.5equiv)at 120°C for 6h.

b H 2O (1.0equiv)was added.

c H 2O (3.0equiv)was added.Scheme 1.Three Control Experiments Table 2.NHC-Pd(II)-Im 1Catalyze

d Direct C ?H Bond Arylation of 1-Methylbenzimidazol

e 2a with Aryl Chlorides 3

a

If not otherwise speci ?ed,all reactions were carried out using 2a (0.49mmol),3(2.0equiv),1(X mol %),KO t Bu (2.0equiv)in toluene/H

2O (2.0mL/0.5equiv)at 120°C for 6h.b The temperature was 130°C.

https://www.360docs.net/doc/2218353387.html,/10.1021/jo5010058|J.

Org.Chem.

2014,79,

5806?5811

5807

reactions between 1-methylimidazole and aryl chlorides.It was found that the ratio between two substrates dramatically a ?ected the reaction.For example,when the reaction between 1-methylimidazole (0.49mmol)and chlorobenzene (2.0equiv)was carried out under the optimal conditions shown in Table 1,entry 6,the desired C2-arylated product was obtained only in 29%yield,along with the 2,5-diarylated byproduct in 8%yield.To our pleasure,subtly changing the ratio of the substrates will result in exclusive C2-arylated selectivity.For instance,when excess 1-methylimidazole (2.0equiv)was used as the substrate,the desired C2-arylated products could be achieved in good to high yields as the sole product under the optimal conditions.The results are shown in Table 4.It seems that substituents on the aryl chlorides have some e ?ect on the reaction.For example,aryl chlorides having electron-rich groups such as 4-Me (3b )and 3-Me (3c )gave better yields than that having electron-neutral (3a )and electron-poor 4-F group (3i )(Table 4,entries 2and 3vs entries 1and 5).In addition,2-methylphenyl chloride 3d gave inferior result (74%),maybe partially due to its steric hindrance (Table 4,entry 4).■CONCLUSIONS In conclusion,NHC-Pd(II)-Im complex,as the nonphosphine complex,was ?rst used as the catalyst in the direct C ?H bond arylation of (benz)imidazoles using the less expensive,less active,and easily available aryl chlorides as the arylating reagents.Under the optimal conditions,various (benz)-imidazoles can react with kinds of activated,unactivated,and deactivated aryl chlorides smoothly to give the desired C2-arylated products in good to high yields.13For instance,both substrates bearing electron-rich,-neutral,and -poor substituents are tolerated in such transformation.The NHC-Pd(II)complex catalyzed direct C ?H bond arylation between (benz)imidazoles and aryl chlorides reported in this paper will become a good,economical,and e ?cient supplement to the traditional methods for the formation of 2-aryl (benz)imidazoles.■EXPERIMENTAL SECTION

General Remarks.Melting points are uncorrected.NMR spectra were

recorded

at 300/500(for 1

H NMR)or 75/125MHz (for 13C

NMR),respectively.1H NMR and 13C NMR spectra recorded in

CDCl 3solutions

were referenced to TMS (0.00ppm)and the residual solvent peak (77.0ppm),respectively.J -values are in https://www.360docs.net/doc/2218353387.html,anic solvents used were dried by standard methods.The mass analyzer type for the

high resolution mass spectra (HRMS,ESI)is quadrupole.Other commercially obtained reagents were used without further puri ?cation.Flash column chromatography was performed on silica gel.General Procedure for the NHC-Pd(II)-Im Complex 1Catalyzed Reactions Between (Benz)imidazoles and Aryl Chlorides.Under N 2atmosphere,KO t Bu (0.98mmol),NHC-Pd(II)-Im complex 1(0.0098mmol),toluene (2.0mL),H 2O (0.245mmol),

benzimidazoles 2(0.49mmol)and aryl chlorides 3(0.98mmol)were

successively

added into a Schlenk reaction tube.The

mixture was

stirred vigorously at 120°C for 6h.Then the solvent was

removed under reduced pressure,and the residue was puri ?ed by ?ash

chromatography (eluent:petroleum ether/ethyl acetate =10:1for

benzimidazole derivatives and 3:1for imidazole derivatives)to give the

pure products https://www.360docs.net/doc/2218353387.html,pound 4a :3j white solid (90.7

mg,89%);1

H NMR (CDCl 3,

300

MHz,

TMS)δ7.85?7.76(m,3H),7.57?7.52(m,3H),7.41?7.29(m,3H);13C{H}NMR (CDCl 3,75MHz)

δ153.7,142.9,136.5,

130.1,129.7,129.4,

128.6,122.7,122.4,119.8,109.6,https://www.360docs.net/doc/2218353387.html,pound 4b :3j white solid (92.6mg,85%);1H NMR (CDCl 3,

300MHz,TMS)δ7.85?7.80(m,1H),7.64(d,J =8.1Hz,2H),

7.36?7.25(m,5H),3.80(s,3H),2.42(s,3H);13C{H}NMR (CDCl 3,

75

MHz)δ153.8,142.8,139.7,136.4,129.24,129.17,127.1,122.5,122.2,119.5,109.5,31.5,

21.3.

Compound 4c :3j white solid (94.0mg,86%);1

H NMR (CDCl 3,

500MHz,TMS)δ7.83?7.81(m,1H),7.60(s,1H),7.49(d,J =7.5

Hz,1H),

7.37(t,J =7.5Hz,1H),7.34?7.28(m,4H),3.79(s,3H),2.42(s,3H);13C{H}NMR (CDCl 3,75MHz)δ153.8,142.7,138.5,

136.4,130.4,130.1,129.9,128.3,126.2,122.6,122.3,119.6,109.5,31.5,21.3.

Compound 4d :14

white solid

(80.4

mg,74%);1H NMR (CDCl 3,

500MHz,TMS)δ7.84?7.82(m,1H),7.44?7.30(m,7H),3.63(s,

3H),2.27(s,3H);13C{H}NMR (CDCl 3,

75MHz)δ153.7,142.9,Table 3.NHC-Pd(II)-Im 1Catalyzed Direct C ?H Bond Arylation of Benzimidazoles 2with Aryl Chlorides 3entry a 2(R 2/R 3)3(R 1)yield (%)12b (5,6-Me 2/Me)3a (H)4m ,8722b 3b (4-Me)4n ,843b 2b 3e (4-OMe)4o ,8242b 3i (4-F)4p ,865b 2b 3j (4-vinyl)4q ,8462c (5-Me/Me)3a 4r ,8672c 3b 4s ,858b 2c 3e 4t ,8492c 3i 4u ,88

10b 2c 3j 4v ,86

112d (5-F/Me)3a 4w ,97

122d 3b 4x ,96132d 3e 4y ,86142d 3i 4z ,96152d 3j 4aa ,88162e (5-OMe/Me)3a 4ab ,86172e 3b 4ac ,84182f (H/benzyl)3a 4ad ,84192f 3b 4ae ,85

20b 2f 3e 4af ,82212f 3j 4ag ,84a If not otherwise speci ?ed,all reactions were carried out using 2a (0.49mmol),3(2.0equiv),1(2.0mol %),KO t

Bu (2.0equiv)in toluene/H 2O (2.0mL/0.5equiv)at 120°C for 6h.b NHC-Pd(II)-Im 1(3.0mol %)was added.Table 4.NHC-Pd(II)-Im 1Catalyzed Direct C ?H Bond Arylation of 1-Methylimidazole 5with Aryl Chlorides 3entry a 3(R 1)[X]t (°C)yield (%)13a (H)21204ah ,8623b (4-Me)31404ai ,9933c (3-Me)31304aj ,9743d (2-Me)41404ak ,7453i (4-F)41404al ,8463j (4-vinyl)31304am ,87a All reactions were carried out using 5(2.0equiv),3(0.75mmol),KO t

Bu (2.0equiv),1(X mol %)in toluene/H 2O (2.0mL/0.5equiv)

for 12h.

https://www.360docs.net/doc/2218353387.html,/10.1021/jo5010058|J.

Org.Chem.

2014,79,5806?5811

5808

137.9,135.5,130.4,130.2,129.9,129.8,125.7,122.5,122.2,119.8, 109.4,30.5,19.6.

Compound4e:3j white solid(96.2mg,82%);1H NMR(CDCl3, 300MHz,TMS)δ7.82?7.78(m,1H),7.72(d,J=7.5Hz,2H), 7.40?7.29(m,3H),7.05(d,J=7.5Hz,2H),3.89(s,3H),3.86(s, 3H);13C{H}NMR(CDCl3,75MHz)δ160.6,153.6,142.8,136.5, 130.7,122.38,122.37,122.2,119.4,114.0,109.4,55.3,31.6. Compound4f:15white solid(96.8mg,83%);1H NMR(CDCl3, 500MHz,TMS)δ7.84?7.82(m,1H),7.46?7.40(m,2H),7.34?7.30 (m,4H),7.07?7.05(m,1H),3.89(s,3H),3.88(s,3H);13C{H} NMR(CDCl3,75MHz)δ159.7,153.6,142.8,136.5,131.3,129.6, 122.8,122.4,121.6,119.8,115.9,114.6,109.6,55.4,31.7. Compound4g:16white solid(83.8mg,68%);1H NMR(CDCl3, 500MHz,TMS)δ7.80(dd,J=6.0,2.5Hz,1H),7.69(d,J=9.0Hz, 2H),7.35(dd,J=6.0,2.5Hz,1H),7.36?7.27(m,2H),6.81(d,J= 9.0Hz,2H),3.87(s,3H),3.05(s,6H);13C{H}NMR(CDCl3,75 MHz)δ154.6,151.0,143.0,136.6,130.3,121.94,121.91,119.1,117.2, 111.6,109.2,40.1,31.7.

Compound4h:yellow liquid(107.2mg,87%);1H NMR(CDCl3, 300MHz,TMS)δ7.86?7.80(m,1H),7.39?7.28(m,4H),7.12?7.11 (m,1H),7.01?6.97(m,1H),6.87?6.83(m,1H),3.84(s,3H),3.01 (s,6H);13C{H}NMR(CDCl3,75MHz)δ154.7,150.6,142.8,136.5, 130.7,129.0,122.5,122.2,119.6,117.2,113.6,113.4,109.5,40.5,31.6; MS(ESI)252[M+H]+;HRMS(ESI)calcd for C16H18N3[M+H]+ 252.1495,found252.1506;IR(neat)ν2363,1607,1483,1436,1348, 1284,1242,1126,1062,990,956,845,776,737,695cm?1. Compound4i:17white solid(90.8mg,82%);1H NMR(CDCl3, 500MHz,TMS)δ7.82?7.80(m,1H),7.74(dd,J=8.5,5.0Hz,2H), 7.38?7.29(m,3H),7.21(t,J=8.5Hz,2H),3.82(s,3H);13C{H} NMR(CDCl3,125MHz)δ163.6(d,J C?F=249.0Hz),152.7,142.8, 136.5,131.3(d,J C?F=8.5Hz),130.2,126.3(d,J C?F=3.1Hz),123.8, 122.8,122.5,119.8,115.8(d,J C?F=21.6Hz),109.6,31.6. Compound4j:white solid(98.6mg,86%);mp116?117°C;1H NMR(CDCl3,300MHz,TMS)δ7.84?7.81(m,1H),7.71(d,J=8.1 Hz,2H),7.52(d,J=8.1Hz,2H),7.35?7.27(m,3H),6.75(dd,J= 17.7,10.8Hz,1H),5.84(d,J=17.7Hz,1H),5.34(d,J=10.8Hz, 1H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ153.1,142.3, 138.8,136.3,135.9,129.5,128.9,126.3,122.8,122.5,119.4,115.4, 109.6,31.6;MS(ESI)235[M+H]+;HRMS(ESI)calcd for C16H15N2[M+H]+235.1230,found235.1228;IR(neat)ν1630, 1464,1402,1377,1322,1250,993,909,851,821,760,745,738,702 cm?1.

Compound4k:18white solid(57.5mg,56%);1H NMR(CDCl3, 300MHz,TMS)δ8.69?8.67(m,1H),8.38(d,J=8.1Hz,1H), 7.85?7.80(m,2H),7.44?7.28(m,4H),4.25(s,3H);13C{H}NMR (CDCl3,75MHz)δ150.5,150.2,148.5,142.3,137.2,136.8,124.7, 123.7,123.3,122.6,119.9,109.9,32.6.

Compound4l:16white solid(61.0mg,58%);1H NMR(CDCl3, 300MHz,TMS)δ7.81?7.77(m,1H),7.57?7.55(m1H),7.51?7.49 (m,1H),7.35?7.26(m,3H),7.19?7.16(m,1H),3.94(s,3H);

13C{H}NMR(CDCl

3,75MHz)δ147.7,142.6,136.4,132.3,128.5,

127.9,127.8,122.9,122.6,119.6,109.3,31.6.

Compound4m:white solid(100.6mg,87%);mp171?172°C;1H NMR(CDCl3,300MHz,TMS)δ7.76?7.73(m,2H),7.57(s,1H), 7.54?7.47(m,3H),7.15(s,1H),3.81(s,3H),2.42(s,3H),2.40(s, 3H);13C{H}NMR(CDCl3,75MHz)δ152.9,141.5,135.2,131.9, 131.2,130.5,129.4,129.3,128.6,119.8,109.8,31.6,20.6,20.3;MS (ESI)237[M+H]+;HRMS(ESI)calcd for C16H17N2[M+H]+ 237.1386,found237.1402;IR(neat)ν1601,1534,1438,1381,1318, 1176,1020,1000,924,846,818,771,690cm?1.

Compound4n:white solid(103.0mg,84%);mp122?123°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=7.8Hz,2H),7.57(s, 1H),7.29(d,J=7.8Hz,2H),7.12(s,1H),3.77(s,3H),2.41(s,3H), 2.40(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ152.7, 140.6,139.7,134.8,131.9,131.3,129.25,129.18,126.9,119.3,109.8, 31.6,21.3,20.5,20.2;MS(ESI)251[M+H]+;HRMS(ESI)calcd for C17H19N2[M+H]+251.1543,found251.1552;IR(neat)ν1604, 1478,1461,1377,1323,1180,1140,1107,1014,871,850,819,729, 681cm?1.

Compound4o:white solid(107.0mg,82%);mp147?148°C;1H NMR(CDCl3,300MHz,TMS)δ7.72(d,J=8.7Hz,2H),7.56(s, 1H),7.13(s,1H),7.01(d,J=8.7Hz,2H),3.86(s,3H),3.82(s,3H), 2.41(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ160.6, 153.0,141.5,135.2,131.6,131.0,130.7,122.9,119.6,114.0,109.7, 55.4,31.6,20.6,20.3;HRMS(ESI)calcd for C17H19N2O[M+H]+ 267.1492,found267.1495;IR(neat)ν1610,1481,1436,1382,1320, 1289,1242,1171,1022,875,831,792,750,717cm?1. Compound4p:white solid(107.0mg,86%);mp172?173°C;1H NMR(CDCl3,300MHz,TMS)δ7.74?7.68(m,2H),7.55(s,1H), 7.20?7.12(m,3H),3.77(s,3H),2.41(s,3H),2.38(s,3H);13C{H} NMR(CDCl3,75MHz)δ163.5(d,J C?F=248.8Hz),151.6,140.6, 134.8,132.2,131.6,131.3(d,J C?F=8.4Hz),130.2,126.0,123.5, 119.4,115.7(d,J C?F=21.7Hz),109.9,31.6,28.8,20.5,20.2;MS (ESI)255[M+H]+;HRMS(ESI)calcd for C16H15N2F[M+H]+ 255.1292,found255.1294;IR(neat)ν1607,1525,1436,1377,1318, 1219,1157,1003,837,809,730,706,674cm?1.

Compound4q:white solid(107.9mg,84%);mp142?143°C;1H NMR(CDCl3,300MHz,TMS)δ7.74(d,J=8.4Hz,2H),7.58(s, 1H),7.53(d,J=8.4Hz,2H),7.15(s,1H),6.75(dd,J=17.4,11.1Hz, 1H),5.85(d,J=17.4Hz,1H),5.36(d,J=11.1Hz,1H),3.84(s,3H), 2.41(s,3H),2.38(s,3H);13C{H}NMR(CDCl3,75MHz)δ152.2, 140.7,138.7,136.0,134.9,132.1,131.5,129.4,129.0,126.3,119.4, 115.2,109.8,31.7,20.5,20.2;MS(ESI)263[M+H]+;HRMS(ESI) calcd for C18H19N2[M+H]+263.1543,found263.1545;IR(neat)ν1627,1461,1382,1323,1143,1059,1008,990,903,841,761,716, 686cm?1.

Compound4r:white solid(93.6mg,86%);mp122?123°C;1H NMR(CDCl3,500MHz,TMS)δ7.73?7.71(m,2H),7.61(s,1H), 7.50?7.46(m,3H),7.22(d,J=8.0Hz,1H),7.12(d,J=8.0Hz,1H), 3.77(s,3H),2.49(s,3H);13C{H}NMR(CDCl3,125MHz)δ153.3, 142.6,134.4,132.0,129.8,129.5,129.2,128.5,124.2,119.2,109.1, 31.5,21.4;MS(ESI)223[M+H]+;HRMS(ESI)calcd for C15H15N2 [M+H]+223.1230,found223.1232;IR(neat)ν1494,1461,1372, 1322,1013,927,862,793,768,743,701,675cm?1.

Compound4s:white solid(98.4mg,85%);mp118?119°C;1H NMR(CDCl3,300MHz,TMS)δ7.75(d,J=8.1Hz,2H),7.60(s, 1H),7.31(d,J=8.1Hz,2H),7.24(d,J=8.1Hz,1H),7.13(d,J=8.1 Hz,1H),3.81(s,3H),2.49(s,3H),2.42(s,3H);13C{H}NMR (CDCl3,75MHz)δ153.3,142.1,140.0,134.3,132.3,129.33,129.26, 126.6,124.3,119.0,109.1,31.7,21.5,21.4;MS(ESI)237[M+H]+; HRMS(ESI)calcd for C16H17N2[M+H]+237.1386,found 237.1401;IR(neat)ν1613,1475,1444,1377,1318,1020,878, 848,821,789,747,727cm?1.

Compound4t:white solid(103.7mg,84%);mp105?106°C;1H NMR(CDCl3,300MHz,TMS)δ7.66(d,J=8.7Hz,2H),7.58(s, 1H),7.18(d,J=8.4Hz,1H),7.08(d,J=8.1Hz,1H),6.98(d,J=9.0 Hz,2H),3.82(s,3H),3.74(s,3H),2.48(s,3H);13C{H}NMR (CDCl3,75MHz)δ160.6,153.2,142.5,134.4,131.9130.6123.8, 122.1,118.9,113.9,108.9,55.2,31.5,21.4;MS(ESI)253[M+H]+; HRMS(ESI)calcd for C16H17N2O[M+H]+253.1335,found 253.1344;IR(neat)ν1607,1481,1464,1448,1385,1328,1179, 1245,1109,833,781,763,738,682cm?1.

Compound4u:white solid(103.4mg,88%);mp129?130°C;1H NMR(CDCl3,300MHz,TMS)δ7.77?7.68(m,2H),7.58(s,1H), 7.27?7.11(m,4H),3.81(s,3H),2.49(s,3H);13C{H}NMR(CDCl3, 75MHz)δ163.6(d,J C?F=249.1Hz),152.3,142.2,134.3,132.5, 131.4(d,J C?F=8.5Hz),125.8,124.5,123.5,119.1,115.8(d,J C?F= 21.7Hz),109.2,31.6,28.8,21.5;MS(ESI)241[M+H]+;HRMS (ESI)calcd for C15H14N2F[M+H]+241.1136,found241.1132;IR (neat)ν1607,1537,1467,1381,1315,1235,1152,838,804,791,756, 733,682cm?1.

Compound4v:white solid(104.5mg,86%);mp121?122°C;1H NMR(CDCl3,300MHz,TMS)δ7.68(d,J=8.1Hz,2H),7.60(s, 1H),7.49(d,J=8.1Hz,2H),7.19(d,J=8.4Hz,1H),7.10(d,J=8.4 Hz,1H),6.73(dd,J=17.7,10.8Hz,1H),5.82(d,J=17.7Hz,1H), 5.32(d,J=10.8Hz,1H),3.75(s,3H),2.48(s,3H);13C{H}NMR (CDCl3,75MHz)δ152.9,142.6,138.6,135.9,134.5,132.0,129.4, 129.0,126.2,124.2,119.1,115.2,109.0,31.6,21.4;MS(ESI)249[M +H]+;HRMS(ESI)calcd for C17H17N2[M+H]+249.1386,found

https://www.360docs.net/doc/2218353387.html,/10.1021/jo5010058|https://www.360docs.net/doc/2218353387.html,.Chem.2014,79,5806?5811 5809

249.1390;IR(neat)ν1621,1455,1382,1323,1250,1146,1059, 1017,985,899,843,791,739,686cm?1.

Compound4w:white solid(107.5mg,97%);mp102?103°C;1H NMR(CDCl3,300MHz,TMS)δ7.73?7.70(m,2H),7.50?7.45(m, 4H),7.25?7.22(m,1H),7.02(td,J=9.0,2.4Hz,1H),3.80(s,3H);

13C{H}NMR(CDCl

3,75MHz)δ159.4(d,J C?F=236.0Hz),154.8,

142.7(d,J C?F=12.6Hz),132.9,129.9,129.3(d,J C?F=19.1Hz), 128.6,111.1,110.7,109.9(d,J C?F=10.2Hz),105.1(d,J C?F=24.1 Hz),31.7;MS(ESI)227[M+H]+;HRMS(ESI)calcd for C14H12N2F[M+H]+227.0979,found227.0976;IR(neat)ν1621, 1593,1489,1472,1424,1374,1326,1143,1020,956,900,852,791, 776,751,702cm?1.

Compound4x:a white solid(113.0mg,96%);mp117?118°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=8.1Hz,2H),7.47(dd,J =9.3,2.4Hz,1H),7.33?7.25(m,3H),7.04(td,J=9.3,2.4Hz,1H), 3.83(s,3H),2.43(s,3H);13C{H}NMR(CDCl3,75MHz)δ159.5 (d,J C?F=236.3Hz),154.9,142.4,142.3,140.4,132.8,129.3(d,J C?F= 14.7Hz),126.3,111.2,110.8,110.0(d,J C?F=10.2Hz),105.0(d,J C?F =24.2Hz),31.8,21.4;MS(ESI)241[M+H]+;HRMS(ESI)calcd for C15H14N2F[M+H]+241.1136,found241.1147;IR(neat)ν1618, 1593,1483,1430,1382,1326,1242,1124,1014,955,855,828,803, 775,734,716cm?1.

Compound4y:white solid(107.9mg,86%);mp105?106°C;1H NMR(CDCl3,300MHz,TMS)δ7.67(d,J=8.7Hz,2H),7.44(dd,J =9.0,2.4Hz,1H),7.23(dd,J=9.0,4.5Hz,1H),7.04?6.98(m,3H), 3.85(s,3H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ160.9, 159.4(d,J C?F=235.7Hz),154.8,142.6(d,J C?F=12.8Hz),132.8, 130.7,121.6,114.1,110.8,110.5,109.8(d,J C?F=10.2Hz),104.9(d, J C?F=24.1Hz),55.3,31.8;MS(ESI)257[M+H]+;HRMS(ESI) calcd for C15H14N2FO[M+H]+257.1085,found257.1098;IR(neat)ν1610,1481,1436,1334,1292,1242,1183,1115,1020,955,844, 826,796,778,741,716cm?1.

Compound4z:a white solid(114.8mg,96%);mp124?125°C;1H NMR(CDCl3,300MHz,TMS)δ7.73(dd,J=8.4,5.4Hz,2H),7.45 (dd,J=9.3,2.4Hz,1H),7.29?7.18(m,3H),7.04(td,J=9.3,2.4Hz, 1H),3.82(s,3H);13C{H}NMR(CDCl3,75MHz)δ163.7(d,J C?F= 249.6Hz),159.5(d,J C?F=236.3Hz),153.9,142.6(d,J C?F=12.8 Hz),132.8,131.3(d,J C?F=8.5Hz),130.2,125.6(d,J C?F=3.2Hz), 115.9(d,J C?F=21.8Hz),111.3,111.0,110.0(d,J C?F=10.1Hz), 105.1(d,J C?F=24.1Hz),31.7;MS(ESI)245[M+H]+;HRMS (ESI)calcd for C14H11N2F2[M+H]+245.0885,found245.0895;IR (neat)ν1587,1483,1430,1388,1326,1233,1155,1121,1090,961, 850,803,733cm?1.

Compound4aa:white solid(108.8mg,88%);mp144?145°C;1H NMR(CDCl3,300MHz,TMS)δ7.74(d,J=7.8Hz,2H),7.54(d,J =7.8Hz,2H),7.47(d,J=9.0Hz,1H),7.31(dd,J=9.0,4.5Hz,1H), 7.08(t,J=9.0Hz,1H),6.77(dd,J=17.4,10.8Hz,1H),5.87(d,J= 17.7Hz,1H),5.38(d,J=10.8Hz,1H),3.88(s,3H);13C{H}NMR (CDCl3,75MHz)δ159.4(d,J C?F=236.2Hz),154.5,142.7(d,J C?F =12.8Hz),139.0,135.8,132.9,129.4,128.6,126.4,115.5,111.0(d, J C?F=26.0Hz),109.9(d,J C?F=10.3Hz),105.1(d,J C?F=24.1Hz), 31.8;MS(ESI)252[M+H]+;HRMS(ESI)calcd for C16H14N2F[M +H]+253.1136,found253.1150;IR(neat)ν1624,1481,1438,1405, 1326,1273,1143,1000,959,909,895,851,803,738,712cm?1. Compound4ab:19white solid(100.4mg,86%);1H NMR(CDCl3, 300MHz,TMS)δ7.75?7.72(m,2H),7.53?7.47(m,3H),7.31(d,J =2.1Hz,1H),7.23(d,J=8.7Hz,1H),6.95(dd,J=9.0,5.4Hz,1H), 3.86(s,3H),3.80(s,3H);13C{H}NMR(CDCl3,75MHz)δ156.4, 153.5,142.9,130.9,129.7,129.6,129.2,128.6,112.9,110.0,101.5, 55.7,31.6.

Compound4ac:white solid(103.7mg,84%);mp100?101°C;1H NMR(CDCl3,300MHz,TMS)δ7.63(d,J=8.1Hz,2H),7.32?7.30 (m,3H),7.23(d,J=8.7Hz,1H),6.95(dd,J=8.7,2.4Hz,1H),3.87 (s,3H),3.80(s,3H),2.43(s,3H);13C{H}NMR(CDCl3,75MHz)δ156.3,153.9,143.4,139.7,131.2,129.3,129.1,127.2,112.6,109.8, 101.7,55.8,31.7,21.3;MS(ESI)253[M+H]+;HRMS(ESI)calcd for C16H17N2O[M+H]+253.1335,found253.1351;IR(neat)ν1618,1590,1486,1433,1377,1332,1273,1194,1160,1028,948,826, 798,729,713cm?1.

Compound4ad:20white solid(117.1mg,84%);1H NMR(CDCl3, 300MHz,TMS)δ7.88(d,J=8.1Hz,1H),7.68?7.66(m,2H), 7.44?7.38(m,3H),7.31?7.23(m,4H),7.20?7.15(m,2H),7.06(d,J =6.6Hz,2H),5.40(s,2H);13C{H}NMR(CDCl3,75MHz)δ154.0, 143.0,136.2,136.0,129.9,129.8,129.1,128.9,128.6,127.6,125.8, 122.9,122.5,119.8,110.4,48.2.

Compound4ae:20white solid(124.2mg,85%);1H NMR(CDCl3, 300MHz,TMS)δ7.88(d,J=7.8Hz,1H),7.58(d,J=7.8Hz,2H), 7.29?7.15(m,8H),7.07(d,J=6.9Hz,2H),5.41(s,2H),2.38(s, 3H);13C{H}NMR(CDCl3,75MHz)δ154.0,142.5,140.1,136.2, 135.8,129.4,129.0,128.9,127.6,126.6,125.8,122.9,122.6,119.6, 110.4,48.3,21.3.

Compound4af:20white solid(126.2mg,82%);1H NMR(CDCl3, 300MHz,TMS)δ7.86(d,J=8.1Hz,1H),7.63(d,J=8.7Hz,2H), 7.34?7.25(m,4H),7.23?7.15(m,2H),7.10?7.07(m,2H),6.97?6.92(m,2H),5.42(s,2H),3.81(s,3H);13C{H}NMR(CDCl3,75 MHz)δ160.9,153.8,142.4,136.2,135.8,130.6,129.0,127.7,125.8, 122.8,122.7,121.7,119.4,114.1,110.3,55.2,48.3.

Compound4ag:white solid(127.6mg,84%);mp134?135°C;1H NMR(CDCl3,300MHz,TMS)δ7.90(d,J=7.8Hz,1H),7.67(d,J =7.2Hz,2H),7.47(d,J=7.2Hz,2H),7.30?7.08(m,8H),6.73(dd, J=17.4,10.5Hz,1H),5.82(d,J=17.4Hz,1H),5.45(s,2H),5.33(d, J=10.5Hz,1H);13C{H}NMR(CDCl3,75MHz)δ153.5,142.5, 138.9,136.0,135.81,135.78,129.2,128.9,128.7,127.6,126.4,125.7, 123.0,122.7,119.6,115.4,110.4,48.2;MS(ESI)311[M+H]+; HRMS(ESI)calcd for C22H19N2[M+H]+311.1543,found 311.1551;IR(neat)ν1604,1452,1388,1354,1326,1242,1157, 1076,980,917,854,778,761,724,716,695cm?1.

Compound4ah:21colorless liquid(101.9mg,86%);1H NMR(500 MHz,CDCl3,TMS)δ7.62(d,J=8.0Hz,2H),7.45?7.38(m,3H), 7.11(s,1H),6.95(s,1H),3.72(s,3H);13C{H}NMR(125MHz, CDCl3)δ147.7,130.5,128.5,128.45,128.36,128.3,122.2,34.3. Compound4ai:22colorless liquid(127.8mg,99%);1H NMR(500 MHz,CDCl3,TMS)δ7.52(d,J=8.0Hz,2H),7.26(d,J=8.0Hz, 2H),7.10(d,J=0.9Hz,1H),6.95(d,J=0.9Hz,1H),3.73(s,3H), 2.40(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.9,138.4,129.1, 128.4,128.2,127.7,122.0,34.6,21.2.

Compound4aj:23colorless liquid(125.1mg,97%);1H NMR(500 MHz,CDCl3,TMS)δ7.47(s,1H),7.38(d,J=7.5Hz,1H),7.32(t,J =7.5Hz,1H),7.20(d,J=7.5Hz,1H),7.10(d,J=1.5Hz,1H),6.93 (d,J=1.5Hz,1H),3.71(s,3H),2.39(s,3H);13C{H}NMR(125 MHz,CDCl3)δ147.8,138.1,130.3,129.3,129.2,128.11,128.10, 125.3,122.1,34.3,21.2.

Compound4ak:colorless liquid(95.5mg,74%);1H NMR(500 MHz,CDCl3,TMS)δ7.34?7.24(m,4H),7.13(s,1H),6.97(s,1H), 3.47(s,3H),2.22(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.6, 138.2,130.3,130.22,130.18,129.1,128.0,125.4,120.4,33.2,19.5;MS (ESI)173[M+H]+;HRMS(ESI)calcd for C11H13N2[M+H]+ 173.1073,found173.1088;IR(neat)ν1623,1557,1471,1401,1338, 1282,1143,1116,1013,987,914,906,844,791,750,717,685cm?1. Compound4al:24colorless liquid(110.8mg,84%);1H NMR(500 MHz,CDCl3,TMS)δ7.60(dd,J=8.5,5.5Hz,2H),7.14(t,J=8.5 Hz,2H),7.10(d,J=1.0Hz,1H),6.96(d,J=1.0Hz,1H),3.72(s, 3H);13C{H}NMR(125MHz,CDCl3)δ162.9(d,J C?F=247.1Hz), 146.9,130.5(d,J C?F=8.3Hz),128.3,126.8(d,J C?F=3.3Hz),122.3, 115.5(d,J C?F=21.6Hz),34.3.

Compound4am:colorless liquid(120.0mg,87%);1H NMR(500 MHz,CDCl3,TMS)δ7.60(d,J=8.5Hz,2H),7.48(d,J=8.5Hz, 2H),7.11(d,J=1.0Hz,1H),6.94(d,J=1.0Hz,1H),6.74(dd,J= 18.0,10.5Hz,1H),5.81(dd,J=18.0,0.5Hz,1H),5.30(dd,J=10.5, 0.5Hz,1H),3.72(s,3H);13C{H}NMR(125MHz,CDCl3)δ147.4, 137.5,136.1,129.8,128.5,128.3,126.1,122.4,114.6,34.4;MS(ESI) 185[M+H]+;HRMS(ESI)calcd for C12H13N2[M+H]+185.1073, found185.1083;IR(neat)ν1600,1504,1467,1454,1338,1275, 1129,1017,949,914,846,804,778,727,692cm?1.

https://www.360docs.net/doc/2218353387.html,/10.1021/jo5010058|https://www.360docs.net/doc/2218353387.html,.Chem.2014,79,5806?5811 5810

ASSOCIATED CONTENT

*Supporting Information

Copy of1H and13C NMR spectra of compounds4.This material is available free of charge via the Internet at http://

https://www.360docs.net/doc/2218353387.html,.

■AUTHOR INFORMATION

Corresponding Author

*Fax:86-577-86689300.E-mail:shaolix@https://www.360docs.net/doc/2218353387.html,.

Notes

The authors declare no competing?nancial interest.■ACKNOWLEDGMENTS

Financial support from Open Research Fund of Top Key Discipline of Chemistry in Zhejiang Provincial Colleges and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials(Zhejiang Normal University)(No.

ZJHX201305)is greatly appreciated.

■REFERENCES

(1)For some selected examples,please see:(a)Zhou,B.-H.;Li,B.-J.; Yi,W.;Bu,Z.-Z.;Ma,L.Bioorg.Med.Chem.Lett.2013,23,3759?3763.(b)Do,T.T.;Bae,J.H.;Yoo,S.I.;Lim,K.T.;Woo,H.Y.;Kim, J.H.Mol.Cryst.Liq.Cryst.2013,581,31?37.(c)Rahim,A.S.A.; Salhimi,S.M.;Arumugam,N.;Pi,L.C.;Yee,N.S.;Muttiah,N.N.; Keat,W.B.;Hamid,S.A.;Osman,H.;Mat,I.b.J.Enzyme Inhib.Med. Chem.2013,28,1255?1260.(d)Kamal,A.;Kashi Reddy,M.;Shaik, T.B.;Rajender;Srikanth,Y.V.V.;Santhosh Reddy,V.;Bharath Kumar,G.;Kalivendi,S.V.Eur.J.Med.Chem.2012,50,9?17.

(e)Vitale,G.;Corona,P.;Loriga,M.;Carta,A.;Paglietti,G.;La Colla, P.;Busonera,B.;Marongiu,E.;Collu,D.;Loddo,R.Med.Chem.2009, 5,507?516.(f)Dahiya,R.;Pathak,D.Eur.J.Med.Chem.2007,42, 772?798.(g)Falco,J.L.;Pique,M.;Gonza l ez,M.;Buira,I.;Terencio, J.;Pe r ez,C.;Príncep,M.;Palomer,A.;Guglietta,A.Eur.J.Med.Chem. 2006,41,985?990.(h)Bhongade,B.A.;Gouripur,V.V.;Gadad,A. K.Bioorg.Med.Chem.2005,13,2773?2782.

(2)For recent selected reviews on the transition metal-catalyzed direct C?H bond functionalizations,please see:(a)Kuhl,N.; Hopkinson,M.N.;Wencel-Delord,J.;Glorius,F.Angew.Chem.,Int. Ed.2012,51,10236?10254.(b)Engle,K.M.;Mei,T.-S.;Wasa,M.; Yu,J.-Q.Acc.Chem.Res.2012,45,788?802.(c)Arockiam,P.B.; Bruneau, C.;Dixneuf,P.H.Chem.Rev.2012,112,5879?5918.

(d)Yamaguchi,J.;Yamaguchi,A.D.;Itami,K.Angew.Chem.,Int.Ed. 2012,51,8960?9009.(e)Shibahara,F.;Murai,https://www.360docs.net/doc/2218353387.html,n https://www.360docs.net/doc/2218353387.html,.Chem. 2013,2,624?636.(f)Mousseau,J.J.;Charette,A.B.Acc.Chem.Res. 2013,46,412?424.(g)Bonin,H.;Sauthier,M.;Felpin,F.-X.Adv. Synth.Catal.2014,356,645?671.(h)Zhao,C.;Crimmin,M.R.; Toste,F.D.;Bergman,R.G.Acc.Chem.Res.2014,47,517?529. (3)(a)Shibahara,F.;Yamauchi,T.;Yamaguchi,E.;Murai,https://www.360docs.net/doc/2218353387.html,. Chem.2012,77,8815?8820.(b)Zhang,W.;Zeng,Q.-L.;Zhang,X.-M.;Tian,Y.-J.;Yue,Y.;Guo,Y.-J.;Wang,https://www.360docs.net/doc/2218353387.html,.Chem.2011,76, 4741?4745.(c)Yan,X.-M.;Mao,X.-R.;Huang,Z.-Z.Heterocycles 2011,83,1371?1376.(d)Shibahara,F.;Yamaguchi,E.;Murai,T.J. Org.Chem.2011,76,2680?2693.(e)Joo,J.M.;Barry Toure,B.; Sames,https://www.360docs.net/doc/2218353387.html,.Chem.2010,75,4911?4920.(f)Lewis,J.C.; Berman,A.M.;Bergman,R.G.;Ellman,J.A.J.Am.Chem.Soc.2008, 130,2493?2500.(g)Yoshizumi,T.;Tsurugi,H.;Satoh,T.;Miura,M. Tetrahedron2008,49,1598?1600.(h)Bellina, F.;Calandri, C.; Cauteruccio,S.;Rossi,R.Tetrahedron2007,63,1970?1980.

(i)Bellina,F.;Cauteruccio,S.;Rossi,https://www.360docs.net/doc/2218353387.html,.Chem.2007,72, 8543?8546.(j)Lewis,J.C.;Wu,J.Y.;Bergman,R.G.;Ellman,J.A. Angew.Chem.,Int.Ed.2006,45,1589?1591.(k)Bellina, F.; Cauteruccio,S.;Mannina,L.;Rossi,R.;Viel,https://www.360docs.net/doc/2218353387.html,.Chem. 2006,693?703.(l)Bellina,F.;Cauteruccio,S.;Rossi,https://www.360docs.net/doc/2218353387.html,. Chem.2006,1379?1382.(m)Bellina,F.;Cauteruccio,S.;Mannina, L.;Rossi,R.;Viel,https://www.360docs.net/doc/2218353387.html,.Chem.2005,70,3997?4005.(n)Lewis,J.

C.;Wiedemann,S.H.;Bergman,R.G.;Ellman,https://www.360docs.net/doc/2218353387.html,.Lett.2004,6,

35?38.

(4)(a)Chiong,H.A.;Daugulis,https://www.360docs.net/doc/2218353387.html,.Lett.2007,9,1449?1451.

(b)Liu,B.;Wang,Z.;Wu,N.-J.;Li,M.-L.;You,J.-S.;Lan,J.-B.

Chem. Eur.J.2012,18,1599?1603.

(5)In2011,Lee and co-workers reported the direct C5-arylation of

imidazoles with aryl chlorides by Pd complexes bearing phosphines and N-heterocyclic carbenes;please see:Vijaya Kumar,P.;Lin,W.-S.;

Shen,J.-S.;Nandi,D.;Lee,https://www.360docs.net/doc/2218353387.html,anometallics2011,30,5160?5169.

(6)(a)Yin,H.-Y.;Liu,M.-Y.;Shao,https://www.360docs.net/doc/2218353387.html,.Lett.2013,15,6042?

6045.(b)Xiao,Z.-K.;Yin,H.-Y.;Shao,https://www.360docs.net/doc/2218353387.html,.Lett.2013,15, 1254?1257.(c)Xiao,Z.-K.;Shao,L.-X.Synthesis2012,44,711?716.

(7)(a)Tang,Y.-Q.;Lu,J.-M.;Shao,https://www.360docs.net/doc/2218353387.html,anomet.Chem.2011,

696,3741?3744.(b)Zhou,X.-X.;Shao,L.-X.Synthesis2011,3138?3142.

(8)Gao,T.-T.;Jin,A.-P.;Shao,L.-X.Beilstein https://www.360docs.net/doc/2218353387.html,.Chem.2012,8,

1916?1919.

(9)Gu,Z.-S.;Shao,L.-X.;Lu,https://www.360docs.net/doc/2218353387.html,anomet.Chem.2012,700,

132?134.

(10)(a)Chen,W.-X.;Shao,https://www.360docs.net/doc/2218353387.html,.Chem.2012,77,9236?

9239.(b)Zhu,L.;Ye,Y.-M.;Shao,L.-X.Tetrahedron2012,68,2414?2420.(c)Zhu,L.;Gao,T.-T.;Shao,L.-X.Tetrahedron2011,67, 5150?5155.

(11)Shen,X.-B.;Zhang,Y.;Chen,W.-X.;Xiao,Z.-K.;Hu,T.-T.;

Shao,https://www.360docs.net/doc/2218353387.html,.Lett.2014,16,1984?1987.

(12)For some selected reviews on the transition metal-catalyzed

reactions in the presence of water,please see:(a)Li,B.;Dixneuf,P.H.

Chem.Soc.Rev.2013,42,5744?5767.(b)Velazquez,H.D.;Verpoort,

F.Chem.Soc.Rev.2012,41,7032?7060.(c)Lipshutz,B.H.;Ghorai,

S.Aldrichimica Acta2008,41,59?72.(d)Carril,M.;SanMartin,R.;

Domínguez,E.Chem.Soc.Rev.2008,37,639?647.(e)Cornils,B.;

Herrmann,W.Aqueous-Phase Organometallic Catalysis2;Wiley-VCH: Weinheim,Germany,2004.(f)Genet,J.P.;Savignac,https://www.360docs.net/doc/2218353387.html,anomet.

Chem.1999,576,305?317.

(13)While we were preparing this manuscript,Huynh and co-worker

reported the example of NHC-Pd complex catalyzed direct C5-arylation of1-methylimidazole with aryl bromides and chlorides in low to moderate yields;please see:Guo,S.;Huynh,https://www.360docs.net/doc/2218353387.html,anometallics 2014,33,2004?2011.

(14)Hachiya,H.;Hirano,K.;Satoh,T.;Miura,M.Angew.Chem.,Int.

Ed.2010,49,2202?2205.

(15)Huang,J.-K.;Chan,J.;Chen,Y.;Borths,C.J.;Baucom,K.D.;

Larsen,R.D.;Faul,M.M.J.Am.Chem.Soc.2010,132,3674?3675.

(16)Chakrabarty,M.;Mukherji,A.;Mukherjee,R.;Arimab,S.;

Harigaya,Y.Tetrahedron Lett.2007,48,5239?5242.

(17)Jin,X.-K.;Liu,Y.-X.;Lu,Q.-Q.;Yang,D.-J.;Sun,J.-K.;Qin,S.-

S.;Zhang,J.-W.;Shen,J.-X.;Chu,C.-H.;Liu,https://www.360docs.net/doc/2218353387.html,.Biomol.Chem.

2013,11,3776?3780.

(18)Huang,W.-K.;Cheng,C.-W.;Chang,S.-M.;Lee,Y.-P.;Diau,E.

https://www.360docs.net/doc/2218353387.html,mun.2010,46,8992?8994.

(19)Hubbard,J.W.;Piegols,A.M.;So d erberg,B.C.C.Tetrahedron

2007,63,7077?7085.

(20)Guru,M.M.;Ali,M.A.;Punniyamurthy,https://www.360docs.net/doc/2218353387.html,.Chem.2011,

76,5295?5308.

(21)Truong,T.;Daugulis,O.J.Am.Chem.Soc.2011,133,4243?

4245.

(22)Jose l glesias,M.J.;Prieto,A.;Carmen Nicasio,https://www.360docs.net/doc/2218353387.html,.Lett.

2012,14,4318?4321.

(23)Oi,S.;Sato,H.;Sugawara,S.;Inoue,https://www.360docs.net/doc/2218353387.html,.Lett.2008,10,

1823?1826.

(24)Brauer, D.J.;Kottsieper,K.W.;Like, C.;Stelzer,O.;

Waffenschmidt,H.;Wasserscheid,https://www.360docs.net/doc/2218353387.html,anomet.Chem.2001,630, 177?184.

https://www.360docs.net/doc/2218353387.html,/10.1021/jo5010058|https://www.360docs.net/doc/2218353387.html,.Chem.2014,79,5806?5811 5811

氮杂环卡宾本科生论文.doc

天津师范大学 本科毕业论文(设计) 题目:烷基桥联的N-杂环卡宾金属配合物的合成及其结构的 研究 学院:化学学院 学生姓名:方漪芸 学号:08507018 专业:化学 年级:08级 完成日期:2012年05月 指导教师:柳清湘

烷基桥联的氮杂环卡宾金属配合物的合成及其结构的研究 摘要:N-杂环卡宾及其金属配合物在金属配位化学和有机化学中的应用非常广泛,它不仅能与元素周期表中的许多金属元素发生反应并且其得到的金属配合物所显示出来的优良催化活性使其成为最具潜质的催化剂。除此之外,它也开始广泛地应用于精细化工产品的合成中,成为现代有机化学中必不可少的重要物质之一。因此为了使氮杂环卡宾金属配合物的相关合成方法有新的拓展,本文采用烷基桥联的氮杂环卡宾作配体,合成并且得到了一个N-杂环卡宾镍金属配合物的晶体,并对其结构进行了相关研究。 关键词:N-杂环卡宾;金属配合物;合成;结构研究

Synthesis of N-heterocyclic Carbene Metal Complexes by Alkyl Bridge Linkage Abstract:N-heterocyclic carbene and N-heterocyclic carbene mental complexes are widely used in coordination organometallic chemistry and coordination chemistry. Now, it has became one of the hotest topics in the field of chemistry. The study of N-heterocyclic carbine began in 1991, when first free N-heterocyclic carbene was isolated by Ardengo, this has evoked considerable attention. N-heterocyclic carbine always shows high activity, it can react with almost all elements in periodical table.Besides, the excellent catalytic activity of N-heterocyclic carbene mental complexes makes it beco me the most potential catalyst. What’s more, N-heterocyclic carbine have made signficant progesses in the synthesis of fine chemical products,which makes it occupy an important position in organic chemistry. In order to expand the synthesis of N-heterocyclic carbine mental complexes ,we used N-heterocyclic carbine which bridged by alkyl as ligand and one N-heterocyclic carbene nickel complex was prepared. And we have the structure researched.. Key words : N-heterocyclic carbene; metal complex; prepare; structure research

氮杂环卡宾

N?Heterocyclic Carbene-Palladium(II)-1-Methylimidazole Complex-Catalyzed Direct C?H Bond Arylation of(Benz)imidazoles with Aryl Chlorides Zheng-Song Gu,?Wen-Xin Chen,?and Li-Xiong Shao*,?,? ?College of Chemistry and Materials Engineering,Wenzhou University,Chashan University Town,Wenzhou,Zhejiang Province 325035,People’s Republic of China ?College of Chemistry and Life Sciences,Zhejiang Normal University,Jinhua,Zhejiang Province321004,People’s Republic of China *Supporting Information INTRODUCTION C2-arylated(benz)imidazoles are frequently found in various pharmaceuticals,biologically active compounds and materials.1 Recently,the transition metal-catalyzed direct C?H bond arylation of(benz)imidazoles has been noticed as a potentially more e?cient and convenient alternative for the straightfor-ward synthesis of such compounds.2However,during the past years,the scope of the arylating reagents is limited to the more active aryl iodides and bromides.3To the best of our knowledge,only very few examples on the palladium-catalyzed direct C2-arylation of(benz)imidazoles using aryl chlorides in the presence of phosphine ligands were reported to date, despite their lower cost and more easy availability.4Therefore, despite that some progress has been made in the direct C2-arylation of(benz)imidazoles,the research for e?cient methods using the more applicable,while less active,aryl chlorides as the arylating reagents is still in great demand.5 Previously,we have reported that a well-de?ned N-heterocyclic carbene-Pd(II)-1-methylimidazole[NHC-Pd(II)-Im]complex 1can easily activate aryl chlorides in traditional C?C couplings such asα-arylation of carbonyl compounds,6Suzuki?Miyaura coupling,7Mizoroki?Heck reaction,8Hiyama reaction9and C?N coupling.10Furthermore,in a very recent communication,we found that NHC-Pd(II)-Im complex1can also e?ciently catalyze the direct C?H bond arylation of(benzo)oxazoles using aryl chlorides as the arylating reagents.11These results thus prompted us to further investigate its application in activating aryl chlorides toward the direct C2-arylation of (benz)imidazoles.Herein,we report these results in detail.■RESULTS AND DISCUSSION Initially,1-methylbenzimidazole2a(0.49mmol)was chosen as the model substrate for the reaction with chlorobenzene3a(2.0equiv)in the presence of NHC-Pd(II)-Im complex1(2.0mol %)under various conditions.For example,in the?rst round, toluene/H2O(2.0mL/0.5equiv)was chosen as the solvents to evaluate the e?ect of bases.The best result was achieved using KO t Bu as the base to give the desired product4a in89%yield (Table1,entry6),while in the presence of other bases such as K2CO3,KOH,K3PO4·3H2O,LiO t Bu and NaO t Bu,almost no product could be detected(Table1,entries1?5).The replacement of solvents from toluene/H2O to THF/H2O and dioxane/H2O resulted in product4a only being isolated in48 and40%yields,respectively(Table1,entries7and8).In addition,in the presence of other solvents such as DMSO/ H2O,DMF/H2O,CH3CN/H2O and DME/H2O,no desired product could be detected(Table1,entries9?12). Furthermore,after careful investigations,it was found that the amount of H2O dramatically a?ected the reaction.That is,the introduction of0.5equiv of H2O was found to be necessary for such transformation.For instance,only18%yield of product4a was obtained when dry toluene was used as the solvent(Table 1,entry13).When1.0equiv of H2O was added,a signi?cantly higher yield(84%)was achieved(Table1,entry14).However, when the amount of H2O was increased to3.0equiv,the yield of4a drastically decreased to5%(Table1,entry15).These results thus encouraged us to further investigate the e?ect of H2O. It is known that KO t Bu will be partially hydrolyzed to KOH and HO t Bu under the above reaction conditions.Therefore, three more control experiments were carried out:(1)the combination of KO t Bu(1.5equiv),KOH(0.5equiv)and HO t Bu(0.5equiv)was introduced instead of KO t Bu(2.0 Received:May9,2014 Published:May28,2014 ?2014American Chemical https://www.360docs.net/doc/2218353387.html,/10.1021/jo5010058|https://www.360docs.net/doc/2218353387.html,.Chem.2014,79,5806?5811

含亚磷酸酯和氮杂环卡宾的混配型镍(Ⅱ)配合物的合成、表征及其催化性能的研究

含亚磷酸酯和氮杂环卡宾的混配型镍(Ⅱ)配合物的合成、表征及 其催化性能的研究 本论文设计合成了一系列新的含亚磷酸酯和氮杂环卡宾配体的混配型镍(Ⅱ)配合物,并对它们进行了全面的表征。在此基础上,考察了上述配合物在氯代芳烃、溴代芳烃及苄基氯代烃与联硼酸酯的Miyaura硼化反应中的催化性能。 1、通过二亚磷酸酯二卤化镍Ni[P(OR13]2X2与等摩尔量的氮杂环卡宾配体NHC 的反应合成了含亚磷酸酯和氮杂环卡宾配体的混配型镍(Ⅱ)配合物Ni(NHC)[P(OR13]X2{NHC= (R2NH2NH2R2) C,R2=2,4,6-三甲基苯基,SIMes;R2=2,6-二异丙基苯基,SIPr;R2=叔丁基,SItBu;R1=乙基,异丙基;X=溴,氯}1–6和8–10。所有配合物在室温下都是红色(含有SIMes和SIPr)或棕黄色(含有SItBu)固体粉末,对空气不敏感,它们都通过了元 素分析和核磁的表征,其中配合物5、6和9通过了X-ray单晶衍射的表征。 2、考察了混配型镍(Ⅱ)配合物1–6和8–10在氯代芳烃或溴代芳烃与联硼酸酯的Miyaura硼化反应中的催化性能,发现这些配合物具有明显的亚磷酸酯配体和氮杂环卡宾配体之间的协同效应,并且亚磷酸酯配体和氮杂环卡宾配体结构的改变对配合物的催化性能有很大影响。其中,配合物1在氯代芳烃与联硼酸新戊二醇酯(B2nep2)的Miyaura硼化反应中表现出最优的催化活性,而配合物2在溴代芳烃与联硼酸频哪醇酯 (B2pin2)的Miyaura硼化反应中的催化效果最佳。

烷基桥联的N-杂环卡宾金属配合物的合成及其结构的研究论文

本科毕业论文(设计) 题目:烷基桥联的N-杂环卡宾金属配合物的合成及其结构的研究

烷基桥联的氮杂环卡宾金属配合物的合成及其结构的研究 摘要:N-杂环卡宾及其金属配合物在金属配位化学和有机化学中的应用非常广泛,它不仅能与元素周期表中的许多金属元素发生反应并且其得到的金属配合物所显示出来的优良催化活性使其成为最具潜质的催化剂。除此之外,它也开始广泛地应用于精细化工产品的合成中,成为现代有机化学中必不可少的重要物质之一。因此为了使氮杂环卡宾金属配合物的相关合成方法有新的拓展,本文采用烷基桥联的氮杂环卡宾作配体,合成并且得到了一个N-杂环卡宾镍金属配合物的晶体,并对其结构进行了相关研究。 关键词:N-杂环卡宾;金属配合物;合成;结构研究

Synthesis of N-heterocyclic Carbene Metal Complexes by Alkyl Bridge Linkage Abstract:N-heterocyclic carbene and N-heterocyclic carbene mental complexes are widely used in coordination organometallic chemistry and coordination chemistry. Now, it has became one of the hotest topics in the field of chemistry. The study of N-heterocyclic carbine began in 1991, when first free N-heterocyclic carbene was isolated by Ardengo, this has evoked considerable attention. N-heterocyclic carbine always shows high activity, it can react with almost all elements in periodical table.Besides, the excellent catalytic activity of N-heterocyclic carbene mental complexes makes it beco me the most potential catalyst. What’s more, N-heterocyclic carbine have made signficant progesses in the synthesis of fine chemical products,which makes it occupy an important position in organic chemistry. In order to expand the synthesis of N-heterocyclic carbine mental complexes ,we used N-heterocyclic carbine which bridged by alkyl as ligand and one N-heterocyclic carbene nickel complex was prepared. And we have the structure researched.. Key words :N-heterocyclic carbene; metal complex; prepare; structure research

【CN109894153A】一种氮杂环卡宾共价有机框架材料负载钯的催化剂制备及应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910154963.X (22)申请日 2019.03.01 (71)申请人 山西师范大学 地址 041000 山西省临汾市尧都区贡院街1 号 (72)发明人 杨俊娟 王君文 吴元元 王昕  (74)专利代理机构 北京中索知识产权代理有限 公司 11640 代理人 刘翔 (51)Int.Cl. B01J 31/28(2006.01) C07C 1/32(2006.01) C07C 15/14(2006.01) C07C 41/30(2006.01) C07C 43/205(2006.01) C07C 201/12(2006.01)C07C 205/06(2006.01)C07C 17/263(2006.01)C07C 25/18(2006.01)C07C 205/12(2006.01) (54)发明名称一种氮杂环卡宾共价有机框架材料负载钯的催化剂制备及应用(57)摘要一种氮杂环卡宾共价有机框架材料负载钯的催化剂制备方法以及基于该催化剂的碳-碳偶联反应的催化应用。非均相催化剂的合成步骤为:以含氮杂环卡宾的共价有机框架材料为载体(COF -NHC),负载金属钯即得碳-碳偶联反应的催化剂(Pd@COF -NHC)。该反应以卤代芳烃和芳基苯硼酸为原料,以碳酸钾为碱,在水溶剂中室温下反应1.0h即得目标产物,收率均在90%以上。以溴苯和苯硼酸为反应模板,所制得的催化剂在循环使用十次后,收率依然可达97%。本发明的金属钯非均相催化剂具有用量小,结构稳定,活性高,可多次循环使用的特点,具有很好的工业化 应用前景。权利要求书2页 说明书7页 附图3页CN 109894153 A 2019.06.18 C N 109894153 A

N-杂环卡宾的合成和应用【文献综述】

毕业论文文献综述 应用化学 N-杂环卡宾的合成和应用 1 前言 1.1 卡宾 卡宾(carbene)又称碳烯,一般以R2C表示,指碳原子上只有两个键连有基团,还剩有两个未成键电子的高活性中间体。卡宾的寿命远低于一秒,只能在低温下(77K以下)捕获,在晶格中加以分离和观察。卡宾与碳自由基一样,属于不带正负电荷的中性活泼中间体。卡宾只有6个价电子,含有一个电中性的二价碳原子,在这个碳原子上有两个未成键的电子。卡宾是一种强Lewis酸,具有很强的亲电性。 1.2 N-杂环卡宾 最早对N-杂环卡宾的研究起始于1960年,当时Wanzlick[1]等对噻唑-2-碳烯进行了详尽透彻的研究。由于噻唑-2-碳烯类化合物异常的活泼性,尽管在当时Wanzlick并没有成功通过分离技术得到N-杂环卡宾,但是他们意识到咪唑环中邻位氮原子的给电子效应可以稳定2-位上的卡宾中心,这一思想为之后的N-杂环卡宾化学的发展奠定了基础。在这之后,N-杂环卡宾引起了化学家们的广泛的研究兴趣。在近十几年来,N-杂环卡宾的的研究得到了迅速的发展,特别是在金属成键的配位化学这一领域。最近几年,N-杂环卡宾的金属络合物作为一种催化剂,已经在多个领域取得了广泛的应用。 N-杂环卡宾被看作是一种有机膦配体的代替品。在某一些有机金属催化反应方面,N-杂环卡宾被当做配体已经成功取代了应用广泛的膦配体。由于在催化方面的出色表现,N-杂环卡宾配合物的合成及其催化性质的研究受到了国内外化学家的关注。 1.2.1N-杂环卡宾的分类及其应用 常见的N-杂环卡宾根据环上氮原子的数目不同或氮原子位置的不同有咪唑型卡宾,三唑型卡宾等。N-杂环卡宾一般以单线态形式存在,卡宾碳原子采用sp2杂化形式,卡宾碳原子周围有6个电子,是一个缺电子体系,卡宾碳原子上的一对电子处在σ轨道上。从电子共轭效应考虑,2个氮原子p轨道上的孤对电子和卡宾碳原子上的空p轨道可以发生给电子共轭效应,这样降低了卡宾碳原子的缺电子性。从电子诱导效应考虑,2个

N-杂环卡宾钯催化剂

2010年,Michael G. Gardiner 和他的同事合成了新型的氮杂环卡宾化合物,A colorless solution of 1 over anhydrous Na2CO3 in dry MeOH was heated at 508C for two hours to give a red solution, from which red crystals of 2 were obtained in 84% yield after filtration and concentration (Scheme 1).[8] Complex 2 has high stability as a solid (more than one year) and in MeOH and THF (several months). The complex is tolerant to moisture, but reacts quickly with atmospheric oxygen in solution and the solid state. Peter D. W. Boyd, Alison J. Edwards, Michael G. Gardiner, Angew. Chem. Int. Ed. 2010, 49, 6315 –6318. 2008年,Takeshi Makino和他的同事得到了具有二齿氮杂环配体的钯配合物,The bidentate NHC-palladium complexes 4a–e were prepared by the reaction of 1-(4-iodoaryl)-3-aryl-4,5-dihydroimidazolinium salt (1)[16] and xanthenediboronic acid (2)[17] in the presence of Pd(PPh3)4 and Ag2O followed by palladation[18] (Scheme 1). The bis(imidazolidene) derivative 6 was also synthesized in a similar way (Scheme 2).

N-杂环卡宾催化的Stetter反应

N-杂环卡宾催化的Stetter反应 1.引言 1.1 卡宾简介 卡宾又名碳烯,是亚甲基及其衍生物的总称,是有机反应过程中形成的不同于正、负碳离子的另一类缺电子的活性中间体。虽然光谱研究已经证明了游离卡宾的存在,但是由于其在大多数条件下反应活性高、寿命短,因而难以分离和表征。此外,游离卡宾的高活性和低反应选择性也常常限制了其在有机化学中的应用。[1] 而N-杂环卡宾(N-H eterocyclic carbene, NHC)是一类纯有机化合物,碳原子以sp2形式杂化,卡宾碳原子周围只有六个电子,是一个缺电子体系。卡宾碳原子上的一对电子处在σ轨道上。从共轭效应考虑,两个氮原子p轨道上的孤对电子和卡宾碳原子上的空p轨道可以发生给电子的共轭效应,这样可以有效的降低卡宾碳原子的缺电子性。从诱导效应考虑,两个电负性较大的氮原子与卡宾碳原子相连,由于氮原子的吸电子作用能够使卡宾碳原子上的孤对电子趋于稳定,同时,C=C双键参与的共轭作用,也为N-杂环卡宾结构体系的稳定做出了贡献。[2] 在卡宾家族中, NHC由于其结构的特殊性,一直是卡宾化学工作者的关注热点[3]。NHC 具有比普通碳卡宾更稳定的化学结构, 并且具有毒性小、给电子能力强、空间和电子效应很容易通过改变氮原子上取代基进行调控等特点, 其性质类似于富电子的膦配体, 且具有良好的热稳定性、耐水性和耐氧化性, 在许多情况下可以代替不稳定的膦配体应用于催化反应中。[4] 1.2 N-杂环卡宾的发展 20世纪60年代,Wanzlick对N-杂环卡宾已经有所研究,但当时并未成功分离得到N-杂环卡宾。1968 年,Wanzlick等合成了N-杂环卡宾的金属络合物, 但他们并未分离出游离的NHC。 [4] [5] 1991 年, Arduengo[6]等首次成功分离得到了第一个稳定的N-杂环卡宾-咪唑-2-碳烯,推动了NHC化学的迅速发展。1995年Enders小组首次合成了三唑衍生的N-杂环卡宾。1997年首次合成出对空气稳定的N-杂环卡宾。2002年,用四溴化碳处理卡宾得到N-杂环卡宾的溴的类似物的合成方法。2004年,Bertrand利用二-(三甲基硅基)汞产生二胺基卡宾,并合成稳定的六元环N-杂环卡宾。[7] 1.3 N-杂环卡宾催化的反应 近年来, 已成为有机化学家们研究的热点之一, 其在催化反应中的应用也越来越广泛, 如催化安息香缩合反应[8]、酮与安息香类型化合物反应[9]、醇与醛反应[10]、醛与亚胺反应[11]、不饱和醛与酮反应[12]、酯基交换反应[13]、聚合反应[14]、Stetter反应[15]等, 特别是在安息香缩合反应、分子内不对称Stetter反应的催化中取得了很好的效果。而我在这次研究性实验中着重研究NHC催化Stetter反应。 2. N-杂环卡宾催化的Stetter反应 2.1 Sterrer反应简介 醛经过极性反转后所形成的卡宾与α,β-不饱和酮(酯)发生1,4-加成并得出相应的1,4-二羰基化合物的反应通常称为Stetter 反应, 也叫Michael-Stetter 反应(Scheme 1)。 [16] 该反应是由Stetter首先发现的, 其反应机理为:首先是由噻唑盐经碱去质子得到NHC,

相关文档
最新文档