嵌入式底层软件开发方法

嵌入式底层软件开发方法
嵌入式底层软件开发方法

嵌入式底层软件开发方法

自从20世纪70年代单片机出现以来,嵌入式系统已获得了较为深入的研究,

提出了一些嵌入式软件的开发方法,但嵌入式系统仍处于发展阶段,嵌入式系统

已经显示出广阔的应用前景。

1.嵌入式系统的定义

嵌入式系统又称为嵌入式计算机系统,是指嵌入到对象体系中的专用计算机系统。对象系统则是指嵌入式系统所嵌入的宿主系统,嵌入性、专用性与计算机系统

是嵌入式系统的三个基本要素。嵌入式系统通常被描述为:以应用为中心,以计

算机技术为基础,软硬件可剪裁,适应于应用系统对功能、可靠性、成本、体积和

功耗有严格要求的专业计算机系统。

2.嵌入式系统的发展历程

嵌入式系统是在硬件和软件交替发展的支撑下逐渐趋于稳定和成熟的,它有着

悠久的历史。从20世纪70年代单片机的出现到现在各种嵌入式微处理器、微控制

器的大规模应用,嵌入式系统己经有了30多年的发展历史。纵观嵌入式技术的发展,大致经历了以下几个发展阶段。

(1)无操作系统阶段:主要是以功能简单的专用计算机或单片机为核心的可编

程控制器形式存在的系统,具有监测、伺服、设备指示等功能,一般没有操作系统

的支持,通过汇编语言编程对系统进行直接控制。主要特点是:系统结构和功能都

相对单一,处理效率较低,存储容量较小,几乎没有用户接口,比较适合于各类专

用领域。

(2)以嵌入式处理器和嵌入式操作系统为标志的嵌入式系统:主要特点是出现

了高可靠、低功耗的嵌入式处理器,嵌入式操作系统能运行于各种不同类型的微处

理器上,兼容性好;操作系统内核精小、效率高,并且具有高度的模块化和扩展性;片上系统(System On Chip,SOC)使得嵌入系统越来越小,具有大量的应用程序接口,开发应用程序简单,应用软件丰富。

3.嵌入式系统的构成及其特点

1)嵌入式系统的组成

嵌入式系统主要由嵌入式处理器、相关支撑硬件、嵌入式操作系统及应用软件

系统等组成,具有专用性、可嵌入性、实时性、可移植性和分布式等特点。其中,

嵌入式微处理器是嵌入式硬件系统的核心部分,它担负着控制、协调系统工作的重

要任务,通常具有实时多任务处理能力、中断处理能力、存储器保护能力和低功耗

能力;支撑硬件主要包括存储介质、通信部件和显示部件等;支撑硬件的驱动程

序、操作系统、应用软件等一起构成嵌入式软件。

2)嵌入式系统的特点

嵌入式系统是一个软件和硬件的集合体,它将先进的计算机技术、半导体技术、电子技术与应用软件开发技术相结合,是一个技术密集、资金密集、不断创新的知识集成系统。与通用计算机系统相比,嵌入式系统在很多方面独具特色,下面介绍了嵌入式系统的几大特点。

(1)软硬件紧密结合:嵌入式系统的主要特征之一是软件与硬件的紧密结合,

其底层的组织结构常常因为所选用硬件体系的不同而发生变化。平台差异性是不存在通用解决方案的主要原因之一,也使得嵌入式系统具有多种专用工具和特殊方法。

(2)多样性(专用性、定制性):每个嵌入式计算机系统总是跟具体的应用联系在一起,以应用为中心,为具体的应用服务。因此嵌入式系统是多样化的,需要为满足不同的应用需求而专门定制,其中既包括硬件系统的多样性,也包括软件系统的多样性。

(3)资源有限性:受制造工艺和应用环境的限制,嵌入式系统拥有的资源十分

有限。主要表现在对整个计算机系统的体积、功耗、CPU(Central Processing Unit,

中央处理器)的处理能力、存储器的容量和性能等方面都有较多的限制。

(4)高实时性:嵌入式系统的计算处理过程往往需要在规定时限内完成,这就

要求系统对外部事件的反应要及时准确。

(5)低功耗:功耗问题是嵌入式系统设计中普遍关注的热点和难点,特别是对

于电池供电的系统。降低功耗不仅可以延长用电池供电的设备的工作时间,同时也可以更容易解决系统的散热问题。

(6)高可靠性:嵌入式系统对可靠性的要求与系统的规模、应用环境和目的有

密切关系。一些实时系统对可靠性的要求极高,如航空航天技术。嵌入式系统的可靠性涉及到很多方面,如机械设计的可靠性、嵌入式硬件与软件的可靠性等。

4嵌入式系统开发的难点

随着电子技术的发展及制造工艺的提高,嵌入式系统的片内ROM(Read Only Memory,只读存储器)容量不断增大,CPU执行速率不断提高,尤其是嵌入式操作系统的出现,这使得嵌入式系统在代码实现上发展迅速,现已出现了多种嵌入式编程语言及其编译环境,如嵌入式C、C++、Java、Linux等等。尽管近几年嵌入式系统发展迅速,但嵌入式系统的特性及其开发方法的不完善,使得嵌入式系统的开发非常复杂和昂贵,嵌入式开发仍面临着以下重要的问题:

(1)嵌入式系统分析和设计方面没有统一的标准:分析设计方法不统一、从分

析设计到制作和编程没有一个始终一贯的工程化方法,使得产品形成的每一个过程受人为因素影响十分严重、分析设计的成果不能被开发类似项目或产品重用。

(2)嵌入式系统的专用性很强,嵌入式系统的一个最大特点就是软硬件紧密结

合,为此,嵌入式软件(尤其是嵌入式底层软件)的设计和验证要充分考虑硬件

因素。软件需要根据系统硬件的变化和增减不断进行修改。而且嵌入式系统

中微处理器(Micro-ControllerUnit,MCU)的系列十分丰富,使得MCU的编译

环境无法做到完全的通用。

(3)在实际产品应用中,嵌入式系统大多数是事件驱动的系统,而且外部事件

是多发的和并发的随机事件,即异步事件。嵌入式应用软件系统需要有效地处理

并发事件,所以往往采用多线程(任务)运行机制,以适应这种复杂的并发环境,这

就增加了软件设计的复杂度。

(4)嵌入式软件运行在特定的硬件体系和环境中,在进行设计时,不但需要考

虑各个节点间的通信和同步问题,还需要考虑整个系统的时序问题。

(5)由于嵌入式系统多工作于工业企业现场或军用装备,不允许死机和系统重

启发生,一旦出现故障,有可能造成整个生产的混乱,甚至产生严重后果,因此对可靠性和安全性要求很高。这使得嵌入式系统对可靠性、防危性、和容错性等功能有更苛刻的要求。

以上几个方面的问题成为近几年来制约嵌入式系统发展的主要瓶颈,使得大部分从事嵌入式系统应用开发的组织和团体,基本上是采用小组甚至是作坊式的运作模式。这使得开发较复杂或大型系统的工作变得十分困难甚至无法进行,或因为系统需求的不断变化、小组成员的流动导致项目失败。

1978年L.L.Constantine和E.Y ourdon提出了结构化的软件设计方法,经过30

多年的研究及应用,已成为技术最成熟、应用最广泛的软件开发方法之一。

结构化方法强调过程抽象化和功能模块化。其中,结构是指系统内各个组成

要素之间的相互联系、相互作用的框架。结构化方法的基本思想可以概括为:用系统工程的思想和工程化的方法,按用户至上的原则,自顶向下、逐步求精地对信息系统进行分析与设计。采用模块化技术、分而治之的方法,将系统按功能分解为若干模块,模块内部由顺序、分支、循环基本控制结构组成,应用子程序实现模块化结构化方法是用基于功能分解的观点来分析和解决问题的,即把一个复杂的系统分解成若干个尽可能独立的子系统、子模块,采用“自顶向下”逐层分析,整个过程从一个阶段到另一个阶段,其间有明显的间隔。任何软件系统都可以用数据流图表示,理论上,结构化方法可以用于任意一种软件系统的开发。使用结构化方法开发的软件运行效率高,且能够增加软件规格说明的可读性及系统的可靠性,因为数据流图容易理解,有利于开发人员与客户的交流。

4.1结构化方法的不足

结构化设计方法中,软件系统结构对系统功能的变化十分敏感,功能的变化往往意味着需要重新设计。结构化方法中过程抽象化和功能模块化的特点使其在设计过程中有如下不足:

1)与用户交流不直观,难以应对需求变化

结构化分析设计是一种面向过程的方法,形成的系统模型实际上是信息的一种抽取,这种模型用户难以理解。结构化分析设计对需求变化的适应能力比较弱,当用户需求信息发生变化或外界条件改变时,设计者无法直观地改变系统,必须映象为数据流及过程后才有可能实现。

2)开发过程繁琐,从分析到设计难以实现

结构化分析设计中的数据流程图是分层次展现系统模型的,这样的设计方法难以详细地了解整个系统;而且结构化方法中设计文档很难与分析文档对应,因为二者的表示体系不一致,从分析到设计的“转换”不存在可靠的转换规则,而更多地是带有人为的随意性,容易因理解上的错误而埋下隐患。

3)开发周期长

结构化分析设计强调弄清楚用户信息需求,事实上很多情况下信息需求是难以一次性弄清的,特别是比较大型的系统。而且,设计过程中从结构化分析到结构化程序设计的转换不可靠,设计出的软件难以重用,进而延缓了开发的进度。

目前嵌入式系统的应用越来越广泛,作为嵌入式系统主要部分的嵌入式软件的需求也越来越大,但因为嵌入式系统实时性、安全性、硬件体系的多样性等特性的要求,在不同的嵌入式硬件体系上开发出高质量、符合各种要求的嵌入式软件的困难也越来越大。在嵌入式系统的开发过程中,不仅要尽可能的缩减开发周期和费用,更重要的是开发出高质量的嵌入式应用程序。这些嵌入式软件不仅要符合嵌入式系统可靠性、稳定性、实时性等要求,还要求满足软件的可重用性、可配置性和可扩展性,以提高嵌入式软件的开发效率和质量。

嵌入式系统规模不断扩大,嵌入式软件开发已变成一项极具挑战性、较复杂的任务。嵌入式系统的基本特点对嵌入式软件系统的开发具有重要影响,这些影响主要包括:

1)实时性的影响

实时性是嵌入式系统的重要特性之一,影响着嵌入式软件设计的多个方面,如构件模型、应用设计、系统设计等方面。在设计构件模型时,必须有效地表示实时属性,即构件的实现模型应该提供机制保证对构件接口的调用能够满足实时性要求;

在设计软件体系结构时要特别重视解决并行、异步、中断等问题,以满足系统对实时性的要求;而在系统设计时,对构件的选择、修改、组装、系统验证与评估时都必须将实时性作为一个主要的设计要素。

2)资源有限性的影响

资源有限性是嵌入式系统的独特点,其影响主要表现在构件模型和系统设计等方面。在分析设计模型时,要求对有限的资源作出显式的描述,方便在系统设计阶段对构件的选用和对系统的验证,节省嵌入式系统的硬件资源(例如内存);而整体系统设计时,要充分考虑系统的有限资源,进行合理的系统设计。

3)应用专用性的影响

专用性是嵌入式系统的三个基本要素之一,主要体现为嵌入式硬件体系的多样性。为满足多样性的要求,在应用分析和设计时,要求识别出应用的共同点,确定应用的变化点,预测应用可能的变化,以设计出灵活易变的体系结构以适应领域内各种潜在的变化,使构件的重用性更高。

4)软件代码健壮性的要求

嵌入式系统往往工作环境恶劣、受电噪声干扰较大,而且随着软件复杂度越来越高,系统运行不稳定的可能性愈来愈高,因此,嵌入式系统应用对软件的健壮性提出了更高的要求,追求更高的健壮性、可靠性是嵌入式软件的特点之一。

5)底层硬件驱动程序(底层软件)的特殊要求

嵌入式系统与普通的软件系统不同,它不仅包括高端的应用软件,还有底层的硬件体系及其底层软件。底层软件完全针对硬件体系,专用性强;嵌入式软件是应用在嵌入式设备上的应用软件,这就决定了它比传统PC机上的软件更多地暴露给用户对硬件的操作接口。

4.2结构化的嵌入式软件开发方法

结构化的嵌入式软件设计流程是:按照系统总体规划和总体设计,由设计人员

分别编程设计各功能模块;接着依据软件结构和程序流程,将功能模块组成结构化

程序,实现系统整体功能,满足系统要求,解决实际问题。具有如下特点:

(1)执行效率:结构化方法比面向对象、构件化方法的执行效率要高,因为它可以产生更直接、效率更高的代码,所以对于一些嵌入式的系统,结构化方法产生

的系统更小、运行效率更高。

(2)可重用性:结构化设计方法中各功能通过接口与外界交互,当接口发生变化时往往造成系统结构较大变动,难以扩充新的功能接口,因此结构化的设计方法

复用性差;面向对象和构件化设计方法分别通过调用对象和构件来设计系统,遇到

类似的问题时,只需要根据要求修改对象或构件即可,因此这两种方法具有很好的

可重用性。

(3)应用的范围:结构化方法适用于数据少而操作多的问题,实践证明对于以

功能为主的系统,结构化方法比较适用。

5嵌入式底层构件开发技术

现有的嵌入式开发方法多集中在嵌入式软件开发方面,尤其是基于嵌入式操作

系统的嵌入式应用软件开发。而嵌入式系统开发区别与普通软件开发的最大之处就是:嵌入式系统是软硬件紧密结合的系统,所有的嵌入式软件(嵌入式应用程序和嵌

入式操作系统)都必须运行在特定的硬件体系上。

鉴于嵌入式系统需要硬件体系支持的特殊性,嵌入式底层软件(即硬件驱动程序)的开发便成为嵌入式软件开发的重要组成环节。在硬件构件基础的上,本节给出应用于嵌入式底层软件上的底层构件(Embedded Underlying Component,EUC)的定义。

5.1基于硬件构件的嵌入式底层构件

嵌入式底层构件(EUC)是在硬件构件的基础上,根据硬件构件的实际功能和接口,实现与之相对应的硬件驱动模块的分解,并将硬件驱动底层程序的实现、头文

件定义及其文件描述封装成一个可重用的构件实体,并提供一系列规范的输入/输出

接口,供其他嵌入式应用程序调用。

一个底层构件对应一个硬件构件,但并不是所有的硬件构件都需要底层构件驱动,如只需要硬件接线的电源硬件构件。底层构件同硬件构件一样,也具有被独立

部署和被第三方组装的特性。实现内部硬件构件功能称之为内部底层构件,同样实

现外部硬件构件功能称之为外部底层构件。

5.2底层构件的实现

1.底层构件的实现过程

底层构件的实现为嵌入式系统底层软件开发提供具有重用性的功能构件,是开发嵌入式底层软件的一种重要方法。与硬件构件的实现过程相似,底层构件也注重构件的重用性与移植性,同样方便修改、发布和替换,得到了实验人员的认可。

底层构件的概念模型参加图4.1,从图中可以看出,底层构件可以分为底层软件、头文件、接口描述和文件描述四个部分。其中,头文件用于实现底层构件的外部硬件接线和内部寄存器的定义转换,即硬件构件的引脚定义和寄存器定义;接口是底层构件与其他构件交互的唯一通道,是应用程序调用底层构件的通道;文件描述用于描述整个底层构件的相关信息;底层软件用于实现构件的具体逻辑功能,对外界而言底层软件是一个不可见的黑盒,只是通过接口实现交互。

EUC={底层软件,头文件,接口描述,文件描述}

底层软件={各种具体硬件构件的软件方法描述的实现过程}

头文件={实现底层构件与具体硬件接线及寄存器之间的对应}

接口描述={接口实体}

接口实体={硬件构件的方法描述}

方法描述={[Direction]Return_Type FunctionName(Parameter_list)}

Direction:接口方向[In:输入;Out:输出]

Return_Type:返回值类型

FunctionName:功能函数名称

Parameter_list:参数列表

模块描述={模块功能描述,头文件信息描述,对外接口描述,注意事项等}

图 5.1底层构件的概念模型

底层构件的主要设计思想是:在嵌入式底层软件开发过程中,根据硬件系统中设计完成的硬件构件,分析硬件构件的功能和接口,设计实现与之对应的功能程序(即底层软件)、头文件以及相应的外部接口模块,并封装成底层构件,应用时供设计者选择使用。底层构件的实现过程如图4.3所示,是为嵌入式底层软件提供具有重用性和移植性的底层功能函数的过程。

2.底层构件的应用过程

底层构件的应用过程就是在系统硬件体系设计实现后,根据硬件体系中选用的硬件构件,调用相应的底层构件;并根据硬件构件的接口实现,修改底层构件头文件中的引脚定义;最后,将这些底层构件添加到工程文件中,通过接口即可实现应用程序对底层构件的调用。

主程序、中断子

程序、功能程序

接口

底层程序底层程序硬件驱动程序

构件模型1构件模型2┉构件模型n 可重用底层构件底层构

┉件库头文件头文件头文件

硬件构件

图 5.2底层构件实现过程

5.3基于底层构件的嵌入式底层软件编程思想

1)底层构件与硬件构件相分离的命名规则

由于底层构件与硬件构件存在对应关系,底层软件中包含许多与硬件构件密切相关的寄存器、标志位和变量等信息,因此,为了满足底层构件可重用与可移植的思想,底层软件中与硬件构件密切相关的信息命名时要与硬件构件分离,只是在头文件的引脚定义、寄存器定义(在头文件的封装原则中详细讲解)中实现二者的对应关系即可。

2)底层构件中头文件的封装原则

头文件是实现底层构件与硬件接线“定义/转换”关系的文件,是底层构件与硬件的交互渠道。每一个底层构件中,头文件与底层软件采样相同的文件名(扩展名不同,分别为*.h与*.c),这样便于在工程中查找对应同一个底层构件的相关信息。每个底层构件的头文件(*.h)都封装有头文件信息说明、头文件引用信息、硬件接线引脚(或寄存器)定义/转换、底层软件函数声明四部分。其中,头文件信息说明用于说明该头文件的功能,方便设计者查看、调用和修改;头文件引用信息包含有该头文件及其对应底层软件中需要的功能函数所对应的头文件;硬件接线引脚定义则是底层构件与硬件模块引脚的接线对应关系表,它能方便设计者在修改硬件构件的接口后,直接修改硬件接线引脚定义就可以实现对底层构件的重用,而寄存器定义表明底层构件中所涉及内部硬件构件的寄存器定义/转换关系,其中包括寄存器名称转换

和标志位转换;底层软件函数声明部分包含了底层软件(*.c)文件中所有与外部交互的函数声明,即对外公布的函数声明。

3)底层软件的封装策略

底层软件是底层构件的核心组成部分,是相应硬件构件功能的具体软件实现部分。为了方便设计者查阅、修改和调用,底层软件通常封装有文件描述部分、头文件引用部分和功能函数实现部分。文件描述部分包含有底层软件文件名、功能信息描述、对外交互函数说明和硬件连线说明等信息;头文件引用部分则是与底层软件同名的头文件信息说明;功能函数实现部分则是底层软件的核心,即硬件功能的驱动函数。

4)底层构件封装的完整性与独立性原则

与硬件相交互的定义和操作被封装在底层构件的各个组成部分中,其他应用程序通过调用相应的底层构件实现与硬件的交互,内部不再出现直接与硬件交互的操作,即底层构件封装的完整性。各个底层构件封装时要保持各自的独立性,各个封装之间不能相互交叉。

嵌入式软件工程师应该知道的16个问题

嵌入式软件工程师应知道的0x10个基本问题(经典收藏版) C语言测试是招聘嵌入式系统程序员过程中必须而且有效的方法。这些年,我既参加也组织了许多这种测试,在这过程中我意识到这些测试能为面试者和被面试者提供许多有用信息,此外,撇开面试的压力不谈,这种测试也是相当有趣的。 从被面试者的角度来讲,你能了解许多关于出题者或监考者的情况。这个测试只是出题者为显示其对ANSI标准细节的知识而不是技术技巧而设计吗?这是个愚蠢的问题吗?如要你答出某个字符的ASCII值。这些问题着重考察你的系统调用和内存分配策略方面的能力吗?这标志着出题者也许花时间在微机上而不是在嵌入式系统上。如果上述任何问题的答案是"是"的话,那么我知道我得认真考虑我是否应该去做这份工作。 从面试者的角度来讲,一个测试也许能从多方面揭示应试者的素质:最基本的,你能了解应试者C语言的水平。不管怎么样,看一下这人如何回答他不会的问题也是满有趣。应试者是以好的直觉做出明智的选择,还是只是瞎蒙呢?当应试者在某个问题上卡住时是找借口呢,还是表现出对问题的真正的好奇心,把这看成学习的机会呢?我发现这些信息与他们的测试成绩一样有用。 有了这些想法,我决定出一些真正针对嵌入式系统的考题,希望这些令人头痛的考题能给正在找工作的人一点帮助。这些问题都是我这些年实际碰到的。其中有些题很难,但它们应该都能给你一点启迪。 这个测试适于不同水平的应试者,大多数初级水平的应试者的成绩会很差,经验丰富的程序员应该有很好的成绩。为了让你能自己决定某些问题的偏好,每个问题没有分配分数,如果选择这些考题为你所用,请自行按你的意思分配分数。 预处理器(Preprocessor) 1 . 用预处理指令#define 声明一个常数,用以表明1年中有多少秒(忽略闰年问题) #define SECONDS_PER_YEAR (60 * 60 * 24 * 365)UL 我在这想看到几件事情: 1) #define 语法的基本知识(例如:不能以分号结束,括号的使用,等等) 2)懂得预处理器将为你计算常数表达式的值,因此,直接写出你是如何计算一年中有多少秒而不是计算出实际的值,是更清晰而没有代价的。 3) 意识到这个表达式将使一个16位机的整型数溢出-因此要用到长整型符号L,告诉编译器这个常数是的长整型数。 4) 如果你在你的表达式中用到UL(表示无符号长整型),那么你有了一个好的起点。记住,第一印象很重要。 2 . 写一个"标准"宏MIN ,这个宏输入两个参数并返回较小的一个。 #define MIN(A,B) ((A)<= (B) ? (A) : (B)) 这个测试是为下面的目的而设的: 1) 标识#define在宏中应用的基本知识。这是很重要的。因为在嵌入(inline)操作符变为标准C的一部分之前,宏是方便产生嵌入代码的唯一方法,对于嵌入式系统来说,为了能达到要求的性能,嵌入代码经常是必须的方法。 2)三重条件操作符的知识。这个操作符存在C语言中的原因是它使得编译器能产生比if-then-else更优化的代码,了解这个用法是很重要的。

嵌入式软件开发流程图

嵌入式软件开发流程 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。 图1.1 嵌入式系统开发流程图 在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求。另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择。往往通过硬件实现会增加产品的成本,但能大大提高产品的性能和可靠性。 再次,开发环境的选择对于嵌入式系统的开发也有很大的影响。这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等。比如,对开发成本和进度限制较大的产品可以选择嵌入式Linux,对实时性要求非常高的产品可以选择Vxworks等。

1.2 嵌入式软件开发概述 嵌入式软件开发总体流程为图4.15中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试。其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出。 由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳。 嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM的Rational Rose等软件,而在程序开发阶段可以采用CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的Multi-ICE等。同时,不同的嵌入式操作系统往往会有配套的开发工具,比如Vxworks有集成开发环境Tornado,WindowsCE的集成开发环境WindowsCE Platform等。此外,不同的处理器可能还有对应的开发工具,比如ARM的常用集成开发工具ADS、IAR和RealView等。在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。图4.16是嵌入式开发的不同阶段的常用软件。 图1.2 嵌入式开发不同阶段的常用软件 嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解。 1.交叉编译 嵌入式软件开发所采用的编译为交叉编译。所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码。在第3章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的CPU所能识别的机器代码,由于不同的体系结构有不同的指令系统。因此,不同的CPU需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同CPU的对应可执行二进制文件。要注意的是,编译器本身也是程序,也要在与之对应的某一个CPU平台上运行。嵌入式系统交叉编译环境如图4.17所示。

嵌入式系统开发基础——基于ARM9微处理器C语言程序设计各章习题

第一章习题 1。嵌入某种微处理器或单片机的测试和控制系统称为嵌入式控制系统(Embedded Control System)。 在应用上大致分为两个层次,以MCS-51为代表的8位单片机和以ARM技术为基础的32位精减指令系统单片机 2。目标机上安装某种嵌入式操作系统和不安装嵌入式操作系统, 以MCS-51为代表的8位单片机不安装嵌入式操作系统。 3。32位、16位和8位 5。32位、16位 6。在大端格式中,字数据的高字节存储在低字节单元中,而字数据的低字节则存放在高地址单元中。 在小端存储格式中,低地址单元存放的是字数据的低字节,高地址单元中,存放的是数据的高字节。 第二章习题 (略) 第三章习题 1。 (1)寄存器大约有17类,每个的定义都是寄存器名字前面加一个小写”r” (2)在56个中断源中,有32个中断源提供中断控制器,其中,外部中断EINT4~EINT7通过“或”的形式提供一个中断源送至中断控制器,EINT8~EINT23也通过“或”的形式提供一个中断源送至中断控制器。 第四章习题 1,56个中断源,有32个中断源提供中断控制器 2,两种中断模式,即FIQ模式(快速模式)和IRQ模式(通用模式)。通过中断模式控制寄存器设置。 3,常用的有5个,它们是中断模式控制寄存器,控制中断模式;中断屏蔽寄存器,控制中断允许和禁止;中断源挂起寄存器,反映哪个中断源向CPU申请了中断;中断挂起寄存器,反映CPU正在响应的中断是哪个中断源申请的;中断优先级寄存器,它和中断仲裁器配合,决定中断优先级。

4,中断源挂起寄存器,反映哪个中断源向CPU申请了中断;中断挂起寄存器,反映CPU正在响应的中断是哪个中断源申请的。中断源向CPU申请了中断如果该中断源没被屏蔽并且没有和它同级或高级的中断源申请中断,才能被响应。系统中可以有多个中断源向CPU申请中断,但同一时刻CPU只能响应一个最高级的中断源中断请求。中断源挂起寄存器和中断挂起寄存器反映了中断系统不同时段的状态。 5,进入中断服务程序先清中断源挂起寄存器和中断挂起寄存器;中断结束,将该中断源屏蔽。 6,将该中断源屏蔽取消;将该中断源屏蔽。 第五章习题 1,S3C2410芯片上共有117个多功能的输人/输出引脚,它们是。 ?1个23位的输出端口(端口A); 。1个11位的输入/输出端口(端口B); 。1个16位输入/输出端口(端口C); ?1个16位输入/输出端口(端口D); ?1个16位输入/输出端口(端口E); ?1个8位输人/输出端口(端口F); ?1个16位输入/输出端口(端口G); 。1个11位的输入/输出端口(端口H)。 2,S3C2410 I/O口的控制寄存器、数据寄存器、上拉电阻允许寄存器的作用? 端口控制寄存器定义了每个引脚的功能;与I/O口进行数据操作,不管是输入还是输出,都是通过该口的数据寄存器进行的,如果该端口定义为输出端口,那么可以向GPnDA T的相应位写数据。如果该端口定义为输人端端口,那么可以从GPnDAT的相应位读出数据。 端口上拉寄存器控制每个端口组上拉电阻的使能/禁止。如果上拉寄存器某一位为0,则相应的端口上拉电阻被使能,该位做基本输入/输出使用,即第1功能;如果上拉寄存器某一位是1,则相应的端口上拉电阻被禁止,该位做第2功能使用。 5, rGPBCON=rGPBCON& 0xFFFFFC∣1; //蜂鸣器配置,PB1口接蜂鸣器,输出delay(1000); rGPBDAT & = 0xFFFFFE; //蜂鸣器响,低电平有效 rGPBDAT∣=1; // 蜂鸣器停 第六章习题 3,S3C2410 UART波特率如何确定?

嵌入式底层软件开发方法

嵌入式底层软件开发方法 自从20世纪70年代单片机出现以来,嵌入式系统已获得了较为深入的研究, 提出了一些嵌入式软件的开发方法,但嵌入式系统仍处于发展阶段,嵌入式系统 已经显示出广阔的应用前景。 1.嵌入式系统的定义 嵌入式系统又称为嵌入式计算机系统,是指嵌入到对象体系中的专用计算机系统。对象系统则是指嵌入式系统所嵌入的宿主系统,嵌入性、专用性与计算机系统 是嵌入式系统的三个基本要素。嵌入式系统通常被描述为:以应用为中心,以计 算机技术为基础,软硬件可剪裁,适应于应用系统对功能、可靠性、成本、体积和 功耗有严格要求的专业计算机系统。 2.嵌入式系统的发展历程 嵌入式系统是在硬件和软件交替发展的支撑下逐渐趋于稳定和成熟的,它有着 悠久的历史。从20世纪70年代单片机的出现到现在各种嵌入式微处理器、微控制 器的大规模应用,嵌入式系统己经有了30多年的发展历史。纵观嵌入式技术的发展,大致经历了以下几个发展阶段。 (1)无操作系统阶段:主要是以功能简单的专用计算机或单片机为核心的可编 程控制器形式存在的系统,具有监测、伺服、设备指示等功能,一般没有操作系统 的支持,通过汇编语言编程对系统进行直接控制。主要特点是:系统结构和功能都 相对单一,处理效率较低,存储容量较小,几乎没有用户接口,比较适合于各类专 用领域。 (2)以嵌入式处理器和嵌入式操作系统为标志的嵌入式系统:主要特点是出现 了高可靠、低功耗的嵌入式处理器,嵌入式操作系统能运行于各种不同类型的微处 理器上,兼容性好;操作系统内核精小、效率高,并且具有高度的模块化和扩展性;片上系统(System On Chip,SOC)使得嵌入系统越来越小,具有大量的应用程序接口,开发应用程序简单,应用软件丰富。 3.嵌入式系统的构成及其特点 1)嵌入式系统的组成 嵌入式系统主要由嵌入式处理器、相关支撑硬件、嵌入式操作系统及应用软件 系统等组成,具有专用性、可嵌入性、实时性、可移植性和分布式等特点。其中, 嵌入式微处理器是嵌入式硬件系统的核心部分,它担负着控制、协调系统工作的重 要任务,通常具有实时多任务处理能力、中断处理能力、存储器保护能力和低功耗 能力;支撑硬件主要包括存储介质、通信部件和显示部件等;支撑硬件的驱动程 序、操作系统、应用软件等一起构成嵌入式软件。

什么是嵌入式软件开发嵌入式系统软件开发所需要学习那些知识_百(精)

什么是嵌入式软件开发?嵌入式系统软件开发所需要学习那些知识? 随着智能化和信息化网络化的不断发展,嵌入式技能已经日趋成为一种新时代新技术革命的关键。对于嵌入式系统和嵌入式软件开发人员来说,这份职业无疑是种高端应用技术的结合。是一个很有前景的职业。 嵌入式趋势来势汹涌,目前为止已经被很多企业所应用,对于这方面人才的需求更是倍感吃紧。关于嵌入式具体应用不做详细的解说,在这里有必要强调一下,嵌入式软件开发是含义,和要想在嵌入式软件开发中取得不菲的成绩所需掌握那些最基础的知识。 嵌入式技术执行专用功能并被内部计算机控制的设备或者系统。嵌入式系统不能使用通用型计算机,而且运行的是固化的软件,嵌入式技术及应用是计算机应用技术的新发展,具有广泛的应用领域和发展前景,就业形势看好。 嵌入式系统是一种专用的计算机系统,作为装置或设备的一部分。通常,嵌入式系统是一个控制程序存储在ROM中的嵌入式处理器控制板。事实上,所有带有数字接口的设备,如手表、微波炉、录像机、汽车等,都使用嵌入式系统,有些嵌入式系统还包含操作系统,但大多数嵌入式系统都是是由单个程序实现整个控制逻辑,笼统地来说,嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。 这么多的应用可见嵌入式系统的前景和人才需求是相当大的,在最近几年中关于这一类的培训也层出不穷,所涉及到的课程和知识点相对来说还是有点差异的,在深圳达内福田培训中心网站上看到了关于嵌入式系统软件开发所需要掌握的几大知识点,感觉划分的很细致。 主要包含以下8个核心部分 1.Linux操作系统核心

!嵌入式系统开发资料(入门必备)

获取更多权威电子书请登录https://www.360docs.net/doc/2218405005.html, ARM嵌入式系统开发综述ARM开发工程师入门宝典

获取更多权威电子书请登录https://www.360docs.net/doc/2218405005.html, 前言 嵌入式系统通常是以具体应用为中心,以处理器为核心且面向实际应用的软硬件系统,其硬件是整个嵌入式系统运行的基础和平台,提供了软件运行所需的物理平台和通信接口;而嵌入式系统的软件一般包括操作系统和应用软件,它们是整个系统的控制核心,提供人机交互的信息等。所以,嵌入式系统的开发通常包括硬件和软件两部分的开发,硬件部分主要包括选择合适的MCU或者SOC 器件、存储器类型、通讯接口及I/O、电源及其他的辅助设备等;软件部分主要涉及OS porting和应用程序的开发等,与此同时,软件中断调试和实时调试、代码的优化、可移植性/可重用以及软件固化等也是嵌入式软件开发的关键。 嵌入式系统开发的每一个环节都可以独立地展开进行详细的阐述,而本文的出发点主要是为嵌入式开发的初学者者提供一个流程参考。因为对于初学者在面对一个嵌入式开发项目的时候,往往面临着诸多困难,如选择什么样的开发平台?什么样的器件类型?在进行编译时怎样实现代码优化?开发工具该如何选择和使用?在进行程序调试时应该注意那些问题以及选择什么样的嵌入式OS 等等。希望通过本文,能帮助初学者了解有关ARM嵌入式系统开发流程。

获取更多权威电子书请登录https://www.360docs.net/doc/2218405005.html, 目录 前言 (2) 1 嵌入式开发平台 (4) 1.1 ARM的开发平台: (4) 1.2 器件选型 (7) 2 工具选择 (11) 3 编译和连接 (13) 3.1 RVCT的优化级别与优化方向 (16) 3.2 Multifile compilation (21) 3.3调试 (22) 4 操作系统 (23) 4.1 哪里可以得到os 软件包 (Open Source and Linux Kernel) (25) 4.2 安装镜像 (26) 4.3 交叉编译 (26) 总结 (27)

嵌入式系统

第一章绪论 1.嵌入式系统的定义、特点和分类 2.嵌入式操作系统 3.嵌入式系统的选型 4.嵌入式系统的发展趋势 5.嵌入式系统的关键技术 6.嵌入式系统的应用 思考与练习 1.什么是嵌入式系统?嵌入式系统的特点是什么? 2.请说出嵌入式系统与其它商用计算机系统的区别。 3.嵌入式系统的关键技术有哪些? 4.请说明嵌入式系统技术发展及开发应用的趋势。 5.你知道嵌入式系统在我们日常生活中哪些设备中应用?说明其采用的处理器是什么?采用的哪一个嵌入式操作系统? 6.开发嵌入式系统的计算机语言主要有哪几种?分别用在什么场合?7. 嵌入式系统和专用集成电路的关系是什么? 第二章嵌入式系统设计方法 1. 需求分析与系统分析法 2.软硬件协同设计方法 3.嵌入式硬件开发方法 4.嵌入式软件开发方法 5.构件式开发方法 6.软件调试与软件测试方法 思考与练习 1.请说出嵌入式系统设计的主要方法及设计流程。在嵌入式系统开发的总体设计中,需要进行哪几方面的工作? 2.嵌入式硬件调试的主要方法及技术手段有哪些? 3.什么是构件式开发方法?说明该方法对嵌入式系统开发具有什么意义,并举例说明。4.需求分析阶段分为哪几个步骤?每个步骤完成什么工作? 5.在进行系统设计时,概要设计和详细设计的工作内容有什么不同? 6.在嵌入式系统实现阶段,需要选择开发平台,通常开发平台的选择包括哪些内容?7.在当今IT 时代,为了使产品尽快进入市场,就产品开发阶段,你认为有哪些方法可以加快产品的开发速度? 8.什么是“黑盒”测试?什么是“白盒”测试?什么是“灰盒”测试? 9.嵌入式系统开发中,使用软件组件技术有什么好处? 10.什么是知识产权核(Intellectual Property Core,简称IP Core)?指出“软知识产权核(Soft IP Core)”、“硬知识产权核(Hard IP Core)”、“固知识产权核(Firm IP Core)”的意义和差别。 11.根据嵌入式软件开发的不同阶段,嵌入式开发工具有哪些种类? 12.从底层硬件到上层应用,嵌入式软件的开发可以分为哪几种? 13.什么是交叉开发环境? 14.什么是OCD 调试方法?指出OCD 的主要形式JTAG 和BDM 的特点和区别? 15.嵌入式软件的调试运行环境和固化运行环境主要区别是什么?

嵌入式Linux系统开发教程答案

1、嵌入式系统主要融合了计算机软硬件技术、通信技术和微电子技术,它是将计算机直接嵌入到应用系统中,利用计算机的高速处理能力 、目前国内对嵌入式系统普遍认同的定义是:以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用 、嵌入式系统一般由嵌入式计算机和执行部件组成,其中嵌入式计算机主要由四个部分组成,它们分别是:硬件层、中间层、系统软件层以及应用软件层。4、嵌入式处理器目前主要有 PC、68K等,其中arm处理器有三大特点:体积小、低功耗、的成本和高性能,16/32 操作系统有:Linux、Vxworks、WinCE、Palm、uc/OS-II和eCOS。6、嵌入式系统开发的一般流程主要包括系统需求分析、体系结构设计、软硬件及机械系统设计、系统集成、系统测试,最后得到最终产品。1、嵌入式系统中硬件层主要包含了嵌入式系统重要的硬件设备:嵌入式处理器、存储器(SDRAM、ROM等)、设备I/O接口等。2、20世纪90年代以后,随着系统应用对实时性要求的提高,系统软件规模不断上升,实时核逐渐发展为实时多任务操作系统,并作为一种软件平台逐步成为目前国际嵌入式系统的主流。3、由于其高可靠性,在美国的火星表面登陆的火星探测器上也使用的嵌入式操作系统是VxWorks 。4、嵌入式系统设计过程中一般需要考虑的因素不包括:(大小)5、在嵌入式系统中比较流行的主流程序有:(Angel、Blob、Red Boot )1、Linux具有UNIX的所有特性并且具有自己独特的魅力,主要表现在:开放性、多用户、多任务、友好的用户界面、设备独立性、丰富的网络功能、文件传输、远程访问、可靠的安全性、良好的可移植性、X Window系统、内存保护模式。2、Linux 作环境)、文件结构(File Structure)和实用工具。3、目前几乎所有的Linux ;查看当前路径应使用命令:pwd;的作用是:使linux.tar.gz文件 Linux内核主要由:进程调度,内存管理,虚拟文件系统,网络接口,进程间 (Red Flag)2、启动shell环境时,屏幕上显示“[arm@www home]$”,其中的arm 命令时,如果想对文件名中的不可显示字符用八进制逃逸字符显示,则应该选用的参数是(-b)。4、解 Linux用的文件系统是(ntfs)。1、ARM9系列微处理器在高性能和 5级整数流水线,指令执行效率更高;提供1.1MIPS/MHz的哈佛总线结构;支持32位ARM指令集和16位Thumb指令集;支持32位的高速AMBA总线接口。2、ARM芯片的内核一般包括以下几个单元:ARM9TDMI32RISC处理器、数据 本质上是内存中一段连续的地址,对其最常见的操作为“压栈”( 出)。1、在arm/thumb汇编语言程序中,程序是以程序段的形式呈现的。程序段是具有特有名称的相对独立的指令或数据序号。程序段有两大类型代码段、数据段。2、基于linux下GCC汇编语言,代码表号必须在一行的顶端,后面要加上:,注视的内容可以在前面加上@。 3、符号定义伪指令()、数据定义伪指令(Data Definition 4、linux下的嵌入式程序开发,主要需要的代码编辑器,如vi和gedit,另外还需要编译器gcc、调试器Vi编辑器基本上有三种基本状态,分别是:命令模式(command mode)、插入模式(insert mode)和底行模式(gcc编译文件生成可执行文件要经历四个相互关联的步骤:预处理(也称预编译,Preprocessing)、编译(Compilation)、汇编(Assembly)和连接(Linking)。1.假如使用伪指令定义一个局部的数据量,变量名为temp,然后给其赋值为8,汇编代码为(GBLA temp;temp SET A 0x08;)2、在vi处于命令行模式时,如果需要对文本进行修改,欲在光标所在位置的下一个位置开始输入文字,则(按下字母“a”进入插入模式)3、当前vi 处于插入模式,先放弃对文本的修改,即不保存退出vi,则(先按下“ESC”后,再使用“:q!”命令)。4、经过汇编之后,生成的目标文件的后缀名为(.o)。 5、对代码文件code.c进行调试的命令为($gcc –g code.c –o code)。1、SMDK2440平台的开发板采用的处理器是S3C2440,其主频一般为400M。2、windows软件环境的设置一般包括以下几部分:超级终端的设置、DNW设置、GIVEIO驱动的设置和USB驱动3、在windows系统上建立基于linux嵌入式开发环境一般有三种方案可以选择分别是Windows系统下安装虚拟机Vmware、Windows+Linux双系统安装、基于Windows操作系统下的Cygwin4、UBUNTU的网络设置可以采用命令行方式、也可以采用图形界面操作方式来配置。5、开发板硬件平台是基于三星S3C2440的SMDK2440平台的目标板,使用的刻录软件为SJF2440。1、为了通过PC的串口和开发板进行交互,需要使用(超级终端)。2、在嵌入式linux的开发中,能实现上传下载文件、刻录文件、运行映像等功能工具是(DNW)。 3、由普通用户账户转为管理员账户登录,使用的命令为($su root)。 4、安装FTP服务器时,在终端输入的命令为($sudo apt-get install vsftpd)。 5、安装Telnet服务时,在终端输入的命令为($sudo apt-get install telnetd)1、交叉开发工具链就是为了编译、链接、处理和调试跨平台体系结构的程序代码执行工具链软件,通过带有不同的参数,可以实现编译、链接、处理、调试等不同的功能。2、linux经常使用的工具链软件有Binutils、Gcc、Glibc和Gdb。3、分布构建交叉编译工具链的制作过程需要以下几步编译binutils、编译辅助gcc编译器、编译glibc库、重新编译完整的gcc。4、使用crosstool构建交叉编译工具链的制作过程需要以下几步:准备工作、建立脚本文件、建立配置文件、执行脚本文件和编译gdb调试器。5、使用crosstool构建交叉编译工具链的制作过程中需要的配置文件,其主要作用是定义配置文件、定义生成编译工具链的名称、定义编译选项等。1.(binutils)十二进制程序处理工具,包括连接器,汇编器等目标程序处理的工具。2.构建交叉编译器的第一个步骤是(下载工具)。3、分析以下代码#export PRJROOT=/home/arm/armlinux #export TARGET=arm-linux #export PREFIX=$PRJROOT/$TARGET其中,变量PREFIX代表的路径为(/home/arm/armlinux)。4. Binutils是gnu工具之一,他包括连接器、汇编器和其他用于目标文件和档案的工具,特使二进制代码的处理维护工具。其中包括(ld)命令,他是把一些目标和归档文件结合在一起,重定位数据,并连接符号引用。5.分布构建交叉编译链的过程有两次变异gcc,其中第二次进行编译的作用是(获得glibc库的支持) 。1、Bootloader,亦称引导加载程序,是系统加电后运行的第一段软件代码。2、一般Bootloader包含两种不同的操作模式:启动加载模式 的主要功能是引导操作系统启动,它的启动方式有网络启动、磁盘启动和Flash 运行的第一阶段主要完成以下工作:屏蔽所有中断、设置CPU的速度和时钟频率、RAM初始化、初始化LED和关闭 cache。1、在Bootloader的启动方式中,Flash启动方式通常有两种,一种是可以直接从Flash启动,另一种时可以将压缩的内存映像文件从Flash中复制、解压到RAM ,再从中启动。2、在各种Bootloader中,U-boot 是以PPCBoot和ARMBoot为基础的通用加载程序,并且在ARM、PowerPC以及MIPS等多种平台上运行。3、在编译Vivi之前将Vivi里所有的“*.o”和“*.o.flag”文件删除,以确保文件编译时没有错误或者警告发生,使用的命令格式为(make distclean)。4、编译Vivi时,如果编译成功,在/vivi里面会生成三个vivi文件,其中不包括文件(vivi.exe)。5、把二进制文件载入Flash或RAM使用的命令是(load)。1、ARM-Linux内核的配置系统由三个部分组成,它们分别是Makefile、配置文件和配置工具。2、配置工具一般包括配置命令解释器和配置用户界面,前者主要作用是对配置脚本中使用的配置命令进行解释;而后者则是提供基于字符界面、基于Ncurses图形界面以及基于X Window图形界面的用户配置界面。3、Makefile文件主要包含注释、编译目标定义和适配段。4、Linux内核常用的配置命令有make oldconfig、make config、make menuconfig 和make xconfig。其中以字符界面配置的命令是make config。5、内核编译结束后,会在“/arch/arm/boot/”目录下面和根目录下面生成一个名为zImage的内核镜像文件。1.linux内核中的makefile以及与makefile直接相关的文件不包括(后缀名为.in)。2.用户通过make config 配置后,产生了后缀名为(in.config)。3.rules.make文件定义了许多变量,最重要的是那些编译、连接列表变量,但不包括(O-OBJS)。4.在内核配置过程中,如果需要设置networking support这个选项,进入的菜单项是(General setup)。5.在linux系统中,我们既需要标记变量的符号,有需要变量的物理地址,两者同时需要的时候可以采用符号表的方式,其对应的文件为(System.map)。1、Linux下的文件系统主要分为三个层次:上层用户的应用程序对文件系统的系统调用、虚拟文件系统和挂载到VFS中的各种实际文件系统。2、三种常用的块驱动程序分别是Blkmem驱动层、RAMdisk驱动层、MTD驱动层JFFS2、Yaffs、Romfs和Cramfs。 4、基于RAM的文件系统常见的有Ramdisk和Ramfs/Tmp fs。 5、System V init、Busybox init1、(MTD驱动层)也支持在一块Flash上建立多个Flash分区,没一个分区作为一个MTD block设备,可以把系统软件数据等分配到不同的

嵌入式软件开发入门教程

C语言是嵌入式软件开发人员必须熟练掌握的编程语言。作为C语言的初学者重点掌握基本数据类型、复合数据类型、流程控制、数组、指针、函数这几方面的基本知识。本人建议通过观看视频教学的方式进行学习,这样既快速又通俗易懂,当然前提是必须找到优质的教学视频资源。此外,可以配合入门书籍谭浩强的《C语言程序设计》进行学习。如果想深入的学习可以参考美国人写的人民邮电出版社出版的《C Primer Plus》。 方法/步骤2: C语言的磨炼 掌握了基本的C语言语法以后并不代表我们就学会了C语言,关键是如何灵活的去运用。我们可以练习编写C语言学习书籍的课后习题或者在网站上搜索C语言笔试题库进行练习。也可以百度寻找经典的C 语言编程案例进行学习。总之,就是将C语言运用的越熟练越好。至于开发环境可以选择VC++ 6.0 或者linux。 方法/步骤3: 硬件电路基础

嵌入式软件工程师还必须懂一些硬件电路的基本知识。当然,对于刚入门的软件开发人员没必要非常精通电路技术,熟悉基本的电子元器件的功能即可。例如,电阻、电容、电感的作用以及符号,三极管、MOS管导通截止的条件,微处理器、晶振的基本概念等。至于,以上这些基本知识我们可以通过童诗白的第四版《模拟电子技术基础》和网上查阅的资料进行学习。 方法/步骤4: 如何看懂原理图 作为嵌入式软件开发人员我们经常会和硬件打交道,我们的程序最终会被烧录到微处理器内部运行。所以,我们必须要会看硬件原理图,看懂之后才知道如何写程序。首先,我们要知道嵌入式硬件最小系统的组成部分,包括电源电路、晶振、微处理器、复位电路。然后以微处理器为中心向四周查看,主要看我们可以操纵的外设资源。以上知识的学习我们不妨经常浏览一下某些知名IT网站其他人上传的经典原理图。 方法/步骤5: 基本外设知识

嵌入式系统软件开发和设计流程复习课程

* 本文由hquwgz贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 嵌入式系统及应用 第九章嵌入式系统软件的开发 主要内容 嵌入式软件开发工具嵌入式系统开发模式实时软件分析设计方法 第一节嵌入式软件开发工具 嵌入式软件开发工具的分类嵌入式软件的交叉开发环境嵌入式软件实现阶段的开发过程嵌入式软件开发工具的发展趋势 / 嵌入式软件开发工具 “工欲善其事,必先利其器”嵌入式软件开发工具的集成度和可用性将直接关系到嵌入式系统的开发效率。 嵌入式软件开发工具的分类 嵌入式软件开发阶段 嵌入式软件开发工具的分类 根据不同的阶段,嵌入式软件开发工具可以分为: 需求分析工具(Requirement Analysis Tools)软件设计工具(Software Design Tools) 编码、调试工具(Coding Tools) 测试工具(Testing Tools) 配置管理工具、维护工具等 Rational Rose RealTime ObjectGeode Rhapsody TAU Tornado LambdaTOOL pRISM+ Spectra Win CE Platform Builder CodeWarrior Xray Debugger Logiscope CodeTEST … Phases Requirement Analysis Software Design Coding Test Release 主要嵌入式软件开发工具产品 嵌入式软件开发工具的分类 嵌入式软件的开发可以分为以下几种: 编写简单的板级测试软件,主要是辅助硬件的调试开发基本的驱动程序开发特定嵌入式操作系统的驱动程序(板级支持包)开发嵌入式系统软件,如:嵌入式操作系统等开发应用软件 嵌入式软件开发工具的分类 从以上嵌入式软件开发分类来看,嵌入式软件开发工具可以分为: 与嵌入式OS相关的开发工具,用于开发: ` 基于嵌入式OS的应用部分驱动程序等 与嵌入式OS无关的开发工具,用于开发: 基本的驱动程序辅助硬件调试程序系统软件等 嵌入式软件的交叉开发环境 交叉开发环境是指用于嵌入式软件开发的所有工具软件的集合,一般包括: 文本编辑器交叉编译器交叉调试器仿真器下载器等 交叉开发环境由宿主机和目标机组成,宿主机与目标机之间在物理连接的基础上建立起逻辑连接。 运行平台Target ]

嵌入式软件开发流程

.嵌入式软件开发流程

————————————————————————————————作者:————————————————————————————————日期:

嵌入式软件开发流程 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。 图1.1 嵌入式系统开发流程图 在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求。另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择。往往通过硬件实现会增加产品的成品,但能大大提高产品的性能和可靠性。 再次,开发环境的选择对于嵌入式系统的开发也有很大的影响。这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等。本书在4.1.5节对各种不同的嵌入式操作系统进行了比较,读者可以以此为依据进行相关的选择。比如,对开发成本和进度限制较大的产品可以选择嵌入式Linux,对实时性要求非常高的产品可以选择Vxworks等。 由于本书主要讨论嵌入式软件的应用开发,因此对硬件开发不做详细讲解,而主要讨论嵌入式软件开发的流程。

1.2 嵌入式软件开发概述 嵌入式软件开发总体流程为图4.15中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试。其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出。 由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳。 嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM的Rational Rose等软件,而在程序开发阶段可以采用CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的Multi-ICE等。同时,不同的嵌入式操作系统往往会有配套的开发工具,比如Vxworks有集成开发环境Tornado,WindowsCE的集成开发环境WindowsCE Platform等。此外,不同的处理器可能还有对应的开发工具,比如ARM的常用集成开发工具ADS、IAR和RealView等。在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。图4.16是嵌入式开发的不同阶段的常用软件。 图1.2 嵌入式开发不同阶段的常用软件 嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解。 1.交叉编译 嵌入式软件开发所采用的编译为交叉编译。所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码。在第3章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的CPU所能识别的机器代码,由于不同的体系结构有不同的指令系统。因此,不同的CPU需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同CPU的对应可执行二进制文件。要注意的是,编译器本身也是程序,也要在与之对应的某一个CPU平台上运行。嵌入式系统交叉编译环境如图4.17所示。

嵌入式Linu 系统开发教程很完整的习题答案

参考答案 第一章 一、填空题。 1、嵌入式系统主要融合了计算机软硬件技术、通信技术和微电子技术,它是将计算机直接嵌入到应用系统中,利用计算机的高速处理能力以实现某些特定的功能。 2、目前国内对嵌入式系统普遍认同的定义是:以应用为中心、以计算机技术为基础、软硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。 3、嵌入式系统一般由嵌入式计算机和执行部件组成,其中嵌入式计算机主要由四个部分组成,它们分别是:硬件层、中间层、系统软件层以及应用软件层。 4、嵌入式处理器目前主要有ARM、MIPS、Power PC、68K等,其中arm

处理器有三大特点:体积小、低功耗、的成本和高性能,16/32位双指令集,全球合作伙伴众多。 5、常见的嵌入式操作系统有:Linux、Vxworks、WinCE、Palm、uc/OS-II 和eCOS。 6、嵌入式系统开发的一般流程主要包括系统需求分析、体系结构设计、软硬件及机械系统设计、系统集成、系统测试,最后得到最终产品。 二、选择题 1、嵌入式系统中硬件层主要包含了嵌入式系统重要的硬件设备:、存储器(SDRAM、ROM等)、设备I/O接口等。(A) A、嵌入式处理器 B、嵌入式控制器 C、单片机 D、集成芯片 2、20世纪90年代以后,随着系统应用对实时性要求的提高,系统软件规模不断上升,实时核逐渐发展为,并作为一种软件平台逐步成

为目前国际嵌入式系统的主流。(D) A、分时多任务操作系统 B、多任务操作系统 C、实时操作系统 D、实时多任务操作系统 3、由于其高可靠性,在美国的火星表面登陆的火星探测器上也使用的嵌入式操作系统是。(B) A、Palm B、VxWorks C、Linux D、WinCE 4、嵌入式系统设计过程中一般需要考虑的因素不包括:(D) A、性能 B、功耗 C、价格 D、大小 5、在嵌入式系统中比较流行的主流程序有:(A)

嵌入式软件开发流程

嵌入式软件的开发流程 嵌入式系统是指用于执行独立功能的专用计算机系统。它由包括微处理器、定时器、微控制器、存储器、传感器等一系列微电子芯片与器件,和嵌入在存储器中的微型操作系统、控制应用软件组成,共同实现诸如实时控制、监视、管理、移动计算、数据处理等各种自动化处理任务。嵌入式系统以应用为中心,以微电子技术、控制技术、计算机技术和通讯技术为基础,强调硬件软件的协同性与整合性,软件与硬件可剪裁,以此满足系统对功能、成本、体积和功耗等要求。最简单的嵌入式系统仅有执行单一功能的控制能力,比如说单片机的应用,在唯一的ROM 中仅有实现单一功能控制程序,无微型操作系统。复杂的嵌入式系统,例如个人数字助理(PDA)、手持电脑(HPC)等,具有与PC几乎一样的功能。实质上与PC的区别仅仅是将微型操作系统与应用软件嵌入在ROM、RAM 和/或FLASH存储器中,而不是存贮于磁盘等载体中。很多复杂的嵌入式系统又是由若干个小型嵌入式系统组成的。 近些年来,随着以计算机技术,通讯技术为主的信息技术的快速发展和Internet 的广泛应用,传统的控制学科正在发生变革,出现了许多新的生长点。伴随而来的一个现象是控制专业的相当多的学生在毕业后进入了计算机,通讯行业,以致有人说学控制没有用,自动化专业可以取消了。这些情况的出现使我们控制教育工作者反复思考,传统的控制应如何拓宽它的领域?控制专业应该教什么才使学生感到有用?流行的嵌入式操作系统可以分为两类:一类是从运行在个人电脑上的操作系统向下移植到嵌入式系统中,形成的嵌入式操作系统,如微软公司的Windows CE及其新版本,SUN公司的Java操作系统,朗讯科技公司的Inferno,嵌入式Linux等。这类系统经过个人电脑或高性能计算机等产品的长期运行考验,技术日趋成熟,其相关的标准和软件开发方式已被用户普遍接受,同时积累了丰富的开发工具和应用软件资源。 另一类是实时操作系统,如WindRiver 公司的VxWorks,ISI 的pSOS,QNX系统软件公司的QNX,ATI 的Nucleus,中国科学院凯思集团的Hopen嵌入式操作系统等,这类产品在操作系统的结构和实现上都针对所面向的应用领域,对实时性高可靠性等进行了精巧的设计,而且提供了独立而完备的系统开发和测试工具,较多地应用在军用产品和工业控制等领域中。Linux 是90年代以来逐渐成熟的一个开放源代码的操作系统。PC机上的Linux 版本在全球数以百万计爱好者的合力开发下,得到了非常迅速的发展。90 年代末uClinux,RTLinux 等相继推出,在嵌入式领域得到了广泛的关注,它拥有大批的程序员和现成的应用程序,是研究开发工作的宝贵资源。 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。

嵌入式软件开发流程

嵌入式软件开发流程

————————————————————————————————作者:————————————————————————————————日期:

嵌入式软件开发流程 一、嵌入式软件开发流程 1.1 嵌入式系统开发概述 由嵌入式系统本身的特性所影响,嵌入式系统开发与通用系统的开发有很大的区别。嵌入式系统的开发主要分为系统总体开发、嵌入式硬件开发和嵌入式软件开发3大部分,其总体流程图如图1.1所示。 图1.1 嵌入式系统开发流程图 在系统总体开发中,由于嵌入式系统与硬件依赖非常紧密,往往某些需求只能通过特定的硬件才能实现,因此需要进行处理器选型,以更好地满足产品的需求。另外,对于有些硬件和软件都可以实现的功能,就需要在成本和性能上做出抉择。往往通过硬件实现会增加产品的成本,但能大大提高产品的性能和可靠性。 再次,开发环境的选择对于嵌入式系统的开发也有很大的影响。这里的开发环境包括嵌入式操作系统的选择以及开发工具的选择等。比如,对开发成本和进度限制较大的产品可以选择嵌入式Linux,对实时性要求非常高的产品可以选择Vxworks等。

1.2 嵌入式软件开发概述 嵌入式软件开发总体流程为图4.15中“软件设计实现”部分所示,它同通用计算机软件开发一样,分为需求分析、软件概要设计、软件详细设计、软件实现和软件测试。其中嵌入式软件需求分析与硬件的需求分析合二为一,故没有分开画出。 由于在嵌入式软件开发的工具非常多,为了更好地帮助读者选择开发工具,下面首先对嵌入式软件开发过程中所使用的工具做一简单归纳。 嵌入式软件的开发工具根据不同的开发过程而划分,比如在需求分析阶段,可以选择IBM的Rational Rose等软件,而在程序开发阶段可以采用CodeWarrior(下面要介绍的ADS 的一个工具)等,在调试阶段所用的Multi-ICE等。同时,不同的嵌入式操作系统往往会有配套的开发工具,比如Vxworks有集成开发环境Tornado,WindowsCE的集成开发环境WindowsCE Platform等。此外,不同的处理器可能还有对应的开发工具,比如ARM的常用集成开发工具ADS、IAR和RealView等。在这里,大多数软件都有比较高的使用费用,但也可以大大加快产品的开发进度,用户可以根据需求自行选择。图4.16是嵌入式开发的不同阶段的常用软件。 图1.2 嵌入式开发不同阶段的常用软件 嵌入式系统的软件开发与通常软件开发的区别主要在于软件实现部分,其中又可以分为编译和调试两部分,下面分别对这两部分进行讲解。 1.交叉编译 嵌入式软件开发所采用的编译为交叉编译。所谓交叉编译就是在一个平台上生成可以在另一个平台上执行的代码。在第3章中已经提到,编译的最主要的工作就在将程序转化成运行该程序的CPU所能识别的机器代码,由于不同的体系结构有不同的指令系统。因此,不同的CPU需要有相应的编译器,而交叉编译就如同翻译一样,把相同的程序代码翻译成不同CPU的对应可执行二进制文件。要注意的是,编译器本身也是程序,也要在与之对应的某一个CPU平台上运行。嵌入式系统交叉编译环境如图4.17所示。

相关文档
最新文档