大方对江南2602井煤层气试井

大方对江南2602井煤层气试井
大方对江南2602井煤层气试井

大方对江南2602井煤层气试井浅析

【摘要】 2602井煤层气试井采用注入/压降测试技术,并运用不稳定试井的原理解释资料,取全取准了各项资料,通过对2602井的测试过程及测试所得相关曲线和参数进行分析,测试取得了成功。

【关键词】煤层气注入/压降不稳定试井测试

2602井是贵州省大方县对江南勘探区布置的煤层气参数井,因煤层气主要以吸附态存于煤层中,所以煤层气测试采取开井注水求破裂压力和流量一压力关系曲线、关井测压降曲线的方法。测试采用井底关井工具,地面注入设备选用可调排量的计量泵。成功地进行了大方县对江南勘探区的煤层注入/压降测试。

1 测试原理及方法

1.1 测试原理

煤层气试井测试是一种不稳定试井,它遵循不稳定试井的基本原理:当储层中流体的流动处于平衡状态时,若改变其压力,则在井底将造成一个压力扰动,该压力波动将随时间的推移不断向井壁四周储层径向扩展,最后达到一个新的平衡状态,用压力计将井底压力随时间的变化规律记录下来,通过分析处理,从而判断和确定储层性质。

1.2 测试方法

2602井采用注入/压降试井方法,它是一种单井压力瞬变测试,适用于高、低压储层,是目前煤层气测试中最常用的试井方法。它

煤层气井试井研究的意义

[基金项目] 本研究得到国家重大专项/大型气田及煤层气开发0专项支持,课题编号2009ZX05038001。[作者简介] 赵培华,男,高级工程师,主要从事煤层气排采技术及研究项目管理工作。 [联系作者] 刘曰武,男,研究员,主要从事渗流力学及油气藏工程方面的研究工作。地址:北京市北四环西路15号力学所,邮政编 码:100190。 煤层气井试井研究的意义 赵培华1 刘曰武2 鹿 倩1 徐建平3 蒋 华3 韩旭东 3 (1.中石油煤层气有限责任公司 北京100028; 2.中国科学院力学研究所 北京100190; 3.大港油田测试公司 天津300270) 摘要 从国内外对煤层气井试井的主要认识的分析出发,对煤层气试井技术研究的基本观点进行了介绍;从了解煤层储层特征、煤层动态变化、措施效果评价、合理工作制度制定等方面,论述了煤层气井试井技术的研究意义。 关键词 煤层气 试井 煤层 两相流 0 引 言 煤层气排采是煤层气开发技术的核心,决定了煤层气开发是否成功。煤层气排采制度是否合理是制约着单井产量提高的关键技术难题之一,要制定合理排采制度,必须了解煤层的特征、煤层气的赋存特征、煤层在开发过程中的变化状况等。煤层测试技术是了解煤层动态变化的主要动态手段之一,它通常被称为煤层气藏开发工程师的/眼睛0。煤层气井生产测试成果是可以提供煤层的特征参数描述、进行煤层措施效果的评价、分析煤层气井之间的连通情况、确定煤层分布的非均质性、得到各煤层的产出状况、区域压降效果,以及不同开发阶段的煤层中的流体分布状况等,是充分了解煤层气藏动态变化规律重要技术手段。煤层气井生产测试资料的分析成果可以为煤层气藏数值模拟、开发方案编制和调整提供第一手重要资料,对制定合理排采工作制度,保证连续、稳定排采,提高单井产量具有重要指导作用。煤层气井生产测试技术是确定合理排采制度、进行合理高效煤层气生产的重要技术保障。 目前,世界上已有74个国家进行了煤层气资源的勘探工作。据国际能源机构(IE A )预计,世界 2000m 以浅的煤层气资源总量约为260@1012m 3 ,其中90%分布在5个国家,资源量由高到低依次为:俄罗斯(113@1012 m 3 )、加拿大(76@1012 m 3 )、中国(36.8@1012 m 3 )、美国(21.2@1012 m 3 )和澳大利亚(14@1012 m 3 ) [1~2]。目前,世界上开发煤层气有地面开 采和井下抽采两种方式。由于井下抽采的效率远低于地面抽采,而且井下抽采的煤层气中甲烷含量要比地面抽采的低,所以本文用煤层气年产量作为各国煤层气发展程度的评价标准时,未考虑煤层气井下抽放的部分。美国是世界上煤层气年产量最高的国家,其煤层气发展程度居世界首位,其次为加拿大、澳大利亚和中国。俄罗斯虽然煤层气资源量最为丰富,但由于本国常规天然气资源供应还很充足等原因,煤层气开发未得到充分重视,煤层气发展程度远远落后其他国家。中国煤层气虽然地面年产量低,但井下抽采量非常高,2008年的单年井下抽采量达到53@108 m 3 ,是目前世界上煤层气井下抽采量最高的国家。 我国煤层气开发具有以下几方面的重大意义:1提高煤矿生产安全;o改善大气环境;?缓解能源危机;?改善能源结构等。我国的煤层气地面开发工作是从80年代末开始的,由于无论在甲烷浓度还是甲烷回收率上煤层气地面开发都明显高于井下抽 2010年12月油 气 井 测 试第19卷 第6期

水平井钻井技术经验概述

第一章定向井(水平井)钻井技术概述 第一节定向井、水平井的基本概念 1.定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然 石油管理局的河50丛式井组,该丛式井组长384米,宽115米,该丛式井平台共有钻定向井42口。 2.定向井的分类 按定向井的用途分类可以分为以下几种类型: 普通定向井 多目标定向井 定向井丛式定向井 救援定向井 水平井 多分枝井(多底井) 国外定向井发展简况

(表一)

10.井眼尺寸不受限制 11.可以测井及取芯 12.从一口直井可以钻多口水平分枝井 13.可实现有选择的完井方案 (4).短曲率半径水平井的优缺点 优点缺点 1.井眼曲线段最短1.非常规的井下工具 2.侧钻容易2.非常规的完井方法 3.能够准确击中油层目标3.穿透油层段短(120—180米)4.从一口直井可以钻多口水平分枝井4.井眼尺寸受到限制

5.直井段与油层距离最小5.起下钻次数多 6.可用于浅油层6.要求使用顶部驱动系或动力水龙头 7.全井斜深最小7.井眼方位控制受到限制 8.不受地表条件的影响8.目前还不能进行电测 第三节定向井的基本术语解释 1)井深:指井口(转盘面)至测点的井 眼实际长度,人们常称为斜深。国外 称为测量深度(MeasureDepth)。 2)测深:测点的井深,是以测量装置 率是井斜角度(α)对井深(L?)的一阶导数。 dα Kα=─── dL 井斜变化率的单位常以每100米度表示。 8)井深方位变化率:实际应用中简称方位变化率,?是指井斜方位角随井深变化的快慢程度,常用KΦ表示。计算公式如下: dΦ KΦ=─── dL

煤层气井动力洞穴完井工艺

2000年6月油 气 井 测 试第9卷 第2期 煤层气井动力洞穴完井工艺 顾维军Ξ王 倩 (华北石油管理局井下作业公司) 在煤层气的勘探与开发领域中,特别是在煤层气井的完井工艺和方法上常见的有套管完井、主力煤层段的裸眼完井和主力煤层段的洞穴完井等。对于不同地区、不同的构造特征,选用的完井工艺及方法也不尽相同,但最终目的只有一个,就是在目前的工艺水平的基础上尽快让煤岩储层的吸咐气解吸出来,并具有工业价值,造福人类。动力洞穴完井工艺技术从钻井、完井、排水采气的整个工序过程与其它完井方法相比,具有不进行单相注入Π压降试井和压裂等措施就可以达到单井面积降压、恢复和提高煤层渗透率等优点。该工艺方法同样适用于煤层割理发育,物性较好、封盖条件好、厚度大、含气量及解吸率高的中低挥发份(中高煤阶)的煤岩储层。 地面设备及工具要求 1.井架高度不低于16m的50~80t修井机一台。 2.波纹S- 3.5动力水龙头一套(包括液压操作系统)。 3.适用73mm钻杆的旋转防喷器(SF18210)一套,其中包括20d作业的密封跟件。 4.63.5mm四方钻杆1根、73mm钻杆数根、101.6mm~108mm钻铤4~6根、152.4mm三牙轮钻头一只。 5.压风机3~4台及相应的连接管线,排量10m3Πmin,型号为S210Π150或S210Π250型。 6.400或700型水泥车一台,40m3储水罐一个。 7.修井机水龙带为25~35MPa的高压水龙带。 8.放喷管线末端为139.7mm套管,不得少于20m。 9.预定气压吞吐作业时间15~20d(作业吞吐范围按煤层水平距离30m估算)。 10.注入气压管线试压不得少于25MPa。 11.井场所有设备及工具按石油天然气集团公司新颁布的标准摆放,便于施工作业,并且符合HSE管理体系要求。 地面作业流程及洞穴完井管柱结构 动力洞穴完井地面作业流程及完井管柱结构见图1。 Ξ顾维军,男,1981年毕业于华北石油学校钻井专业,长期从事井下试油、测试、修井作业以及煤层气的勘探与开发工作。地址:河北省任丘市华北石油管理局井下作业公司,邮政编码:062552。

基于试井结果的煤层气资源开发潜力评价

基于试井结果的煤层气资源开发潜力评价 煤层气注入/压降试井是认识和评价煤储层的重要手段,基于试井结果和统计资料,从煤层破裂压力、试井渗透率及储层压力三个方面分析了贵州某矿区煤层气资源开发潜力。结果表明:研究區煤层气资源丰富,煤储层破裂压力较大,渗透率普遍偏低,现有技术条件煤层气资源开发有一定难度。 标签:煤层气;试井;破裂压力;渗透率;储层压力;贵州 引言 试井是认识和评价煤层气藏的重要手段,也是获得煤储层信息最主要、最有效的技术方法之一。煤层气试井技术源于常规油气,但由于煤储层自身的特殊性,决定了常规油气试井技术在煤层气井的应用受到限制,有的技术甚至不能采用,有些方法需要改进[1]。实践证明,注入/压降试井适合我国的煤层气试井方法[2],可以获得煤层的储层压力、渗透率及地应力等重要参数。文章将通过贵州某矿区的煤层气试井结果,分析该地区的煤层气资源开发潜力。 1 区域地质背景 贵州省煤及煤层气资源十分丰富,全省预测2000m以浅煤炭资源量2463亿吨,居全国第5位,2000m以浅、含气量大于4立方米/吨可采煤层气地质资源量31511.59亿立方米,占全国煤层气资源总量的22%左右,同样评价标准下的煤层气资源量位列全国各省区第二[3]。研究矿区位于贵州省黔西南州北部乌蒙山区,扬子地台南西缘,区内煤炭资源丰富,理论储量172亿吨,其中800m以浅资源量约35亿吨,居黔西南之首。区内煤炭资源主要分布于普安县南部的青山向斜内,中部的旧普安向斜东端、碧痕营背斜西端及北部晴隆向斜北西翼有少量分布。沉积环境海陆交互,二叠系龙潭组为该县主要含煤地层。岩性以细砂岩、粉砂岩、泥质粉砂岩、粉砂质泥岩、泥岩、煤层、泥质灰岩为主,夹薄层菱铁矿,其中含煤12~55层,可采及局部可采煤层4~8层,一般为瘦煤、贫瘦煤、贫煤及无烟煤。 统计资料显示[4],研究区煤层气资源丰富,煤层含气量一般大于8立方米/吨,介于5.33~26.47立方米/吨之间,平均12.18立方米/吨,且随着埋深的增加有增加的趋势,煤层气资源理论勘探开发潜力巨大。 2 煤层气注入/压降试井结果 贵州省煤田地质局一一三队煤层气试井测试组在研究区对2口井(A井、B 井)7个煤层(A井3#、9#、12#、17#、19#,B井18#、19#)进行了注入/压降试井测试。测试结果见表1。 表1 贵州某矿区煤层注入/压降试井结果

煤层气井微破裂试验测试技术及应用

收稿日期:20020705 作者简介:陈志胜(1969-),男,河南内黄人,中国煤炭科学研究院西安分院工程师,从事煤田地质和煤层气试井研究. 第32卷第1期 中国矿业大学学报 Vo l.32No.12003年1月 Jo ur nal o f China U niver sity of M ining &T echno log y Jan .2003 文章编号:1000-1964(2003)01-0053-04 煤层气井微破裂试验测试技术及应用 陈志胜 (煤炭科学研究总院西安分院,西安 710054) 摘要:根据煤层气勘探开发新区内煤储层参数资料和实际应用情况,研究了微破裂试验的测试工艺技术和数据分析方法.介绍了微破裂试验的测试方法、设备组合、施工程序以及数据分析解释,并通过实例阐述了微破裂试验在煤层气井测试工作中的应用.结果表明,在煤层气勘探开发新区,注入压降试井测试前进行一次微破裂试验,可以获取有用的储层信息,为煤层气井的试井设计提供重要的参数依据. 关键词:煤层气井;微破裂试验;测试技术;应用;数据分析中图分类号:P 618.11 文献标识码:A 随着煤层气勘探事业的发展,试井测试技术得到普遍应用,微破裂试验作为注入/压降试井的一种辅助测试方法,在煤层气试井过程中起着重要作用.尤其对勘探开发新区,煤层气勘探井非常少,储层参数资料有限,这给试井设计带来一定困难.微破裂试验提供了一种揭示真实储层的方法,是煤层气井试井设计及试井施工的重要依据. 微破裂试验是在小型压裂试井技术[1]的基础上,结合煤储层特点逐步发展完善的一种测试方法.早期微破裂试验主要目的是获取煤储层闭合压力,测试工艺技术相对比较简单.经过近几年的研究和实践应用,对测试工艺技术逐步进行改进和完善,伴随着数据分析技术的发展,微破裂试验可以反映出更多的储层信息,为准确编制试井设计提供可靠的储层参数.目前,微破裂试验测试技术已在我国许多煤层气勘探开发区应用. 本文从微破裂试验测试实际应用的角度,对测试工艺技术和数据分析方法进行研究.一方面通过改进工艺技术、优化设备组合,减少微破裂试验对随后进行的注入/压降试井的影响;另一方面加强对关井后期的数据分析,以获取更多的储层参数. 1 微破裂试验测试技术 1.1 测试方法 微破裂试验是一种瞬时压裂煤层的测试方法,通过向目标煤层注水,依此产生一个压裂煤层的瞬 时压力脉冲,根据注入流量的变化,在确认煤层被压裂后井底关井,观测压力变化趋势.采用压力计记录井底压力随时间的变化规律,通过分析,可以判断和确定储层的参数性质.微破裂试验测试中需 特别考虑的因素: 1)注入流体的选择[2]:注入流体是造成煤层污染的一个因素,由于流体中固体颗粒对煤层孔隙的堵塞而导致煤层孔隙的连通性降低,因此对注入水的水质应加以控制,可选用清水注入,以防止对煤层造成伤害. 2)注入流体体积的控制:大量的流体进入煤层后对煤层(特别是低渗透的薄煤层)的恢复非常不利,通过优化泵注设备,在满足瞬时压裂煤层的前提下,减少注入时间,控制进入煤层的流体体积. 3)测试时间的选择:测试时间的选择原则:缩短注入时间,延长关井时间.在测试过程中缩短注入时间,可以减少注入流体体积,煤层产生的裂缝小,因此关井后裂缝很快闭合;另外,适当延长关井时间,有利于地层压力的恢复,对随后进行的注入/压降试井分析不会产生太大影响.1.2 地面设备 微破裂试验所需的地面设备包括注水泵、储水罐、流量计、压力表、回流阀、截流阀及高压管汇.其中注水泵是关键设备,为确保在很短的时间内压裂煤层,通常采用高压大排量注水泵,以满足微破裂试验的测试需求,同时可以最大限度降低进入煤层

水平井工艺技术措施

水平井技术措施 1. 侧钻 1) 直井段要保证钻直,钻进至造斜点测ESS,及时计算出井身轨迹数据,以此为依据计算设计下部施工的井眼轨道; 2) 侧钻井段要选择在井径规则、钻时较快的井段,最好是砂岩段; 3) 水泥塞要保证打实,候凝48小时以上,检查水泥塞质量。检查方法:修水泥面,试钻钻压50~80千牛,钻时不高于5~8分/单根,水泥塞质量达到上述要求后钻至侧钻点井深; 4) 侧钻用直马达加弯接头,使用MWD监测井身轨迹的变化情况,判断是否侧钻成功; 5) 严格按照推荐上扣扭矩紧扣; 6) 控制起下钻速度在15柱/小时以下; 7) 开泵前要确保已安放了钻杆泥浆滤清器; 8) 钻井参数服从马达参数,轻压,根据钻进直井段时的钻时选择控制好侧钻钻时; 9) 随时注意钻进时的返砂情况,根据返砂情况及时调整钻井参数,确认新井眼与老井眼偏离2米,新砂样达90%,可确定出新井眼,方可起钻; 10) 起钻前,充分循环至振动筛上无砂子返出; 11) 起钻后采用导向系统钻进。 2. 导向钻进 1) 严格按照推荐上扣扭矩紧扣; 2) 控制起下钻速度在15柱/小时以下; 3) 若下钻遇阻,划眼时应保证工具面是钻进该井段时使用的工具面; 4) 开泵前要确保已安放了钻杆泥浆滤清器; 5) 钻井参数参考马达使用参数; 6) 如果造斜率偏高,马达角度在2度以下可考虑采用10-30转/分以下的转速启动转盘导向钻进; 7) 如果造斜率偏低,起钻换高角度马达; 8) 工具造斜率应稍高于设计造斜率,避免因造斜率不足而起钻; 9) 实际施工过程中,应使实钻轨道尽量靠近设计轨道; 10) 根据现场实际情况,分段循环,及时短起下,保证井眼清洁; 11) 钻具倒装,原则是井斜30度以深井段采用18锥度钻杆,加重钻杆

煤层气DST试井方法应用与研究

地质勘察 / GEOLOGICAL SURVEY 煤层气DST试井方法应用与研究 张兆鑫 王德伟 范云霞 (河南省煤炭地质勘察研究总院,河南 郑州 450052) 摘要:随着煤层气产业的发展,在煤炭勘查阶段针对勘查钻孔测 试必要的煤层气(瓦斯)参数是相关勘查规范所要求的,然而, 常规勘查钻孔不能满足煤层气注入/压降试井方法及设备的基本 要求,要想达到规范要求,只能专门设计煤层气井,使钻探成本 大幅度增加。而DST测试是借助钻具将压力计送入井下,直接 获得煤层气动态参数,参数真实可靠,解决了在煤炭勘查阶段对 煤层气参数的获取工作。本文有针对性的介绍了将油井DST测 试技术进行工艺改进、新的理论计算和工具组合后,成功在普通 地质钻孔进行煤层气动态参数测试的一套优质高效的测试技术。 关键词:DST测试;开关井;压力 1、前言 DST(drill stem test)—钻杆地层测试是使用钻杆或油管把带封隔 器的地层测试器下入井中进行试油的一种先进技术。它既可以在 已下入套管的井中进行测试,也可在未下入套管的裸眼井中进行 测试;既可在钻井完成后进行测试,又可在钻井中途进行测试。 DST测试减少了储层受污染的时间和多种后续井下工程对储层的 影响,可以有效保护储层,是对低压低渗和易污染油气层提高勘 探成功率的有效手段之一。通过利用DST试井理论和方法在钻孔 中通过测试获取储层温度、压力、压力系数,依据优化的软件系 统进行综合分析处理,求取地层渗透率、煤层的有效渗透率、地层压力、表皮系数等参数;对上述参数进行分析,评估气井储层性质,分析气井的生产能力,了解气藏动态,进而对煤层气储层地质开发作出评价。 2、试井技术发展趋势与现状 自1967年伯尔和韦克利成功研制并获得美国专利的世界第一套地层测试器以来,地层测试技术已经获得了长足的发展,各类成套的先进地层测试器,逐渐满足了陆地和海上油井及天然气井测试技术的各种需要。在美国从事地层测试技术开发研究和设测试备制造的诸多公司,其设备代表着世界先进水平,结构各异,各具特色,但是,其地层测试器的工作原理基本相同。我国于20世纪70年代末引进地层测试技术,90年代颁布了行业规范,利用这项技术进行探井试油,现今已达到了试油总层数的80%以上,提高了我国试油技术的整体水平,加快了我国油气勘探开发的进程。20世纪90年代,地层测试进入了煤层气试验井领域。煤层含气性和储层特征检测,是煤层气开发利用前期研究的两个重要方面。煤层含气性相关参数在已往的勘查、开采阶段,通过钻孔及矿山取样均可获得,而煤层气储层资料,在煤矿山开采前的地质勘查阶段,需通过试井测试获取。 3、DST试井基本原理 用钻具(钻杆或油管)将压力温度记录仪、筛管、封隔器、测试阀、等工具一起下入待测试层段,让封隔胶筒膨胀坐封在测试层上部,将其它层段及钻井液与测试层隔开,然后由地面控制将测试阀打开,让地层流体经筛管的孔道和测试阀流入测试管柱,通向地面;关闭测试阀,钻具内的压力记录仪记录下关井压力恢复数据;整个测试过程记录在机械压力计的一张金属卡片上和电子压力计的储存块上,根据压力,温度记录仪和电子压力计录入的压力温度数据,可以计算出地层和流体的特性参数,并能够及时对储层作出评价、解释测试层的特性和产能性质。 4、DST试井能够测试的有效参数 在钻井过程中或完井之后,利用钻具(钻杆或管柱)将地层测试器下入待测层段,进行地层测试,获取动态下的地层流体样品类型,产量,地层压力随测试时间变化曲线、压力衰竭等各项资料。对这些资料进行提取、分析、计算,可得到以下几项主要参数: (1)渗透率:这是实测的流体在岩石孔隙中流动时的平均有效渗透率。 (2)地层损害粘度:由于地层被钻井液或固井液等侵入以及地层部分被打开等多种因素影响,致使井筒附近的渗透率降低,造成产量减少,通过测试可以计算出地层堵塞比和表皮系数。 (3)油气藏压力:通过关井测得的压力恢复可以外推出测试层油气臧的原始压力。 (4)测试半径:在测试过程中由于地层流体发生物理位移,对一定距离的地层将产生作用,这个距离称为测试半径,也称调查半径。利用这个参数可以确定井距大小。 (5)边界显示:在测试半径内若有断层或地界存在,可通过压力变化分析计算出距离,另外借助于其他资料,也可以确定边界异常的类型。 5、DST试井的工作程序 首先将封隔器、过滤器、旁通器、多流器(包括控制器、开关阀等)等组成完成的测试器并按照一定的顺序连接在钻杆端部下入待测井中。当测试器下放到预定位置(测试层位),让封隔器坐封。如果井深小于800米,此时需要通过井台进行增压,使封隔器坐封严密。如果测试井很深,地层压力很高,则需要在管柱内冲水,此法称之为水垫。水垫的高度以控制初开井诱喷压差为150 ̄200个大气压左右时来确定。然后进行初开井,此时打开测试阀门,进行诱喷,目的是通过强烈的引流作用,冲开地层堵塞,一般初开井的时间为5 ̄10min。紧接着进行初关井,此时需关闭测试阀门,迫使地层压力恢复。一般初关井的时间为初开井时间的2 ̄4倍,从而测得 NATIONAL CULTURAL GEOGRAPHY64

煤层气井不稳定试井解释项目

comet3, f.a.s.t cbm都可以 我目前主要用COMET3软件,另外做煤层气数值模拟的软件还有Eclipse、CMG、FAST软件等,这是一些较为熟悉的煤层气软件。目前comet3是做煤层气最专业的软件,不过这个软件需要购买,目前还没有破解版,其它几款软件已有破解版,可在论坛下载学习。希望可以帮到你。 煤层气行业的试井软件,大多是从石油天然气行业借鉴过来的,其引用标准也和石油天然气行业的标准相似。目前主要有以下几种试井解释软件。F.A.S.T CBMTM煤层气储层分析系统Saphir试井解释软件PanSystem试井解释分析与设计软件Work Bench 1.8.2试井软件 ,如果采用常规试井的方法,在开井期间则很容易造成水、气同出,且由于储层渗透率相对较低,压力恢复时间过长,在测试过程中很难准确取得煤储层的地层真实压力,所以就使试井解释很难准确的确定储层参数。 我公司拟在柿庄南区块开展国家科技重大专项项目的专题“柿庄南区块高阶煤储层渗透率评价方法研究”的研究工作,其主要内容包括:(1)柿庄南区块低压煤储层注入/压降试井方法研究;(2)柿庄南区块压前排采生产压力不稳定试井方法研究;(3)利用排采生产资料解释渗透率方法研究;(4)编制3口井注入/压降试井 及3口井压前排采生产压力不稳定试井施工设计; DST测试:测的时间比较短,如果是低渗的话(流体进入钻杆测试器的体积就会笑),测的结果就不准确。 1:压前不稳定试井:(1)目前在CNKI,根据调研的参考文献,没有人做过压前不稳定试井;(2)如果做的话,有一个问题,压前地层压力大于煤层气临界解吸压力,这个煤层气井主要产水,只有当地层压力低于煤层气临界解吸压力时,煤层气井才会产气。 地面注入设备 地面注入设备包括注入泵、储液罐、高、低压管汇、压力表等,目的是将储液罐中的液体以高压注入井中。 利用注入泵:将地层水注入地层中去(注入一天左右),让储层压力大于原始地层压力,然后再关井一段时间(关井5天左右)。问题:注入液体过程,可能导致地层破裂,影响试井解释结果,表皮系数为负。

煤层气定向羽状水平井钻井技术研究

作者简介:黄洪春,1966年生,工程师;1986年毕业于重庆石油学校钻井专业,现从事煤层气研究与试验工作,已发表论文 10余篇。地址:(065007)河北省廊坊市万庄44号信箱。电话:(010)69213379。 Ο加里?特瑞特.新型水平定向钻井系统.煤矿区煤层气项目投资与技术国际研讨会论文集.2000年9月北京。 煤层气定向羽状水平井钻井技术研究 黄洪春 卢明 申瑞臣 (中国石油勘探开发研究院廊坊分院) 黄洪春等.煤层气定向羽状水平井钻井技术研究.天然气工业,2004;24(5):76~78 摘 要 从煤储层特性分析入手,讨论了现有煤层气井增产技术的不足,阐述了用特殊的羽状水平井来提高煤层气单井产量的有利条件。并通过室内实验和研究,介绍了煤层气定向羽状水平井的设计方案、钻井关键技术和主要工具结构原理,提出了在国内现有技术与装备条件下相应的实施方案和建议。所述技术对中国煤层气的开发具有实际应用价值。 主题词 煤层气 羽状水平井 设计 钻井技术 煤层实施羽状水平井的有利条件 由于垂直井贯穿煤层割理系统长度有限(通常为煤层厚度),而煤层气藏基岩渗透率很低,为获得经济产量需要对煤层实施增产措施。从我国煤层气试验井来看,先后试验了水基压裂液压裂、CO 2泡沫压裂、裸眼洞穴等多种增产技术措施。 对各向异性的煤层气藏压裂水力裂缝方位研究表明,水力裂缝通常沿与面割理(煤层主应力和渗透率方向)平行方向延伸,不能充分地进入煤层深部。加之煤层机械强度低、易压缩,压裂裂缝难以控制,压裂砂易嵌入煤岩使其对煤层的支撑效果大大降低,并有可能在裂缝周围形成一个屏障区。从8口裸眼洞穴完井的试验情况来看,因造洞穴方式和施工工艺的不同,未达到改善近井地带渗透率而使增产效果差。 理论研究和常规油气储层实践证明,当储层纵横向渗透率比值大于0.1时钻水平井效果显著,其产量可达直井的3~10倍,煤层气储层渗透率完全符合该条件。 要在渗透率较低的煤储层中获得经济的煤层气产量,需要更多的煤层裸露和割理系统沟通才能实现,而羽状分支水平井可以做到这点。 综上所述,煤层气储层具有钻羽状水平井有利 的条件。 煤层气定向羽状水平井设计 所谓羽状分支水平井是指在一个主水平井眼两侧再侧钻出多个分支井眼作为泄气通道,分支井筒能够穿越更多的煤层割理裂缝系统,最大限度地沟通裂缝通道,增加泄气面积和气流的渗透率,使更多的甲烷气进入主流道,提高单井产气量。 1.煤层气羽状水平井完井方法 对于煤层气定向羽状分支水平井的完井方式,工艺较简单,主要采用裸眼完成,直接投产。 2.井身结构 煤层气需要通过排水降压解吸附才能产出,因此,定向羽状水平井井身结构必须考虑排水采气。参考美国已成功完成的羽状分支水平井钻井方案Ο,结合我国煤层特点提出如下两种井身结构方案。 方案一,需要另钻直井抽排水。 215.9mm 井眼在目的煤层顶部下入 177.8mm 技术套管并注水泥固井;用 152.4mm 钻头小曲率半径造斜进入煤层,并在煤层中钻500~1000m 长的主水平井眼;然后用 120.6mm 钻头由下往上在主水平井眼两侧不同位置交替侧钻出4~6个水平分支井眼。单个水平分支井眼长300~600m ,与主水平井眼成45°夹角,全部采用裸眼完井。最后,在距水平井井 ? 67?

煤层气开发钻井工艺及设备选择方案讲解

煤层气开发钻井工艺及设备选择方案 APE OGGO 李向前 2010-12 煤层气简介 煤层气(Coal Bed Methane/CBM。煤层气俗称“ 瓦斯” ,其主要成分是甲烷,它是在煤的生成和煤的变质过程中伴生的气体。在成煤的过程中生成的瓦斯是古代植物在堆积成煤的初期,纤维素和有机质经厌氧菌的作用分解而成。甲烷通常是由水压支撑在煤层气中。煤层气的主要组成部分(95%是天然气。因此,煤层气具有热值/每立方米与天然气几乎一样,可与天然气混合运输。

煤层气就像天然气,相对便宜,是清洁燃料。 CBM 是 21世纪重点发展的替代能源。 CBM 开发技术基本成熟,在中国潜力巨大。 煤层气储量 中国煤层气产业数据概览: 36.8万亿立方米可开采资源总量占世界总量的 12% 41. 5万平方公里煤层气产区面积 2010年地面产量为 15亿立方米; 2015年地面产量为 110亿立方米; 2020年达240亿立方米。 中国 9大煤层气富集盆地: 沁水盆地,鄂尔多斯盆地、准噶尔盆地、滇东黔西、二连、吐哈、塔里木、天山和海拉尔等含气盆地(群、 121个含气区带。

中国煤层气资源丰富,发展前景广阔,资源分布集中,适于开发资源比例大, 煤层气产业刚刚起步,煤层气市场逐步步入商业化阶段,煤层气资源量与常规天然气相当,有效勘探开发可以对常规天然气形成重要补充。 目前能够商业化的煤层气主要目标市场为山西沁水、韩城、河南、湖北、湖南等中部地区 储存特点:低渗透,低压力,开发难度较大。 煤层气开发与常规天然气开发技术不同

煤层气开发流程 -地面开发 第一步:勘查规划(国家投资带动外资 第二步:招商引资(区块开采权:中石油,中联,煤业集团第三步:钻井、固井、压裂、排采(承包商承包:煤田地质勘探队; 钻井工程公司等等 第四步:运输(井口压缩机,管道输送 第五步:应用(煤层气发电,加气站,工厂,民用

水平井钻井技术论文

川西水平井钻井技术研究 【摘要】水平井是在定向斜井钻井技术基础上发展起来的一项钻井技术,单井增产效果明显。近年来由于水平井的大量投产,水平井技术在川西得到了较广泛的应用,通过不断研究和探索,总结出了部分川西水平井施工工艺技术。本文从川西地层钻井状况结合水平井工程难点进行分析,详细阐述了针对难点的技术措施,为今后的水平井施工提供参考。 【关键词】川西;水平井;钻井技术 一、川西地层钻井状况分析 川西地层复杂,上部地层易漏,下部地层高压,施工难度较大,下面以新场构造、孝泉构造、马井构造为例分析川西地层钻井状况:川西新场气田蓬莱镇组气藏为大型次生气藏,区块内为陆相砂、泥岩沉积,断层、裂缝不发育,新场构造地层岩石强度大、可钻性差、机械钻速低、钻井周期长,由于高压超高压地层,易出现常规钻井井涌、井漏等复杂情况。 川西孝泉构造气藏,为下覆地层通过断层裂缝向上运移而成的次生气藏,储层处高压状态,裂缝性高压气藏,往往伴随着井漏,严重时会导致井喷,并且裂缝通道的漏失安全密度窗口很窄,安全钻井液密度窗口选择困难,井控难度大。 马井构造位于川西中部,马井构造浅部地层的第四系及白垩系以种植土、砂砾层、泥岩及石膏、砾石为主。由于浅井段的砂砾层及地层界面的不整合接触在钻井过程中易发生井漏。砂砾层、泥岩与粉砂

岩及石膏夹层造成井眼失稳,极易产生井塌、掉块卡钻、下套管作业困难等情况。 二、川西水平井钻井施工难点 川西地区地质条件复杂,水平井施工风险高、易发生井下复杂情况,除设计上合理确定井身结构外,更重要的是解决施工过程中的难点问题。川西水平井施工难点主要集中表现在以下三个方面:一是轨迹控制难度大。由于水平井一般是三维靶体,井眼轨迹不仅要求进入窗口,更要求避免进入水平井段时由于钻头穿出靶体而导致的脱靶现象;摆放工具面角难度系数大。水平井斜井段不断延伸,随之井眼摩阻不断增大,导致钻具在井眼中不易转动,工具面角的摆放问题尤其表现出难度所在;控制难度系数大。因工具造斜能力的模糊性以及地质的不确定性和测量信息缺乏时效性等各种客观因素的制约,致使水平井中的水平井段控制和着陆控制难度大大增加。 二是钻柱与井眼之间的摩阻较大。受水平井造斜段井斜角的作用,井眼的弯曲程度对相应钻柱的受力具有较大的影响,并且当钻具进入水平段后,随着井眼轨迹的上下波动,摩阻越来越大,钻具拖压压风险增大。因此,确定合理的钻具组合是水平井又一施工难点。 三是井眼净化难度大。由于水平井段钻具整体躺在下井壁上,钻具与井壁的轴向摩擦和径向摩擦加大了起下钻阻力和扭矩,易造成钻具遇阻、遇卡、钻杆胀扣、脱开等井下复杂情况,大斜度井段和水平段的岩屑不易携带,易形成岩屑床,如果净化不好将导致摩阻和扭矩的增加,造成下套管和固井作业不能顺利进行,因此,加强井眼净化,

第一章 定向井(水平井)钻井技术概述

第一章定向井(水平井)钻井技术概述 定向井、水平井的基本概念 定向井丛式井发展简史 定向井钻井被(英)T.A.英格利期定义为:“使井筒按特定方向偏斜,钻遇地下预定目标的一门科学和艺术。”我国学者则定义为,定向井是按照预先设计的井斜角、方位角和井眼轴线形状进行钻进的井。定向井相对与直井而言它具有井斜方位角度而直井是井斜角为零的井,虽然实际所钻的直井它都有一定斜度但它仍然是直井。 定向井首先是从美国发展起来的,在十九世纪后期,美国的旋转钻井代替了顿钻钻井。当时没有考虑控制井身轨迹的问题,认为钻出来的井必定是铅垂的,但通过后来的井筒测试发现,那些垂直井远非是垂直的。并由于井斜原因造成了侵犯别人租界而造成被起诉的案例。最早采用定向井钻井技术是在井下落物无法处理后的侧钻。早在1895年美国就使用了特殊的工具和技术达到了这一目的。有记录定向井实例是美国在二十世纪三十年代初在加利福尼亚享廷滩油田钻成的。 第一口救援井是1934年在东德克萨斯康罗油田钻成的。救援井是指定向井与失控井具有一定距离,在设计和实际钻进让救援井和失控井井眼相交,然后自救援井内注入重泥浆压死失控井。 目前最深的定向井由BP勘探公司钻成,井深达10,654米; 水平位移最大的定向井是BP勘探公司于己于1997年在英国北海的RytchFarm 油田钻成的M11井,水平位移高达1,0114米。 垂深水平位移比最高的是Statoil公司钻成的的33/9—C2达到了1:3.14; 丛式井口数最多,海上平台:96口;人工岛:170口; 我国定向井钻井技术发展情况 我国定向井钻井技术的发展可以分为三个阶段,50—60年代开始起步,首先在玉门和四川油田钻成定向井及水平井:玉门油田的C2—15井和磨三井,其中磨三井总井深1685米,垂直井深表遗憾350米,水平位移444.2米,最大井斜92°,水平段长160米;70年代扩大实验,推广定向井钻井技术;80年代通过进行集团化联合技术攻关,使得我国从定向井软件到定向井硬件都有了一个大的发展。 我国目前最深的水平井是胜利定向井公司完成的JF128井,井深达到7000米,垂深位移比最大的大位移井是胜利定向井公司完成的郭斜井,水平

水平井钻井技术介绍

水平井钻井技术介绍 水平井钻井技术第一章绪论水平井钻井技术是20世纪80年代国际石油界迅速发展并日臻完善的一项综合性配套技术,它包括水平井油藏工程和优化设计技术,水平井井眼轨道控制技术,水平井钻井液与油层保护技术,水平井测井技术和水平井完井技术等一系列重要技术环节,综合了多种学科的一些先进技术成果。由于水平钻井主要是以提高油气产量或提高油气采收率为根本目标,已经投产的水平井绝大多数带来了十分巨大的经济效益,因此水平井技术被誉为石油工业发展过程中的一项重大突破。第一节水平井的分类及特点水平井是最大井斜角保持在90°左右,并在目的层中维持一定长度的水平井段的特殊井。水平钻井技术是常规定向井钻井技术的延伸和发展。目前,水平井已形成3种基本类型,如图1—1所示。(1)长半径水平井(又称小曲率水平井):其造斜井段的设计造斜率K<6°/30m,相应的曲率半径R>286.5m。(2)中半径水平井(又称中曲率水平井);其造斜井段的设计造斜率K=(6°~20°) /30,相应的曲率半径R=286.5~86m。水平井剖平面示意图(3)短半径水平井(又称大曲率水平井):其造斜井段的设计造斜率K=(3°~10°) /m,相应的曲率半径R=19.1~5.73m。上述3种基本类型水平井的丁艺特点和各自的主要优缺点分别列于表l—l和表1—2。大斜度井、水平井和多井底井技术的应用都有一个共同的目的.这就是降低综合成本和提高油层的开采量。对于同一尺寸的井眼,直井由于出油(气)面积比较小、其几何条件所提供的效率就比较低.而水平井几何条件所提供的效率达到最高,如图1—2和图1—3 所示。大斜度井(井斜角大于60°的井)主要适用于层状油藏。多井底井(在一个井眼内钻几口井)主要用于很厚的垂直渗透油层(具有低孔隙率和垂直裂缝的块状石灰岩)或者短半径横向引流类的井。1.天然垂直裂缝在垂直裂缝油藏中,油气完全处在裂缝中,裂缝之间的非生产底层一般为6~60m 厚,所以垂直井可能只钻到一个产层.也可能一个产层也钻不到,而水平井可以与产层垂直相交,横向钻穿若干个产层裂缝.这样就比垂直井的开采量要高得多。2.水锥和气锥1)水锥水平井可以在油层的中上部造斜,然后在生产层中钻一定长度的水平井段。水平井不仅减少水锥的可能性如图1—4 所示。2)气锥水平井的井眼全部在油砂中有助于避免气锥问题。并可以控制采收率,不致于使气锥的压力梯度过高。水平井成功地减少了水锥、气锥等有害影响。3.低渗透性地层由于固井的影响,石灰岩油藏的孔隙度和渗透率即使在短距离内也可能有相当大的变化。与此相似.砂岩油藏中内部岩层构造倾角的变化也能造成孔隙度和渗透率的变化,这些油藏水平相交可以提高产量。4.薄油层对于薄油层.通过在油层的上下边界之间钻个水平井段可以大大地增加井与油层的接触表面积。对于厚的油层则可以优先选择成本较低的直井完井方法,或者考虑应用多底井的可能性(见图1—5)。5.不规则地层平钻井已经成功地应用产开发不规则油藏。这种含油地层互不关联,孤立存在,地震测量也难以指定其准确位置.所以钻直井或常规定向井很难钻到这类油藏。然而短半径水平井可以从现有直井中接近油藏的位置进行造斜.并且可以避免可能的水锥和气锥问题。6.溶解采矿很多矿藏当今采用溶解采矿法进行开采,水平井可以提高这些矿藏开采的经济效益。7.边际构造、丛式井和加密井水平井可能适用于边际构造,为了在短期内增加总的开采量可以钻从式水平井组(见图1—6)。8.层状油层水平井采油获得的产量增量取决于油层垂直渗透率的值。在垂直与水平渗透率之比值较低的情况下,如水平纹理的油层,大斜度井的效率要远高于水平井的效率。如图1—7。9.重油产层在重油产层中、水平钻井技术具有提高产量的能力。横穿油藏的水平井既可以作为生产井也可以作为注水井。水平井具有如下的优点和应用:(1) 开发薄油藏油田,提高单井产量。水平井可较直井和常规定向井大大增加泄油面积,从而提高薄油层中的油产量,使薄油层具有开采价值。(2) 开发低渗透油藏,提高采收率。(3) 开发重油稠油油藏。水平井除扩大泄油面积外,如进行热采,还有利于热线的均匀推进。(4) 开发以垂直裂缝为主的油藏。水平井钻遇垂直裂缝的机遇较直井大得多。(5) 开发底水和气顶活跃的油藏。水平井可以减缓水锥、气锥的推进速度,延长油

煤层气井常用试井方法及应用

煤层气井常用试井方法及应用 学号: 2010050031 姓名: 张恒

煤层气井常用试井方法及应用 摘要:试井测试是目前能够准确获取煤层参数的有效方法。现从实际应用的角度,重点 介绍了煤层气井常用试井方法,并对各种试井测试方法的优缺点、适用范围进行了研究评价。结合煤层渗透率及储层压力的特征,探讨了试井测试方法在煤层气勘探开发中的应用 关键词:煤层气;试井方法;应用 0引言 煤层气的勘探、开发离不开煤层气试井,它是对煤层进行定量和定性评价的工艺方法,它在确定煤层基本参数方面具有明显的优势,其主要目的是获取储层的评价参数,为煤层气井的勘探开发和生产潜能评价提供科学的依据。但煤层气属于非常规天然气资源,它在储集、运移、产出机理方面与常规油气之间存在明显差异。目前试井测试的方法很多,主要依赖于常规油气井试井技术,尽管一些常规试井方法可用于煤层气试井测试,由于煤层气在储集、运移、产出机理方面与常规油气之间存在明显差异,这些试井技术的应用有一定的局限性。大量的研究资料表明,我国煤储层具有低压、低渗的特点,即煤层的储层压力和渗透率普遍较低。本文通过对煤层气常用试井方法研究评价,结合我国煤储层特点,探讨煤层气试井方法在煤层气勘探开发中的应用[1]. 1煤层气井常用试井方法 煤层气试井测试方法有很多,目前国内外常用的试井测试方法主要有DST测试、段塞测试、注入/压降测试、水罐测试,微破裂试验测试技术等 1.1DST测试[2] DST测试利用钻杆地层测试器进行,依靠地层流体的流动、产出和压力恢复的过程求取地层参数,是认识测试层段的流体性质、产能大小、压力变化和井底附近有效渗透率以及目的层段被污染状况的常用手段。煤层气井DST测试目的与常规油气井有些不同,由于煤层气多以吸附状态存在于煤储层中,因此煤层气井DST测试主要是了解煤储层中水的能量、割理的渗透能力、储层压力以及判断原始游离气是否存在,为下一步的改善措施提供参数依据。DST测试方法常用于渗透率和储层压力较高的储层中。 图1 DST测试半对数曲线示意图 1.2注入/压降测试[3] 注入/压降法试井是一种单井压力瞬变测试,或称不稳定试井,可以估算测试层和测试井的

羽状水平井钻井工艺

定向羽状水平井钻井工艺 定向羽状水平井技术适合于开采低渗透储层的煤层气,集钻井、完井与增产措施于一体。其主要机理在于多分支井眼在煤层中形成网状通道,促进微裂隙的扩展,又能连通微裂隙和裂缝系统,提高单位面积内的气液两相流的导流能力,大幅度提高了井眼波及面积,降低煤层气和游离水的渗流阻力,提高气液两相流的流动速度,进而提高煤层气产量和采出程度。 一、钻井设备: 1.钻机、钻塔、钻铤和钻具。 2.造斜工具 中、长半径造斜工具(包括P5LZ165、PSLZ197、P5LZ120三种尺寸系列、多种结构规格的固定弯壳体造斜马达)和短半径造斜工具。 3.水平井测井仪器。包括钻杆输送式、泵送式两种测井仪器和下井工具,以及湿式接头和锁紧装置等。 4.射孔工具。包括旋转弹架和旋转枪身等2种高强度定向射孔枪和传爆接头。 5.完井工具。包括金属棉筛管、新型套管扶正器及其它9种完井工具 6.铰接式钻具 羽状分支水平井的井眼轨迹是空间弯曲线,既有井斜的变化又有方位的变化,通常需要在钻铤或钻杆连接处加装一个具有柔性连接的铰接式接头。这种接头具有万向节的功能,在一定角锥度范围内可以任意方向转动,同时具有密封功能。此外,采用铰接式钻具组合,最大限度降低扭矩、摩阻和弯曲应力。 7.可回收式裸眼封隔器/斜向器

斜向器是分支井钻井的关键技术工具,对分支井的钻井起着至关重要的作用,它在分支点处引导钻头偏离原井眼按预定方向进行分支井眼的钻进。煤层气钻进中的斜向器是可回收式带裸眼封隔器的,它由斜向器和封隔器两部分组成,斜向器的斜面上开有送入和回收的孔眼,用于施工作业中送入和回收斜向器,可膨胀式封隔器用于固定和支撑斜向器。 8.井眼轨道控制 由于煤层可钻性好,钻速快,单层厚度薄(3~6m),井眼轨迹控制难度大。为将井眼轨迹控制在煤层内,可采用“LWD+泥浆动力马达”或地质导向钻井技术。实现连续控制,滑动钻进,提高轨迹控制精度,加快钻进速度。同时要避免井眼轨迹出现较大的曲率波动。钻进中尽量避免大幅度变动下部钻具组合结构、尺寸和钻进参数,并控制机械钻速在一定范围内变化,防止井眼出现小台肩现象。 9.其它工具和装备。例如专用取心工具、无磁钻挺、纺锤形稳定器等多种工具和装备。 二、材料: 钻井液:油基钻井液、水基钻井液、无土相钻井液和气基钻井液。 套管等。 三、工艺流程: 1.煤层气羽状水平井完井方法 分支井作为水平井与定向井的集成与发展,其技术难点不再是钻井工艺技术而是完井技术。同水平井及直井相比,分支井完井要复杂的多,主要是分支井根部的连接密封以及分支井眼能否再次进入的问题。目前,国外分支水平井的完井方法主要有三种:裸眼完井、割缝衬管完井和侧向回接系统完井。裸眼完井较为常见,但易出现井壁坍塌等问题。割缝衬管完井虽然能克服这一缺陷,但安装比较困难。如果水平段的岩性比较硬可用裸眼完井或割缝衬管完井,一般较软岩石可用水平井回接系统完井。实际操作中,可根据具体情况进行设计对于煤层气定向羽状分支水平井的完井方式,工艺较简单。如要采用裸眼完井,直接投产。2.钻出工艺 目前国外主要采用以下四种方法钻出分支井: 1)开窗侧钻

煤层气

煤层气 煤层气(Coalbed Methane)储层参数,主要包括煤的等温吸附特性参数、煤层气含量、渗透率、储层压力、原地应力,以及有关煤岩煤质特征的镜质组反射率、显微组分、水分、灰分和挥发分等,相应的测试分析技术有:煤的高压等温吸附试验(容量法)、煤层气含量测定、煤层气试井和煤岩煤质分析等。 煤的高压容量法等温吸附实验,是煤层气资源可采性评价和指导煤层气井排采生产的关键技术参数,等温吸附数据测定准确性,直接关系到煤层气开发项目的成败和煤层气产业的发展。 许多研究表明,煤是具有巨大内表面积的多孔介质,象其它吸附剂如硅胶、活性碳一样,具有吸附气体的能力。煤层气以物理吸附方式储存在煤中,主要证据有:甲烷的吸附热比气化热低2—3倍(Moffat &Weale,1955;Y ang &Saunders,1985),氮气和氢气的吸附也与甲烷一样,这表明煤对气体的吸附是无选择性的;大量试验也证明,煤对气体吸附是可逆的(Daines,1968;Maver 等,1990)。 结合国内外资料,推荐吸附样粒度为60—80目。 煤的平衡水分—当煤样在温度30℃、相对湿度96%条件下,煤中孔隙达到水分平衡时的含水量。 测试平衡水平的主要目的是:恢复储层条件下煤的含水情况,为煤的吸附实验做准备。 煤层气含量—指单位重量煤中所含的标准状态下(温度20℃、压力101.33kpa)气体的体积,单位是cm3/g或m3/t。它是煤层气资源评价和开发过程

中计算煤层气资源量和储量、预测煤层气井产量的重要煤储层参数之一。煤层气含量的测定方法大体上可分为两类:直接法(解吸法)和间接法(包括等温吸附曲线法和单位体积密度测井法)。在直接法中,保压取心解吸法是精确获得原地煤层气含量最好的方法。 直接法的基本原理 煤心煤样的煤层气总量由三部分气体量构成:一是损失气(lost gas),二是实测气(measured gas),三是残余气(residual gas)。 损失气量估算主要采用美国矿业局直接法(USBM法),该法假设煤中气体解吸可理想化地看作球形煤粒中气体在恒温下扩散,可以用扩散方程来描述,球形煤粒内气体的初始浓度为常数。Grank(1975)给出了各种不同几何形态和边界条件的扩散方程的解。其解析解表达式为: △G cm=[203.1G ci D]-G cl t r 式中△G cm—累计实测解吸气含量,cm3/g G ci—初始气含量,cm3/g D—扩散系数,cm2/s R—煤粒的特征扩散距离,cm G cl—损失气含量,cm3/g 该解吸解表达式表明,早期的累计解吸气量与时间平方根成正比,这就是估算损失气量的理论依据。不过,大约20%以上的吸附气体解吸逸散后,这种估算损失气量的方法所依据的数学意义就变得不准确了。 USBM法确定的零时间起点与钻探取心时使用的循环液的类型有关。当用清水或泥浆时,零时间认定为煤心被提升到一半孔深的时刻,即认为煤心被提

相关文档
最新文档